Coalgebras and their Modal Logics:
Polynomial Functors and Beyond

Part 1: Coalgebraic Modelling of Systems

Helle Hvid Hansen
Workshop on Polynomial Functors, 16 March 2021

University of Groningen, NL

Introduction

Coalgebra: Background and Motivation

Origins and general references

- Non-wellfounded set theory (Aczel'88, Barwise-Moss'96).
Solving systems of equations, self-referentiality.

- 1990s in Comp.Sci.: systems and data structures as coalgebras.

- J. Rutten. Universal Coalgebra, a theory of systems, 2000.

- B.Jacobs. Introduction to Coalgebra, CUP 2016.

Coalgebra: Background and Motivation

Origins and general references

- Non-wellfounded set theory (Aczel'88, Barwise-Moss'96).
Solving systems of equations, self-referentiality.

- 1990s in Comp.Sci.: systems and data structures as coalgebras.

- J. Rutten. Universal Coalgebra, a theory of systems, 2000.

- B.Jacobs. Introduction to Coalgebra, CUP 2016.

Program semantics

- formal descriptions of data and program behaviours
- reasoning (what are useful principles?)

Formal verification

- does system behave as intended?

- we need: formal models of system behaviours

- we need: formal languages for specifying properties
- trade-off: expressiveness & tractability

Overview of Today

Part 1:

1. Introduction

2. Systems as Coalgebras
3. Bisimulation, Coinduction, Behavioural Equivalence

4. Application: Language Semantics of Automata with Branching

Remarks:

- focus on applications and examples in Set.

- only basic category theory.

- polynomial functors: special case

- some pointers to further reading (necessarily incomplete)

Systems as Coalgebras

Big Picture: Algebra vs Coalgebra

Algebra

- construction

- (necessarily) well-founded
structures

- induction

- congruence

- compositionality
- universal algebra

- parametric in signature and
equations

cf. [Jacobs & Rutten;1997]

Coalgebra

- destruction/observation

- (possibly) non-well-founded

structures

- coinduction

- bisimulation

- abstraction

- universal coalgebra

- parametric in transitions and

observations

Category of F'-Coalgebras

Def. Given F: C — C, the category Coalg(F') consists of

~

) X4>
- Objects: F-coalgebras v: X — F(X).

- Arrows: F-coalgebra morphisms:
F(X)—=F(Y)

We have:

- general notions of subobject, quotient, ...

- all colimits in Coalg(F') constructed as in C

- limits in Coalg(F') are non-trivial,

- for F': Set — Set, Coalg(F) is complete and cocomplete

Example: Deterministic systems with output

- A deterministic system with output in a set B:
transition map ¢: X — X
output map 0: X - B

combined (0,t) : X - Bx X, (o, t)(z) = (o(z),t(z))
i.e,, coalgebra for Set-functor F(X) = B x X.
- Example:
Zola x1]b Zala x3]b x4la

where zla ——ylb means o(x) =a and t(z) =y.

Example: Deterministic systems with output

- A deterministic system with output in a set B:
transition map ¢: X — X
output map 0: X - B

combined (0,t) : X - Bx X, (o, t)(z) = (o(z),t(z))
i.e,, coalgebra for Set-functor F(X) = B x X.
- Example:
Zola x1]b Zala x3]b x4la

where zla ——ylb means o(x) =a and t(z) =y.
- Observable behaviour is a stream (infinite sequence):

[[J:]] = (O(a?),O(t(fC))./O(ﬂ(iE)),...)

[xo] = (a,b,a,b,a,b,a,b,...) = (ab)®
[z1] = (b,a,b,a,b,a,b,a,...) = (ba)*
[() ¢

IQ]] =

a,b,a,b,a,b,a,b,.

The Final Deterministic System of Streams

Streams over B: BY = {o: N — B}. Write: o = (¢(0),0(1),0(2),...)

- "head”: hd(c) = 0(0), “tail”: tl(o) = (0(1),0(2),...)
- Deterministic system of streams: (hd, tl): B* — B x B¥

The Final Deterministic System of Streams

Streams over B: BY = {o: N — B}. Write: o = (¢(0),0(1),0(2),...)
- "head”: hd(o) = o(0), “tail”: tl(o) = (o(1),0(2),...)
- Deterministic system of streams: (hd, tl): B* — B x B¥

Universal property of (B“, (hd, tl)):
For all determ. systems (X, (o,t)) there is a unique map

[-]: X — B¥
such that i.e., the following diagram commutes
hd([z]) = of@) x— 1 pe
() =

