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A functor f:A—B between categories consists of an
assignment on objects,

f.: Obj(A) — Obj(8B)
and an assignment on morphisms,

f,: Mor (A\Y—— Mor(B)

which respects domains, codomains, identities, & composition.
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A cofunctor P:A+2B between categories consists of an
assignment on objects,

¥, : Obj(A) —— Obj(B)
and a lifting on morphisms,

9, : Obj(A)x_  Mor(8) ——> Mor (A)

Obj(e)

which respects domains, codomains, identities, & composition.
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* 1993: Higgins & Mackenzie introduce comorphisms for vector
bundles and Lie algebroids.

-1997: Aquiar develops the notion of internal cofunctor as

a dual to internal functor.

2016: Ahman & Uustalu prove that morphisms of polynomial

comonads on Set are equivalent to cofunctors.

*2020: Paré shows that comonad morphisms in the double category

of spans and retrocells are cofunctors.



As shown by Gambino & Kock, for € with pullbacks, there is a double
category fPolH(E) whose cells are diagrams in £ of the form,
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where the morphisme p and p' are exponentiable [powerful.



Let HlPolg(E.\ be the u.n.derltjin.ﬂ horizontal bicateqory of lPol-j(E.).

Up to isomorphism, the left adjoints in HPoly(E) are gven by,

I——FE—25F—t>7

while the corresponding right adjoints are given by:

Je—*—E—=>T—>>T

Note that composition of left/right adjoints only requires Pullba.cl!.s.



The full double su.l:ca.tegorg of [Polg(i.) on the left adjoin.‘l:s 1S
the usual double category of spans $pan(£) with cells given by:
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The cateqory of horizontal monads and vertical monad

morphisms in $pan(€) is equivalent to Cat(€), the category

of internal ca’ceaories and functors in £.



The full double subcategory of Poly(€) on the right adjoints has
cells given by:

Je—<—E—=>T 25T
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This double category is equivalent to the double category of

spans and retrocells $pan(£)™** introduced by Pare.



Propesition (Pare): The category of horizontal comonads and

vertical comonad morphisms in $pan(€)™** is equivalent to

Cof (), the cateqory of internal cateqories and cofunctors in €.
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How is this result related to the Ahman & Uustalu characterisation?



Suppose € has finite limits and let Poly,(£) be the full
double su.bca.'l:egorg of Poly(€) on the terminal cbject of E.

Proposition: The inclusion Polgl(ﬁ)‘——? Poly(€) has a colax
left adjoint. The counit is the identity while the unit has

Compon ents given bg:



[11]

There is a colax double functor given by the composite,

pseudo

Span (€)™’ _onlg(a)&Polgi(a)
which induces a functor between the categories of comonads:
Cof (€) = Cmd ($pan(€)**) —— Cmd (Poly,(€)) &)
Theorem (Ahman € Uustalu): The functor (%) is an isomorphism.

This remarkable result is unintuitive and difficult to prove,

but tells ws something hard is a.c'l:u.a.llg some'lth'm.g easy!



There is a double ca.'l:egorg Cof(e) of internal categqories,
functors, and cofunctors with flat cells given by:
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Proposition: Cof (€) is span representable. Therefore Cof (€)
has tabulators, and there is a vertically faithful double functer:
Cof(€)— Jpan(Cat(e))
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Coro“ara (l-ligg’m.s & Mackenzie)’ Everg cofunctor (v,9):A—B

has a faithful representation as a span of functors,
A——AN—2>B
where W is bijective-on-objects and ¥ is a discrete opfibration.

Corollary: The cells of Cof(€) have a faithful representation as

commutative diagrams of internal functors:



*Functors and cofunctors appear as dual notions in Poly(€).

* The cateqory Cof(£) arises as the ca.{:e.gorg of comonads and
comonad morphisms in both $|m:m(f.)m’c and Poly, (€).

- There is a double category Cof(€) whose cells are diagrams:

‘?, ¥ bijective-on-objects
-Fl l J«g ,¥ discrete opfibration




[15]

A (J.el{a) lens (-F,‘I’)=A\=‘B between ca.'l:egories consists of
a.ssign.me.n.‘l:s on objects and m,orpkisms,
fo: Obj(A) — Ob;(B) f, : Mor (A)—— Mor(B)

and o lif'lin.ﬂ on morphisms,

9, : Obj(A)x_  Mor(8) ——> Mor (A)

Obj(e)

which respect domains, codomains, identities, & composition.

A a P, (a,u) N )

b

B f.o u:f.‘?.(a,u))bz_foa,




* A morphism u:a—a’ in A is opcartesian with respect to a
functor F:A—B if for all via—a" in A and for all
w:fa'—Ffa" in B such that wef(u)=f(v), there exists a

unique D:a'—a"in A such that Gouz=v and F(&)=w.

a—% ,q fa) — (o)

AN cia| — s | B

a" f (q”)

W \ ¥

* A split opfibration is a lens whose chosen Lifts are opcartesian.



