Polynomial Functors and Natural Models of Type Theory

Steve Awodey

Workshop on Polynomial Functors Topos Institute March 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Outline

- 1. Dependent type theory
- 2. Natural models
- 3. Type formers
- 4. Polynomial monad
- 5. Propositions as types

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

1. Dependent type theory

Types:

$$A, B, \ldots, A \times B, A \rightarrow B, \ldots$$

Terms:

$$x:A, b:B, \langle a,b \rangle, \lambda x.b(x), \ldots$$

Dependent Types:

 $x: A \vdash B(x)$ "indexed families of types"

Type Forming Operations:

$$\sum_{x:A} B(x), \quad \prod_{x:A} B(x), \ \ldots$$

Equations:

$$s = t : A$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Contexts:

$$\frac{x:A \vdash B(x)}{x:A, \ y:B(x) \vdash} \qquad \qquad \frac{\Gamma \vdash C}{\Gamma, z:C \vdash}$$

Contexts:

$$\frac{x:A \vdash B(x)}{x:A, y:B(x) \vdash} \qquad \frac{\Gamma \vdash C}{\Gamma, z:C \vdash}$$

Sums:

$$\frac{\Gamma, x : A \vdash B(x)}{\Gamma \vdash \sum_{x:A} B(x)} \qquad \frac{\Gamma \vdash a : A, \quad \Gamma \vdash b : B(a)}{\Gamma \vdash \langle a, b \rangle : \sum_{x:A} B(x)}$$
$$\frac{\Gamma \vdash c : \sum_{x:A} B(x)}{\Gamma \vdash \text{fst } c : A} \qquad \frac{\Gamma \vdash c : \sum_{x:A} B(x)}{\Gamma \vdash \text{snd } c : B(\text{fst } c)}$$
$$\Gamma \vdash \text{fst} \langle a, b \rangle = a : A \qquad \Gamma \vdash \text{snd} \langle a, b \rangle = b : B$$
$$\Gamma \vdash \langle \text{fst } c, \text{snd } c \rangle = c : \sum_{x:A} B(x)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ へ ⊙

Contexts:

$$\frac{x:A \vdash B(x)}{x:A, y:B(x) \vdash} \qquad \frac{\Gamma \vdash C}{\Gamma, z:C \vdash}$$

Sums:

$$\frac{\Gamma, x : A \vdash B(x)}{\Gamma \vdash \sum_{x:A} B(x)} \qquad \frac{\Gamma \vdash a : A, \quad \Gamma \vdash b : B(a)}{\Gamma \vdash \langle a, b \rangle : \sum_{x:A} B(x)}$$
$$\frac{\Gamma \vdash c : \sum_{x:A} B(x)}{\Gamma \vdash \text{fst } c : A} \qquad \frac{\Gamma \vdash c : \sum_{x:A} B(x)}{\Gamma \vdash \text{snd } c : B(\text{fst } c)}$$
$$\Gamma \vdash \text{fst} \langle a, b \rangle = a : A \qquad \Gamma \vdash \text{snd} \langle a, b \rangle = b : B$$
$$\Gamma \vdash \langle \text{fst } c, \text{snd } c \rangle = c : \sum_{x:A} B(x)$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Sums:

$$\frac{x:A \vdash B(x)}{\sum_{x:A} B(x)} \qquad \frac{a:A \quad b:B(a)}{\langle a, b \rangle : \sum_{x:A} B(x)}$$
$$\frac{c:\sum_{x:A} B(x)}{\text{fst } c:A} \qquad \frac{c:\sum_{x:A} B(x)}{\text{snd } c:B(\text{fst } c)}$$
$$\text{fst} \langle a, b \rangle = a:A \qquad \text{snd} \langle a, b \rangle = b:B$$
$$\langle \text{fst } c, \text{snd } c \rangle = c:\sum_{x:A} B(x)$$

・ロト・「四ト・「田下・「田下・(日下

Products:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Products:

Substitution:

$$\frac{\sigma: \Delta \to \Gamma \qquad \Gamma \vdash a: A}{\Delta \vdash a[\sigma]: A[\sigma]}$$

Definition

A natural transformation $f : Y \to X$ of presheaves on a category \mathbb{C} is called *representable* if its pullback along any $yC \to X$ is representable:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition

A natural transformation $f : Y \to X$ of presheaves on a category \mathbb{C} is called *representable* if its pullback along any $yC \to X$ is representable:

Proposition (A, Fiore)

A representable natural transformation is the same thing as a **Category with Families** in the sense of Dybjer.