[t(z)] @ml yhd,m
idBX[If]]
Bx X —BxBY

(that is, [-] is @ morphism of deterministic systems)

The Final Deterministic System of Streams

Streams over B: BY = {o: N — B}. Write: o = (¢(0),0(1),0(2),...)
- "head”: hd(o) = o(0), “tail”: tl(o) = (o(1),0(2),...)
- Deterministic system of streams: (hd, tl): B* — B x B¥

Universal property of (B“, (hd, tl)):
For all determ. systems (X, (o,t)) there is a unique map

[-]: X — B¥
such that i.e., the following diagram commutes
hd([z]) = of@) x— 1 pe
() =

[t(z)] <o7t>J/ yhd,m
idBX[If]]
Bx X —BxBY

(that is, [-] is @ morphism of deterministic systems)

e - (B¥, (hd, tl)) is a final deterministic system with output in B.

- the map [—]: X — B¥ is defined by coinduction. 6

Coinduction Proof Principle: Stream Operation Example

Want to define alt : B¥ x B¥ — BY,
alt(o,7) = (0(0),7(1),0(2),7(3),...)

Coinduction Proof Principle: Stream Operation Example

Want to define alt : B¥ x B¥ — BY,
alt(o,7) = (0(0),7(1),0(2),7(3),...)

Define deterministic system

(0,t): B¥ x B¥ = B x (B¥ x B¥) BY x Bv 9, pw
by
o, hd,tl
o(o,7) = hd(o) < 't{ (-t
idg Xalt

t(o,7) = (H(1),tl(o)) B x (BY x BY) —— B x B¥

Coinduction Proof Principle: Stream Operation Example

Want to define alt : B¥ x B¥ — BY,
alt(o,7) = (0(0),7(1),0(2),7(3),...)

Define deterministic system

(0,t): B¥ x B¥ = B x (B¥ x B¥) BY x Bv 9, pw
by
o(o,7) = hd(o) <O’t>l _ l(hd,tl}
to,7) = (t(r), ti(o)) B x (B® x B¥)" 224’ » pw
Or equivalently, by the corecursive equations:
hd(alt(o,7)) = hd(o)
t(alt(o,7)) = alt(tl(r),t(o))
or behavioural differential equation (BDE) (derivative o’ = tl(o)):
(alt(o,7))(0) = o(0)

(alt(o, 7)) = alt(7',0")

Coinductive Stream Calculus

Let B be aring e.g. B = Z (integers).

- We can define constants, sum, convolution & shuffle product:

[r](0) = r, [r]" = [0]
(@+7)(0)=0(0)+7(0) (0+7) =0
(@x7)(0) =0(0)-7(0) (ox7) = () + ([0(0)] x 7)

..and many other operations on streams.

Coinductive Stream Calculus

Let B be aring e.g. B = Z (integers).

- We can define constants, sum, convolution & shuffle product:
[r](0) =, [r]" = [0]
(0+7)(0)=0(0)+7(0) (c+7) =
(0 x7)(0)=0(0)-7(0) (ox7) = ()+([0(0)] X T)

..and many other operations on streams.

~

~

- Linear BDE, example: ¢(0) =0, o' =71
70)=1, 7 =047
Solution ¢ = (0,1,1,2,3,5,8,13,...) (Fibonacci numbers)

Coinductive Stream Calculus

Let B be aring e.g. B = Z (integers).
- We can define constants, sum, convolution & shuffle product:

..and many other operations on streams.
- Linear BDE, example: ¢(0) =0, o' =71
70)=1, 7 =047
Solution ¢ = (0,1,1,2,3,5,8,13,...) (Fibonacci numbers)
- Anon-linear example: 0(0) =1, ¢/ =0 x 0o
Solution o = (1,1,2,5, 14,42, 132,429, 1430, .. .) (Catalan
numbers)

For more, see e.g. [Rutten'o3], [Winter et al15], [H et al/14]

Stream Transforms
Streams form a final system in several different ways. This yields

“transforms” (final systems are isomorphic).
Example: Let B be a ring. We define the difference operator:

A(o)=0"—o=(c(1) —a(0),0(2) — a(1),...)
Then ((—)(0),A): B¥ — B x B“ is also final, and we get

isomorphism:

z

BY ——— B¥
<(>(0)~,A>J J(()(O),()W
Bx B*“2N g g
(W is similar to Newton transform of differentiable functions, when

viewing o as stream of Taylor coefficients.)
For more, see [Pavlovic & Escardo, 1998], [Basold et al.,2017]

R

Example: Deterministic Automata

A small example:

Alphabet A = {a, b},
State space X = {z,y, z,u},
Accepting states Acc = {y, u}.