- 2005: Foster, Greenwald, Moore, Pierce, & Schmitt introduce lenses

between sets (q:A—>B,p:AxB—A) for computer science.

- 2011: Diskin, Czarnecki, & Xiong develop the notion of

delta lens between categories.

+ 2013: Johnson & Rosebrugh prove that every split opfibration

1S a lens.

«2017: Ahman & Uustalu show that lenses may be understood

in terms of compatible functor and cofunctor pairs.



-+ 1966: Crag reviews Grothendieck fibrations and introduces several

eq'uivo.len'l characterisations.

- 1974: Street develops the ’c.h.e.onj of fibrations in a 2-category

and characterises split opfibrations as algebras for a monad.

- 1977: Johnstone defines internal split opfibrations as internal
categories in DOpf(€) /B .

+2017: Ahman & Uustalu show that split opfibrations can be

defined as lenses with additional structure.



Proposi’cion (Ahman & Uustalu): A lens (£,9):A=8Bis equivalent toa
functor f:A—B and a cofunctor ¥:A—+B such that f,=%. and

Obj(A) x Mor (B) —— Mor (A) —— Mor (g)
\/

Ovj(e)
Proj
Corollary:Every lens (f,9):A=B has a faithful representation

as a olia.gra.m of functors:

¥ bijective-on-objects

4 /\ p

4
/ \ ¥ discrete opfibration
A——8B
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[2 1]

There is a ca'l:egonj fens whose objects are categories and

whose morphisms are lenses, with composition given by:

A a \P(Q,X(-Fq,u)) 5 Q.‘
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How can we view lenses arising from cofunctors? Internalise in €7



[22]

Given the double category Cof(E), we may construct a double
category with the same objects and vertical morphisms as Cof(€),

with horizontal morphisms A—B given by cells of the form,

A—— B At N—2 B

fFl U || & 4] |7

and with cells given by cells in Cof (€) satisfying a pasting law.

Propesition:This construction yields the double category lLens(€) of
internal categories, functors, and lenses. Let Lens(€):= Hllens(¢).



[2 3]

Given a category A, the décalage of A is the sum of its

slice categories:

Dec (A) = Z A/a.

aEA
°Décala3e 3eneraliszs to a comonad D:Cat(e)—Cat(e) whose

cownit is a discrete fibration:

DA A——

{1

A A
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Theorem: A lens (£,9):A=B between internal categories is

a split opfibration if and only if the functor Dfem, given by,
Df o,

/\

Df

AxDA——DA——DB
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is a discrete opfibration, where Dis the décalage comonad.



[25]

* When (f,%):A=8B is a split
opfibration, the functor Df

has a lens structure.

« The chavacterisation is
compa.c't, ond d.ired:ltd

genevalises the £=Set case.

- Suggests a way of d.efining
split opfibra.‘l'ions in'terna.ll\j

without wsing 2- c«“:egor'\es.




*Functors and cofunctors arise dually within the dowble

category Poly (&) of polynomials.

*Lenses are morphisms between categories which are both

functors and cofunctors in a compatible way.

¥ bijective-on-objects

. AN

P
/ \ p discrete opfibration
A — B

- Split opfibrations are lenses which satisfy a property

with respect to d.ﬁca.l.a.ge..
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*Diskin, Czarnecki, & Xiong (2011). From state- to delta-based

bidirectional model transformations: the asgmme{ric case.

* Johnson & Rosebrugh (2013). Delta lenses and opfibrations.

‘Ahman & U.usfn.lu(ZOﬂ).Tahina updates seriously.
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« Street (1974). Fibrations and Yonedas lemma in a 2-cafegor3.

+ Johnstone (1977). Topos Theory.



BONUS: COFUNCTORS OVER A BASE

In the double cateqory Cof (€) we may consider cells of the form:

W

A—— B A—"—AN—>B
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Then for each internal category B, let Cofg(€) denote the
category of cofunctors over a base B whose:
+ objects are cofunctors with codomain B;

» whose morphisms are cells in €Cof(€) of the form ().



BONUS: LENSES OVER A BASE

For each internal category B, let fens,(€) denote the category
of lenses over a base B whose:
- objects are lenses with codomain B;

+ whose morphisms are cells in Lens(€) of the form:

Propesition: There is an isomorphism iensa(ﬁ) = Cofg(€) /1,



BONUS:LENSES AS COALGEBRAS FOR A COMONAD
Theorem: The functor Len.sa(e)i)cofg(e) IS comonadic.

Proof (sketch): Given a cofunctor This defines a right adjoint
P:A——B, there isa lens P=B: | RFU,and the coalgebras

/\ _ for the comonad RU are:
m A <1A,'F)) p mA 3 A
4 :
. P y B q,'l' %) counit T,P
J

l lb A A==
A —— cd(B) Rét'%

trans ()