Definition

A natural transformation $f : Y \to X$ of presheaves on a category \mathbb{C} is called *representable* if its pullback along any $yC \to X$ is representable: for all $C \in \mathbb{C}$ and $x \in X(C)$ there is given $p : D \to C$ and $y \in Y(D)$ such that the following is a pullback:

Proposition (A, Fiore)

A representable natural transformation equipped with a choice of such pullbacks is the same thing as a Category with Families in the sense of Dybjer.

Write the objects and arrows of \mathbb{C} as $\sigma : \Delta \to \Gamma$, thinking of a *category of contexts and substitutions*.

Let $p: \dot{U} \to U$ be a representable map of presheaves on \mathbb{C} .

Think of U as the *presheaf of types*, U as the *presheaf of terms*, and then p gives the type of a term.

$$\Gamma \vdash A \approx A \in U(\Gamma)$$

$$\Gamma \vdash a : A \approx a \in \dot{U}(\Gamma)$$

where $A = p \circ a$.

Naturality of $p: \dot{U} \rightarrow U$ means that for any *substitution* $\sigma: \Delta \rightarrow \Gamma$, we have the required action on types and terms:

$$\begin{array}{l} \Gamma \vdash A \quad \Rightarrow \quad \Delta \vdash A[\sigma] \\ \Gamma \vdash a : A \quad \Rightarrow \quad \Delta \vdash a[\sigma] : A[\sigma] \end{array}$$

Given any further $\tau:\Delta'\to\Delta$ we clearly have

$$A[\sigma][\tau] = A[\sigma \circ \tau] \qquad \qquad a[\sigma][\tau] = a[\sigma \circ \tau]$$

and for the identity substitution $1:\Gamma\to\Gamma$

$$A[1] = A \qquad a[1] = a.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

This is the basic structure of a CwF.

Given any further $\tau:\Delta'\to\Delta$ we clearly have

$$A[\sigma][\tau] = A[\sigma \circ \tau] \qquad \qquad a[\sigma][\tau] = a[\sigma \circ \tau]$$

and for the identity substitution $1:\Gamma\to\Gamma$

$$A[1] = A$$
 $a[1] = a$

This is the basic structure of a CwF.

The remaining operation of context extension

$$\frac{\Gamma \vdash A}{\Gamma, x : A \vdash}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

is given by the representability of $p: \dot{U} \rightarrow U$ as follows.

2. Natural models, context extension

Given $\Gamma \vdash A$ we need a new context $\Gamma.A$ together with a substitution $p_A : \Gamma.A \rightarrow A$ and a term

 $\Gamma.A \vdash q_A : A[p_A].$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

2. Natural models, context extension

Given $\Gamma \vdash A$ we need a new context $\Gamma.A$ together with a substitution $p_A : \Gamma.A \rightarrow A$ and a term

$$\Gamma.A \vdash q_A : A[p_A].$$

Let $p_A : \Gamma . A \to \Gamma$ be the pullback of p along A.

The map $q_A : \Gamma . A \to \dot{U}$ gives the required term $\Gamma . A \vdash q_A : A[p_A]$.

2. Natural models, context extension

The pullback means that given any substitution $\sigma : \Delta \to \Gamma$ and term $\Delta \vdash a : A[\sigma]$ there is a map

$$(\sigma, a): \Delta \to \Gamma.A$$

satisfying

$$p_A(\sigma, a) = \sigma$$

 $q_A[\sigma, a] = a.$

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

2. Natural models, context extension

By the uniqueness of (σ, a) , we also have

and

$$(\sigma, a) \circ au \ = \ (\sigma \circ au, a[au]) \qquad ext{for any } au : \Delta' o \Delta$$
 $(p_A, q_A) = 1.$

・ロ・・聞・・思・・思・・ しゃくの

2. Natural models, context extension

By the uniqueness of (σ, a) , we also have

$$(\sigma, a) \circ au \ = \ (\sigma \circ au, a[au]) \qquad ext{for any } au : \Delta' o \Delta$$

and

$$(p_A,q_A)=1.$$

イロト 不得 トイヨト イヨト

э

These are all the laws for a CwF.

• The notion of a natural model is *essentially algebraic*.

