Polynomial Functors
and
Natural Models of Type Theory

Steve Awodey

Workshop on Polynomial Functors
Topos Institute
March 2021

Outline

SANER A .

Dependent type theory
Natural models

Type formers
Polynomial monad

Propositions as types

1. Dependent type theory

Types:
AB, ..., AxB, A—» B, ...

Terms:
x:A, b:B, (a,b), Ax.b(x), ...

Dependent Types:

x:AtF B(x) “indexed families of types”

Type Forming Operations:
> B(x), [[B(x), -
x:A x:A

Equations:

1. Dependent type theory: Rules

Contexts:

x:At B(x) r=c

x:A, y:B(x) F rz:Ck

1. Dependent type theory: Rules

Contexts:
x:At B(x) r=c
x:A, y:B(x) F rz:Ck
Sums:
M x:AlF B(x) M-a:A, TFb:B(a)
M ZX:A B(X) re <a> b> : ZXIA B(X)
MN-c:> . aB(x) MN-c:> . aB(x)
M-fstc: A [+ sndc: B(fstc)
[+ fst(a,b) =a: A ltsnd(a,b)=b:B

e (fste,sndc)y =c: Z B(x)
x:A

1. Dependent type theory: Rules

Contexts:
x:AF B(x) r=c
x:A, y:B(x) F rz:Ck
Sums:
M x:AF B(x) NFa:A T Fb:B(a)
M+ ZX:A B(X) Mk <av b> : ZX:A B(X)
MEc:) . AB(x) MEc:) . 4B(x)
MEfstc: A '+ sndc: B(fstc)
[fst(a,b) =a: A Fsnd(a,b)=b:B

[{fstc,sndc) = c: Z B(x)
x:A

1. Dependent type theory: Rules

Sums:
x:AF B(x) a:A b:B(a)
ZX:A B(X) <a’ b> : ZX:A B(X)
c: ZX:A B(X) c: ZX:A B(X)
fstc: A snd ¢ : B(fstc)
fst(a,b) = a: A snd(a,b) =b: B

(fstc,sndc) = c: Z B(x)

x:A

1. Dependent type theory: Rules

Products:
x:Ak B(x) x:At b:B(x)
HX:A B(X) Ax.b: HX:A B(X)
a:A f:HXZA B(X)
fa: B(a)

x: Ak (Ax.b)x = b: B(x)
Ax.fx = f: HB(X)

x:A

1. Dependent type theory: Rules

Products:
x:Ak B(x) x:At b:B(x)
HX:A B(X) Ax.b: HX:A B(X)
a:A f:HXZA B(X)
fa: B(a)

x: Ak (Ax.b)x = b: B(x)
Ax.fx = f: HB(X)

x:A

Substitution:
o: A =T [Fa: A

AF alo] : Alo]

2. Natural models

Definition
A natural transformation f : Y — X of presheaves on a category C

is called representable if its pullback along any yC — X is
representable:

D—>Y
yJ

|k

yC——X

2. Natural models

Definition
A natural transformation f : Y — X of presheaves on a category C

is called representable if its pullback along any yC — X is
representable:

D—>Y
yJ

|k

yC——X

Proposition (A, Fiore)

A representable natural transformation is the same thing as a
Category with Families in the sense of Dybjer.

2. Natural models

Definition

A natural transformation f : Y — X of presheaves on a category C
is called representable if its pullback along any yC — X is
representable: for all C € C and x € X(C) there is given

p:D — Candy € Y(D) such that the following is a pullback:

D—2>Y
e
ypl lf
Proposition (A, Fiore)
A representable natural transformation equipped with a choice of

such pullbacks is the same thing as a Category with Families in
the sense of Dybjer.

2. Natural models

Write the objects and arrows of C as o : A — T, thinking of a
category of contexts and substitutions.

Let p: U — U be a representable map of presheaves on C.

Think of U as the presheaf of types, U as the presheaf of terms,
and then p gives the type of a term.

rFA ~ Aeu(n
rFa:A ~ aeU(

U
T
r~ .u

A

where A= po a.

2. Natural models
Naturality of p: U — U means that for any substitution

o : A — T, we have the required action on types and terms:

M-A = Ak Afq]
N-a:A = At ao]: Ald]

a[o] 0
i l,,

Alo]

2. Natural models

Given any further 7 : A’ — A we clearly have
Alo][r] = Alo o 7] alo][r] = a[o o 7]
and for the identity substitution 1: T — T
Alll=A all] = a.

