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Introduction



Modal Logic

Origin: Philosophical logic, reasoning about:

• modalities of truth (ϕ is necessarily true, ϕ is possibly true,...)
• deontic, temporal, epistemic, doxastic notions.

Applications in CS (formal veri�cation):

• program logics: Hennessy-Milner logic, PDL
• databases: XPath
• knowledge representation: description logics
• game logics: Coalition Logic, Game Logic
• temporal logics: LTL, CTL, CTL∗, ATL, ATL∗
• �xpoint logic: modal µ-calculus

Nice properties: good trade-o� between

• expressiveness (of relevant properties), and
• complexity (often decidability in PSPACE, with �xpoints:
EXPTIME); suitable for automated veri�cation
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Big Picture: Algebra vs Coalgebra

Algebra

• construction
• congruence
• compositionality
• universal algebra
• parametric in signature and
equations

Equational Logic
Algebra

Coalgebra

• destruction/observation
• bisimulation
• abstraction
• universal coalgebra
• parametric in transitions and
observations

Modal Logic
Coalgebra

“Modal logics are coalgebraic” [Cirstea et al.’11]
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Overview of Today

Part 2:

1. Introduction

2. Basic Modal Logic

3. Coalgebraic Modal Logic

- via Predicate Liftings

- via Relation Lifting

- Extensions and Uniform Theorems

4. Concluding Part 2
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Basic Modal Logic



Basic Modal Logic

Syntax: The language of basic modal logic over a set Prop of atomic
propositions, is Boolean propositional logic plus modalities:

ϕ ::= p ∈ Prop | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 2ϕ | 3ϕ

Def. A Kripke model (X,R, υ) consists of:

• a set X (of worlds),
• an accessibility relation R ⊆ X ×X on X ,
• a valuation υ : Prop→ P(X) of atomic propositions.

Kripke semantics
Truth in a Kripke modelM = (X,R, υ) is de�ned by:
M, x |= p i� x ∈ υ(p) for p ∈ Prop

M, x |= ¬ϕ i� notM, x |= ϕ

M, x |= ϕ ∧ ψ i� M, x |= ϕ andM, x |= ψ

M, x |= ϕ ∨ ψ i� M, x |= ϕ orM, x |= ψ

M, x |= 2ϕ i� for all y ∈ X : R(x, y) impliesM, y |= ϕ

M, x |= 3ϕ i� there exists y ∈ X : R(x, y) andM, y |= ϕ
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Kripke Bisimulation

LetM1 = (X1, R1, υ1) andM2 = (X2, R2, υ2) be Kripke models.

Def. A bisimulation betweenM1 andM2 is a relation Z ⊆ X1 ×X2

such that for all (x1, x2) ∈ Z :
(prop) for all p ∈ Prop: x1 ∈ υ(p) i� x2 ∈ υ(p).
(forth) for all y1 ∈ R1(x1) there is y2 ∈ R2(x2) such that (y1, y2) ∈ Z .
(back) for all y2 ∈ R2(x2) there is y1 ∈ R1(x1) such that (y1, y2) ∈ Z .

Def. A bounded morphism f : M1 →M2 is a functional bisimulation
betweenM1 andM2.

Notation: for x1 ∈M1 and x2 ∈M2, we write:
x1 ↔ x2 if x1 and x2 are linked by some bisimulation.
x1 ≡ x2 if x1 and x2 satisfy the same modal formulas, i.e., for all

modal formulas ϕ: M1, x1 |= ϕ i�M2, x2 |= ϕ.

Modal truth is bisimulation invariant:
Theorem If x1 ↔ x2 then x1 ≡ x2. (Proof by struct. induction on ϕ.)
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Bisimilarity and Modal Expressiveness

Modal logic can be translated into �rst-order logic (view Kripke frame
as �rst-order model).