・ロト・(型ト・(三ト・(三ト))
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・</li

- The notion of a natural model is essentially algebraic.
- The algebraic homomorphisms correspond to syntactic translations.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- The notion of a natural model is *essentially algebraic*.
- The algebraic homomorphisms correspond to syntactic translations.
- There are *initial algebras* as well as *free algebras* over basic types and terms.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- The notion of a natural model is *essentially algebraic*.
- The algebraic homomorphisms correspond to syntactic translations.
- There are *initial algebras* as well as *free algebras* over basic types and terms.
- The rules of type theory are a procedure for generating the free algebras.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

2. Natural models and tribes

Let $p: \dot{U} \to U$ be a natural model.

The fibration $\mathcal{F} \to \mathbb{C}$ of all *display maps*

 $p_A: \Gamma.A \to \Gamma$ for all $A: \Gamma \to U$

form a *clan* in the sense of Joyal.

2. Natural models and tribes

Let $p: \dot{U} \rightarrow U$ be a natural model.

The fibration $\mathcal{F} \to \mathbb{C}$ of all *display maps*

 $p_A: \Gamma.A \to \Gamma$ for all $A: \Gamma \to U$

form a *clan* in the sense of Joyal.

Conversely, given a clan $(\mathbb{C}, \mathcal{F})$, there is a natural model in $\hat{\mathbb{C}}$,

$$\coprod_{f\in\mathcal{F}}\mathsf{y}(f):\coprod_{f\in\mathcal{F}}\mathsf{y}(\mathsf{dom}(f))\to\coprod_{f\in\mathcal{F}}\mathsf{y}(\mathsf{cod}(f)).$$

The natural model determines a *splitting* of the fibration $\mathcal{F} \to \mathbb{C}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Consider the *polynomial endofunctor* $P = U_! p_* \dot{U}^* : \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ determined by $p : \dot{U} \to U$,

$$P(X) = \sum_{A:U} X^{[A]}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where $[A] = p^{-1}(A)$ is the fiber of $p : \dot{U} \to U$ at A : U.

Consider the *polynomial endofunctor* $P = U_! p_* \dot{U}^* : \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ determined by $p : \dot{U} \to U$,

$$P(X) = \sum_{A:U} X^{[A]}$$

where $[A] = p^{-1}(A)$ is the fiber of $p : \dot{U} \to U$ at A : U.

Lemma

Maps $\Gamma \to P(X)$ correspond naturally to pairs (A, B) where

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Applying P to U itself therefore gives an object

$$P(\mathsf{U}) = \sum_{A:\mathsf{U}} \mathsf{U}^{[A]}$$

maps $\Gamma \to P(U)$ into which correspond naturally to types in an extended context $\Gamma.A \vdash B$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proposition

The map $p: \dot{U} \rightarrow U$ models the rules for products just if there are maps λ, Π making the following a pullback.

Proposition

The map $p: \dot{U} \to U$ models the rules for products just if there are maps λ, Π making the following a pullback.

Proof:

Proposition

The map $p: \dot{U} \rightarrow U$ models the rules for products just if there are maps λ, Π making the following a pullback.

Proof:

Proposition

The map $p: \dot{U} \to U$ models the rules for products just if there are maps λ, Π making the following a pullback.

Proof:

$$A \vdash b : B$$
 $\lambda_A b$

Proposition

The map $p : \dot{U} \rightarrow U$ models the rules for products just if there are maps λ, Π making the following a pullback. **Proof:**

f

Proposition

The map $p : \dot{U} \rightarrow U$ models the rules for products just if there are maps λ, Π making the following a pullback. **Proof:**

 $A \vdash f(x) : B$ $\lambda_A f(x) = f$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00
3. Modeling the type formers: Σ

Proposition

The map $p: \dot{U} \to U$ models the rules for sums just if there are maps (pair, Σ) making the following a pullback

where $q: Q \rightarrow P(U)$ is the polynomial composition $P_q = P \circ P$. Explicitly:

$$Q = \sum_{A:U} \sum_{B:U^A} \sum_{x:A} B(x)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

3. Modeling the type formers: T

Rules for a terminal type T

$$\overline{-T}$$
 $\overline{\vdash *:T}$ $\overline{x:T\vdash x=*:T}$

Proposition

The map $p: \dot{U} \rightarrow U$ models the rules for a terminal type just if there are maps (*, T) making the following a pullback.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Consider the pullback squares for T and Σ .

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Consider the pullback squares for T and Σ .