* = set of all finite sequences (words) over A.
A'language is a set of words: L C A*.
Language accepted at a state consists of all
words that label a path to a final state.

Example: Deterministic Automata

A small example:

Alphabet A = {a, b},
State space X = {z,y, z,u},
Accepting states Acc = {y, u}.

* = set of all finite sequences (words) over A.
A'language is a set of words: L C A*.
Language accepted at a state consists of all
words that label a path to a final state.

L(z) = {we A" |#.(w)=1 mod 3} ={a,ab,ba,abb,bab, ...}

Example: Deterministic Automata

A small example:

Alphabet A = {a, b},

State space X = {z,y, z,u},

Accepting states Acc = {y, u}.

A* = set of all finite sequences (words) over A.
A'language is a set of words: L C A*.
Language accepted at a state consists of all
words that label a path to a final state.

L(z) = {we A" |#.(w)=1 mod 3} ={a,ab,ba,abb,bab, ...}

Ly) = {weA*|#.(w)=0 mod 3} = {¢,b,bb, ..., aaa, ...}

L(u) = {weA*|#.(w)=0 mod 3} ={e,b,bb, ..., aaa, ...}
(2) (w) =2

mod 3} = {aa, aab, ..., bbabab, ...}

Deterministic Automata as Coalgebra

- A deterministic automaton over alphabet A (omit initial state):

transition map e K = K
output/acceptance map o: X =2 (2=1{0,1})
combined (0,t) : X =2 x X4,

i.e., coalgebra for Set-functor F(X) =2 x X4
- Morphisms of deterministic automata:

ie. Vee X,Vac A:
X%

i p(f@) = olx)
W{ j@) s(f@)a) = ftz)())
2 % XA zd><f 9 % YA i e. f preserves OUtpUt and tranS|t|ons

Theorem (Morphisms respect language):
If fis a morphism from (X, (o, t)) to (Y, (p, s)),
then forall z € X, L(f(z)) = L(x).

il

The Deterministic Automaton of Languages

Let £ = P(A*) = {L C A*} be the set of all languages over A.
The automaton of languages is the deterministic automaton

(O,T): L —2x LA
where forall L € £, all a € A:

T(L)(a) = {weA*|aweL}=1L, (a-derivative of L).
o) = liffeelL

The automaton of languages is a final deterministic automaton, and
the unique morphism maps a state to its language:

L(-)

x—*"29 . Ve X,VaeA:
MJ lm €<€>L($) ! O(<I 2 :>(1>>
. A L(z), = L(t(x)(a
9 x xAMEXED o ra

(Observable) behaviour = language. Morphisms preserve behaviour.

Back to Example

where L; = {w € A* | #,(w) =4 mod 3}.

In the image of (X, (o,t)) under L in the final deterministic
automaton, different states accept different languages; it is
observable (or minimal, fully abstract).

Behavioural Equivalence and Bisimulation of Det. Automata

Two states in a deterministic automaton are behaviourally
equivalent if they accept the same language.

- How can we (effectively) prove that two states are equivalent?

(Note: Languages L C P(A*) are generally infinite.)

Behavioural Equivalence and Bisimulation of Det. Automata

Two states in a deterministic automaton are behaviourally
equivalent if they accept the same language.

- How can we (effectively) prove that two states are equivalent?

(Note: Languages L C P(A*) are generally infinite.)

Def. Let (0,): X — 2 x X4 be a deterministic automaton.
Arelation R on X is a bisimulation if for all states z, y

if (z,y) € Rthen (i) o(x)=o0(y)
(¢i) forallae A: (t(x)(a),t(y)(a)) € R
(A bisimulation respects output and is closed under transitions)

Two states z and y are bisimilar if there is a bisimulation R such that
(x,y) € R. (Note: If X is finite, then finitely many relations R on X.)

Behavioural Equivalence and Bisimulation of Det. Automata

Two states in a deterministic automaton are behaviourally
equivalent if they accept the same language.

- How can we (effectively) prove that two states are equivalent?

(Note: Languages L C P(A*) are generally infinite.)

Def. Let (0,): X — 2 x X4 be a deterministic automaton.
Arelation R on X is a bisimulation if for all states z, y

if (z,y) € Rthen (i) o(z) = o(y)
(¢i) forallae A: (t(x)(a),t(y)(a)) € R

(A bisimulation respects output and is closed under transitions)
Two states z and y are bisimilar if there is a bisimulation R such that
(x,y) € R. (Note: If X is finite, then finitely many relations R on X.)