This is the basic structure of a CwF.

2. Natural models

Given any further 7 : A’ — A we clearly have
Alo][r] = Alo o 7] alo][r] = a[o o 7]
and for the identity substitution 1: T — T
Alll=A a[l] = a.
This is the basic structure of a CwF.

The remaining operation of context extension

A
Mx:AF

is given by the representability of p : U — U as follows.

2. Natural models, context extension

Given I' = A we need a new context [.A together with a
substitution pa : LA — A and a term

FAt ga:Alpal-

2. Natural models, context extension

Given I' = A we need a new context [.A together with a
substitution pa : LA — A and a term

FAt ga:Alpal-

Let pa : [.A — T be the pullback of p along A.

rA-A.
T4

U
PA ip
r — U

The map ga : I.A — U gives the required term TAF ga : Alpal.

2. Natural models, context extension

PA J{p
FHA U

The pullback means that given any substitution o : A — I and
term A F a: Alo] there is a map

(0,a): A —T.A
satisfying

pa(o,a) =o

galo, al = a.

2. Natural models, context extension

By the uniqueness of (o, a), we also have
(0,a)or = (cor,alr]) forany7:A"— A

and
(pA7 CIA) =1

2. Natural models, context extension

By the uniqueness of (o, a), we also have
(0,a)or = (cor,alr]) forany7:A"— A

and
(pA7 CIA) =1

These are all the laws for a CwF.

2. Natural models and initiality

® The notion of a natural model is essentially algebraic.

2. Natural models and initiality

® The notion of a natural model is essentially algebraic.

® The algebraic homomorphisms correspond to syntactic
translations.

2. Natural models and initiality

® The notion of a natural model is essentially algebraic.

® The algebraic homomorphisms correspond to syntactic
translations.

® There are initial algebras as well as free algebras over basic
types and terms.

2. Natural models and initiality

® The notion of a natural model is essentially algebraic.

® The algebraic homomorphisms correspond to syntactic
translations.

® There are initial algebras as well as free algebras over basic
types and terms.

® The rules of type theory are a procedure for generating the
free algebras.

2. Natural models and tribes

Let p: U — U be a natural model.
The fibration F — C of all display maps
pa:TA—=T forall A: ' - U

form a clan in the sense of Joyal.

2. Natural models and tribes

Let p: U — U be a natural model.

The fibration F — C of all display maps
pa:TA—=T forall A: ' - U

form a clan in the sense of Joyal.

Conversely, given a clan (C, F), there is a natural model in C,

LT v(f) : T v(dom(£)) = TT y(cod(f)).

fer fer fer

The natural model determines a splitting of the fibration 7 — C.

3. Modeling the type formers

Consider the polynomial endofunctor P = Uip, U* : C—C
determined by p: U — U,

P(X) = > x¥
A:U

where [A] = p~1(A) is the fiber of p: U — U at A: U.

3. Modeling the type formers

Consider the polynomial endofunctor P = Uip, U* : C—C
determined by p: U — U,

X) =Y xA
A:U

where [A] = p~1(A) is the fiber of p: U — U at A: U.

Lemma
Maps T — P(X) correspond naturally to pairs (A, B) where

X< ra—u0.

b

—>U

3. Modeling the type formers

Applying P to U itself therefore gives an object
-y
A:U

maps [— P(U) into which correspond naturally to types in an
extended context A+ B

U< rA—=U

b

4>U

3. Modeling the type formers: Tl

Proposition

The map p : U — U models the rules for products just if there are
maps X\, [1 making the following a pullback.

3. Modeling the type formers: Tl

Proposition

The map p: U — U models the rules for products just if there are
maps A, 1 making the following a pullback.

Proof-:

3. Modeling the type formers: Tl

Proposition
The map p : U — U models the rules for products just if there are
maps X\, [l making the following a pullback.

Proof-:

PU) —2
S U PU)
A:U

A+ B MaB

3. Modeling the type formers: Tl

Proposition

The map p: U — U models the rules for products just if there are
maps A, [1 making the following a pullback.

Proof:
AFb:B Aab
S U PU)— 2 .U
A:U
S Ukl P(U) ———U
A:U

AFB NaB

3. Modeling the type formers: Tl

Proposition
The map p : U — U models the rules for products just if there are
maps A, [making the following a pullback.