These determine cartesian natural transformations between the corresponding polynomial endofunctors.

$$\tau: 1 \Rightarrow P \qquad \qquad \sigma: P \circ P \Rightarrow P$$

Theorem (A-Newstead)

A natural model $p: \dot{U} \rightarrow U$ models the T and Σ type formers iff the associated polynomial endofunctor P has the structure maps of a cartesian monad.

$$\tau: 1 \Rightarrow P \qquad \qquad \sigma: P \circ P \Rightarrow P$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The monad laws correspond to the following type isomorphisms.

$\sigma \circ P\sigma = \sigma \circ \sigma_P$	$\sum_{a:A} \sum_{b:B(a)} C(a,b) \cong \sum_{\substack{(a,b):\sum_{a:A} B(a)}} C(a,b)$
$\sigma\circ P\tau=1$	$\sum_{a:A} 1 \cong A$
$\sigma\circ\tau_P=1$	$\sum_{x:1} A \cong A$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

The pullback square for Π

determines a cartesian natural transformation

$$\pi: P^2 p \Rightarrow p$$

where $P^2 : \hat{\mathbb{C}}^2 \to \hat{\mathbb{C}}^2$ is the extension of P to the arrow category.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (A-Newstead)

A natural model $p : \dot{U} \to U$ models the Π type former iff it has an algebra structure for the lifted endofunctor P^2 .

$$\pi: P^2 p \Rightarrow p$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The algebra laws correspond to the following type isomorphisms.

$\pi \circ P\pi = \pi \circ \sigma$	$\prod_{a:A} \prod_{b:B(a)} C(a,b) \cong \prod_{\substack{(a,b):\sum_{a:A} B(a)}} C(a,b)$
$\pi\circ au~=~1$	$\prod_{x:1}A \cong A$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Let $p: \dot{U} \to U$ be a universe of *small* objects in $\mathcal{E} = \hat{\mathbb{C}}$.

Let $p: \dot{U} \to U$ be a universe of *small* objects in $\mathcal{E} = \hat{\mathbb{C}}$.

Though p is not representable in \mathcal{E} it is still a natural model in $\hat{\mathcal{E}}$.

Let $p : \dot{U} \to U$ be a universe of *small* objects in $\mathcal{E} = \hat{\mathbb{C}}$. Though p is not representable in \mathcal{E} it is still a natural model in $\hat{\mathcal{E}}$. Factor p as on the right below.

イロト 不得 トイヨト イヨト

э

Let $p : \dot{U} \to U$ be a universe of *small* objects in $\mathcal{E} = \hat{\mathbb{C}}$. Though p is not representable in \mathcal{E} it is still a natural model in $\hat{\mathcal{E}}$. Factor p as on the right below.

(日) (四) (日) (日) (日)

So $||\dot{U}|| \rightarrow U$ is a universal family of small propositions.

Let $s: U \to \Omega$ classify the mono $||\dot{U}|| \mapsto U$.

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

Let $s: U \to \Omega$ classify the mono $||\dot{U}|| \mapsto U$.

(日) (四) (日) (日) (日)

Let $i: \Omega \to U$ classify the family of small propositions $1 \rightarrowtail \Omega$.

Let

 $||\cdot|| := i \circ s : \mathsf{U} \to \mathsf{U}.$

・ロト ・四ト ・ヨト ・ヨト

æ

Let

$$||\cdot|| := i \circ s : \mathsf{U} \to \mathsf{U}.$$

We have

$$s \circ i = 1 : \Omega \to \Omega.$$

イロト イヨト イヨト イヨト

æ

Let

$$||\cdot|| := i \circ s : \mathsf{U} \to \mathsf{U}.$$

We have

$$s \circ i = 1 : \Omega \to \Omega.$$

So

 $\Omega = \mathsf{im}(||\cdot||).$

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

The following commute.

Where, recall,

$$PX = \sum_{A:U} X^A$$

イロト 不得 トイヨト イヨト

э

is the polynomial functor of the natural model $p: \dot{U} \rightarrow U$.

References

- Awodey, S. (2017) Natural models of homotopy type theory, MSCS 28(2). arXiv:1406.3219
- 2. Awodey, S. and N. Gambino and S. Hazratpour (in progress) Kripke-Joyal semantics for homotopy type theory.
- 3. Awodey, S. and C. Newstead (2018) Polynomial pseudomonads and dependent type theory. arXiv:1802.00997
- 4. Newstead, C. (2018) Algebraic Models of Dependent Type Theory, CMU PhD thesis. arXiv:2103.06155