Theorem (Coinduction proof principle):
If x and y are bisimilar, then L(z) = L(y). In particular, if L; and Lo
are bisimilar, then L; = L. ”

Systems as Coalgebras (examples over Set)

Determ. system with output in B:

B-labelled, non-wellfounded binary trees :
B-labelled, possibly non-wellfnd binary trees :
Determ. automaton on alphabet A:

Moore machines with input in A and output in B:

Mealy machines with input in A and output in B:

X —->BxX
X—>BxXxX

X —>1+4+BxXxX
X »2x X4

X - Bx X4

X = (Bx X)A

Systems as Coalgebras (examples over Set)

Determ. system with output in B: X —->BxX
B-labelled, non-wellfounded binary trees : X +3BxXxX
B-labelled, possibly non-wellfnd binary trees : X—=>14BxXxX
Determ. automaton on alphabet A: X —52xXx4

Moore machines with input in A and outputin B: X — B x X4
Mealy machines with input in A and outputin B: X — (B x X)4

Nondeterministic automaton on alphabet A: X = 2xP(X)4
Alternating automaton on alphabet A: X-2x(QaXx)4
A-labelled transition system: X = P(X)4
Markov chains (D is distribution monad): X — D(X)
Markov decision process: X >R xD(X)4
Linear weighted automata: X -5 R x (RN)4

F-coalgebra: X — F(X)

Bisimulation, Coinduction,
Behavioural Equivalence

Bisimulations in Coalg(F)

Def. A relation R C X; x X5 is an F-bisimulation if there is a
p: R — F(R) such that projections are F-coalgebra morphisms:

™1 ™2

X4 R X, Two states are F-bisimilar
'Yll =) J'Yz (notationi x1 <:> ZL'Q) if.(l'l,xz) ez
for some F-bisimulation Z.

16

Bisimulations in Coalg(F)

Def. A relation R C X; x X5 is an F-bisimulation if there is a
p: R — F(R) such that projections are F-coalgebra morphisms:

™1 ™2

X, R X, Two states are F-bisimilar
'Yll =) J’Yz (notationi T 2 ZL'Q) if ($1,.’E2) SV
F(m) ¥ f(m) for some F-bisimulation Z.
F(X1) F(R) F(X>)

Equivalently (via relation lifting): R is an F-bisimulation if
R C (71 x 72) Y(F(R)) where F: Rel — Rel is:

F(R) = {(F(m)(u), F(r2)(uw)) | u € F(R)} € F(X1) x F(X>)

F-bisimilarity is the greatest fixpoint of (y1 x 72) ~1(F(-)).

16

Bisimulations in Coalg(F)

Def. A relation R C X; x X5 is an F-bisimulation if there is a
p: R — F(R) such that projections are F-coalgebra morphisms:

™1 ™2

Xy R X5 Two states are F-bisimilar
7{ o9 JW (notation: x; € x9) if (z1,22) € Z
F(m) ¥ f(m) for some F-bisimulation Z.
F(X1) F(R) F(X2)

Equivalently (via relation lifting): R is an F-bisimulation if
R C (71 x 72) Y(F(R)) where F: Rel — Rel is:

F(R) = {(F(m)(u), F(r2)(uw)) | u € F(R)} € F(X1) x F(X>)

F-bisimilarity is the greatest fixpoint of (y1 x 72) ~1(F(-)).

Coinduction proof principle:
Theorem: In final F-coalgebra (Z, ¢), bisimilarity implies equality.

™1

Proof: If (R,p) —= (Z,¢) then my = ma, hence R C {(z,2) | z € Z}.
16

Behavioural Equivalence in Coalg(F)

Basic idea: Behaviour is invariant under coalgebra morphisms.

Behavioural Equivalence in Coalg(F)

Basic idea: Behaviour is invariant under coalgebra morphisms.
Let (X1,7) and (X2,v2) be F-coalgebras.

Def. Two states x; € X7 and x5 € X, are behaviourally equivalent
(notation: 21 ~ x») if there exist F-coalgebra morphisms
fir (Xs,7:) = (Y, 6) such that fi(z1) = fa(@2).

X1 h Ly P X2 (cospan/cocongruence)
F(f1 F(f2
(f1) F(y) &2 (f)

Behavioural Equivalence in Coalg(F)

Basic idea: Behaviour is invariant under coalgebra morphisms.
Let (X1,7) and (X2,v2) be F-coalgebras.