Proof:

% UlAl P(U) _x

AZU ulAl P(U) ———

A+ B MaB

3. Modeling the type formers: Tl

Proposition
The map p : U — U models the rules for products just if there are
maps X\, [l making the following a pullback.

Proof:
A f(x): B Aaf(x)=f
S Ukl P(U) A U
A:U
ulAl P(U) . U
AU

AFB NaB

3. Modeling the type formers: X

Proposition

The map p : U — U models the rules for sums just if there are
maps (pair, X) making the following a pullback

U

l”

U

where q : Q — P(U) is the polynomial composition P4 = P o P.

- Y Y 8w

A:U B:UA x:A

pair
.

Explicitly:

3. Modeling the type formers: T

Rules for a terminal type T

FT Fax:T x:ThEx=x:T

Proposition

The map p : U — U models the rules for a terminal type just if
there are maps (x, T) making the following a pullback.

1

*
_—

4. Polynomial monad

Consider the pullback squares for T and X.

pair

1— U Q U
N lp
l————U P(U)——~—U

4. Polynomial monad

Consider the pullback squares for T and X.

pair

1— U Q U
N ip
l————U P(U) ———U

These determine cartesian natural transformations between the
corresponding polynomial endofunctors.

T:1=P c:PoP=P

4. Polynomial monad

Theorem (A-Newstead)

A natural model p : U — U models the T and ¥ type formers iff

the associated polynomial endofunctor P has the structure maps of
a cartesian monad.

7:1=P c:PoP=P

4. Polynomial monad

The monad laws correspond to the following type isomorphisms.

coPo=coop | >, > C(C(ab) = > C(a, b)
a:A b:B(a) (a,b):>" B(a)
aA
coPr=1 1A
a:A
x:1

4. Polynomial monad

The pullback square for I

determines a cartesian natural transformation
. P2
Tm:Pp=p

where P2 : C2 — €2 is the extension of P to the arrow category.

4. Polynomial monad

Theorem (A-Newstead)

A natural model p : U — U models the I type former iff it has an
algebra structure for the lifted endofunctor P2.

7T:P2p:>p

4. Polynomial monad

The algebra laws correspond to the following type isomorphisms.

moPr = moo | [[I C(a,b) = II C(a, b)
a:A b:B(a) (a,b):z;‘B(a)
moT =1 [JA = A
x:1

5. Propositions as types

Let p: U — U be a universe of small objects in £ = C.

5. Propositions as types

Let p: U — U be a universe of small objects in £ = C.

Though p is not representable in £ it is still a natural model in E.

5. Propositions as types

Let p: U — U be a universe of small objects in £ = C.
Though p is not representable in £ it is still a natural model in E.

Factor p as on the right below.

r.A U

r.IA]l \U
DAY

5. Propositions as types

Let p: U — U be a universe of small objects in £ = C.
Though p is not representable in £ it is still a natural model in E.

Factor p as on the right below.

r.A U

r.IA]l \U
DAY

A

So ||U|| — U is a universal family of small propositions.

5. Propositions as types

Let s : U — Q classify the mono ||U|| — U.
r.A U

\ \U

r/r-A L/

U

A s

5. Propositions as types

Let s : U — Q classify the mono ||U|| — U.

F.A\ U\U |

S

A

]

Let i : Q — U classify the family of small propositions 1 — €.

5. Propositions as types

Let
[|-]| :=ios:U—U.

5. Propositions as types

rA U
/A L/U /1
(1
Let
[|-]| :=ios:U—U.
We have

soi=1:Q—= Q.

5. Propositions as types

rA U
/A L/U /1
[[-1]
Let
[|-]| :=ios:U—U.
We have
soi=1:Q—= Q.
So

Q = im(]|-])).

5. Propositions as types

The following commute.

STQA = Q SA— Y.
A:U A:U
Pll s Pii
UA U SUA U
/;U * AU n
Where, recall,
PX =) Xx*
A:U

is the polynomial functor of the natural model p : U — U.

References

1. Awodey, S. (2017) Natural models of homotopy type theory,
MSCS 28(2). arXiv:1406.3219

2. Awodey, S. and N. Gambino and S. Hazratpour (in progress)
Kripke-Joyal semantics for homotopy type theory.

3. Awodey, S. and C. Newstead (2018) Polynomial
pseudomonads and dependent type theory. arXiv:1802.00997

4. Newstead, C. (2018) Algebraic Models of Dependent Type
Theory, CMU PhD thesis. arXiv:2103.06155