Standard translation (at FO variable v):
stv(p) = P (v)

stv(¬ϕ) = ¬stv(ϕ)
...

stv(2ϕ) = ∀u.R(v, u)→ stu(ϕ)

stv(3ϕ) = ∃u.R(v, u) ∧ stu(ϕ)

Theorem: For all Kripke modelsM and all modal formulas ϕ,
M, x |= ϕ i�M1 |= stv(ϕ)[v 7→ x]

Theorem (Van Benthem)
Modal logic is the bisimulation invariant fragment of �rst-order logic.
In particular, every FO formula that is invariant for bisimulation is
equivalent to the translation of a modal formula.

cf. [Van Benthem’76]
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Kripke Frames are P-Coalgebras

Let X,Y be sets and f : X → Y a function

• Covariant powerset functor P : Set→ Set

P(X) = powerset of X
P(f) = f [−] : P(X)→ P(Y ) (direct image)

• Relation R ⊆ X ×X! map R(−) : X → P(X) where
R(x) = {y ∈ X | R(x, y)}.

• Kripke bisimulation = P-bisimulation
• Bounded morphism = P-coalgebra morphism:

X

R(−)

��

f
// Y

S(−)

��

P(X)
P(f)

// P(Y )

i.e. ∀x ∈ X, y ∈ Y :

y ∈ f [R(x)] ⇐⇒ y ∈ S(f(x))

Note: P preserves weak pullbacks, so over P-coalgebras, behavioral
equivalence coincides with bisimilarity.
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Neighbourhood Semantics

Sometimes, Kripke semantics is not suitable.

E.g. Game Logic (Parikh): reasoning about strategic ability in
determined of 2-player games.

2ϕ “player 1 has strategy to ensure outcome satis�es ϕ”

• Kripke valid: 2(ϕ ∧ ψ)↔ 2ϕ ∧2ψ, but not valid wrt intended
interpretation (strategies for ϕ and ψ may be con�icting).

• Only monotonicity holds:

2(ϕ ∧ ψ)→ 2ϕ ∧2ψ

Solution: Interpret in neighbourhood model (N assigns to each state
a collection of neighbourhoods):

(X,N : X → P(P(X)), υ : Prop→ P(X))

Modal semantics: M, x |= 2ϕ i� [[ϕ]] ∈ N(x).
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Neighbourhood Structures are Coalgebras

• Contravariant powerset functor Q : Setop → Set

Q(X) = powerset of X
Q(f) = f−1[−] : Q(Y )→ Q(X) (inverse image)

• Neighbourhood frames are N -coalgebras where

N (X) = Q(Q(X))

N (f) = (f−1)−1[−] : N (X)→ N (Y ) (double inverse image)

U ∈ N (f)(H) i� f−1[U ] ∈ H

• Monotone neighbourhood frames are coalgebras for

M(X) = {H ∈ N (X) | H closed under supersets}
M(f) = (f−1)−1[−] : M(X)→M(Y ) (double inverse image)

Note: N andM do not preserve weak pullbacks.
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Bisimulations for Neighbourhood Frames

An application of coalgebra.

• Existing notions of bisimulation for labelled transition systems,
Kripke frames, probabilistic systems ... found ad hoc.

• Neighbourhood semantics: Segerberg (1971), Chellas (1980). Only
little model theory (no notion of morphism and bisimulation).

• Bisimulation for monotonic neighbourhood frames: Van
Benthem, Pauly (ca. 1999).

• Bisimulation for neighbourhood frames: H, Kupke, Pacuit (2009)
using coalgebra.
 Hennessy-Milner Thm, Characterisation Thm, Craig
Interpolation for classical modal logic.
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Coalgebraic Modal Logic

General aim: Modal logics for T -coalgebras that are:

• developed uniformly, parametric in T .
• adequate wrt coalgebraic semantics: behaviorally equivalence
implies modal equivalence.