Def. Two states x; € X7 and x5 € X, are behaviourally equivalent
(notation: 21 ~ x») if there exist F-coalgebra morphisms
fir (Xs,7:) = (Y, 6) such that fi(z1) = fa(@2).

X1 h Ly P X2 (cospan/cocongruence)

F(f1 (Y F(f2)

Some basic facts:

- If final F-coalgebra exists, then
[1] = [x2] <= 21 ~ xo.
- For all F-coalgebras: x1 < x5 implies x1 ~ xs.
- If I preserves weak pullbacks, then 21 ~ x5 implies 21 & .
(Includes all polynomial Set-functors.)

Existence of Final F-Coalgebra

Final F'-coalgebra provides coinductive definition and proof
principle, but they do not always exist.

By Lambek's Lemma, if (Z, () is final F'-coalgebra, then Z = F(Z).
(So powerset functor P has no final coalgebra.)

When do we have a final F'-coalgebra, and how to obtain it?

Existence of Final F-Coalgebra

Final F'-coalgebra provides coinductive definition and proof
principle, but they do not always exist.

By Lambek's Lemma, if (Z, () is final F'-coalgebra, then Z = F(Z).
(So powerset functor P has no final coalgebra.)

When do we have a final F'-coalgebra, and how to obtain it?

- If Fis w°P-continuous (includes all polynomial Set-functors), as
limit of final sequence:

F3()

- If Fis k-accessible (x regular cardinal), as the (k + k)'th
element of the final sequence [Worrell, 2005].
(Includes e.g. finitary powerset P,,.)

Application: Language Semantics
of Automata with Branching

Automata with Branching

Examples of branching automata (let A be alphabet):

Nondeterministic automaton: X 5 2x (PX)4
Weighted automaton (over semiring/rig §): X — S x (MgX)4
Probabilistic automaton: X —[0,1] x (DX)A

(where Mg(X) ={f:X — S| f has finite support})

19

Automata with Branching

Examples of branching automata (let A be alphabet):

Nondeterministic automaton: X 5 2x (PX)4
Weighted automaton (over semiring/rig §): X — S x (MgX)4
Probabilistic automaton: X —[0,1] x (DX)A

(where Mg(X) ={f:X — S| f has finite support})
General form: X — B x (TX)4, i.e., FT-coalgebras where
- F(X)=Bx X4,
- T is Set-monad (T, n, i)

- B is (carrier of) Eilenberg-Moore algebra for T

FT-behaviours are “branching behaviours”. E.g. for NDA, bisimilarity
is stronger than language equivalence.

Often, we are interested in (weighted/probabilistic) language
semantics: [z]: A* — B.

19

Language Semantics for Automata with Branching

We have a distributive law X : TF = FT of monad (7', n, u) over
functor F.

(T, Ta) BXstr

T(B x X4) TB x T(X4) B x (TX)A

We obtain “determinization” functor
(—)¥: Coalgg,,(FT) — Coalg gy (Fx) where Fx: EM(T) — EM(T)
is i\(Y,a:TY - Y) = (FY,Fao\y).

20

Language Semantics for Automata with Branching

We have a distributive law X : TF = FT of monad (7', n, u) over
functor F.

(T, Ta) BXstr

T(B x X4) TB x T(X4) B x (TX)A

We obtain “determinization” functor
(—)¥: Coalgg,,(FT) — Coalg gy (Fx) where Fx: EM(T) — EM(T)
is i\(Y,a:TY - Y) = (FY,Fao\y).

The final F-coalgebra of languages lifts to final F\-coalgebra,
yielding language semantics for FT-coalgebras:

X" .TXx [l BA”

i J

9 =3
idBX[[f]]A

FTX B x (BA)A

(cf. [Bartels'o3], [Jacobs'o6], [Silva et al’13], [Jacobs et al'15])
20

Concluding Part 1

Summary: Universal Coalgebra

- Unifying theory of state-based systems (black-box view,
observable behaviour).

- Includes many familiar system types (streams, trees, automata,
Markov decision processes,...)

- Developed parametric in system type F': C — C

- A coalgebra X — F(X) specifies (local) one-step behavior

- Coinductive proof and definition principle

Current coalgebra research (cf. conferences CMCS, CALCO)

- automata and formal language theory
- concurrency

- modular verification tools

- coalgebraic logic

- algebra and coalgebra

Part 2: Modal logics for coalgebras. 7

	Introduction
	Systems as Coalgebras
	Bisimulation, Coinduction, Behavioural Equivalence
	Application: Language Semantics of Automata with Branching