Two approaches to modal logics for coalgebras:

• via relation lifting (Moss’ ∇-logic)
• via predicate liftings (Pattinson, Rössiger, Jacobs)

Basic idea of Predicate Li�ting Approach

Basic Modal Logic
Kripke frames X → P(X)

= Coalgebraic Modal Logic
T -coalgebras X → T (X)
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Coalgebraic Modal Logic via Predicate Liftings

Coalgebraic modal logic means coalgebraic semantics of modal
languages.

Syntax
Given a collection Λ of modal operators (with arities), and a set Prop
of propositional variables, the set LΛ of formulas over Λ is Boolean
propositional logic plus modalities:

LΛ 3 ϕ ::= p ∈ Prop | > | ¬ϕ | ϕ ∧ ϕ | ♥(ϕ1, . . . , ϕn), ♥ ∈ Λ, n-ary

For notational simplicity, we focus on unary modalities from now on.
Generalisation to n-ary modalities straightforward.

Coalgebraic semantics: We want to interpret formulas in
T -coalgebra model X = (X, γ : X → T (X), υ : Prop→ P(X))

which corresponds to T × P(Prop)-coalgebra
〈γ : X → TX, υ̂ : X → P(Prop)〉.
(We can take atomic props to be part of the structure.)
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Kripke and Neighbourhood Semantics, Uniformly

In Kripke modelM = (X,R : X → P(X), υ : Prop→ P(X)):

M, x |= 2ϕ i� R(x) ⊆ [[ϕ]] i� R(x) ∈ {U ∈ P(X) | U ⊆ [[ϕ]]}
M, x |= 3ϕ i� R(x) ∩ [[ϕ]] 6= ∅ i� R(x) ∈ {U ∈ P(X) | U ∩ [[ϕ]] 6= ∅}

where [[ϕ]] = {x ∈ X |M, x |= ϕ} (truth-set of ϕ).

In neighbourhood modelM = (X,N : X → N (X), υ : Prop→ P(X)):

M, x |= 2ϕ i� [[ϕ]] ∈ N(x) i� N(x) ∈ {H ∈ N (X) | [[ϕ]] ∈ H}

In coalgebraic model X = (X, γ : X → T (X), υ : Prop→ P(X))

X, x |= ♥ϕ i� γ(x) satis�es condition involving [[ϕ]]
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Predicate Liftings

T -coalgebraic semantics consists of:

• a functor T : Set→ Set

• for every modal operator ♥ ∈ Λ, a natural transformation

[[♥]] : Q ⇒ QT (Q is contravariant powerset fctr)

i.e. [[♥]] is a family of set-indexed maps such that for all
f : X → Y ,

Q(X)
[[♥]]X

// QT (X)

Q(Y )

Q(f)

OO

[[♥]]Y
// QT (Y )

QT (f)

OO

• [[♥]] is called a predicate lifting:
for all X , [[♥]]X : Q(X)→ Q(T (X) lifts a predicate over X to a
predicate over T (X)).

Remark: Predicate liftings for Kripke polynomial Set-functors T can
be de�ned inductively over the structure of T (cf Bart Jacobs’ talk). 14



Coalgebraic Semantics of Modal Logics

Truth in T -model X = (X, γ : X → T (X), υ : Prop→ P(X))

X, x |= p i� x ∈ υ(p) for p ∈ Prop
...

X, x |= ♥ϕ i� γ(x) ∈ [[♥]]X([[ϕ]]) where [[ϕ]] = {y | X, y |= ϕ}

Examples:
Kripke box: [[♥]]X(U) = {V ∈ P(X) | V ⊆ U},
Kripke diamond: [[♥]]X(U) = {V ∈ P(X) | V ∩ U 6= ∅}
Neighbourhood modality: [[♥]]X(U) = {H ∈ N (X) | U ∈ H}
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Adequacy: Truth Invariance

Proposition
For all T -coalgebra morphisms f : (X, γ)→ (Y, δ), x ≡ f(x).
(Equivalently, for all ϕ: [[ϕ]]X = f−1[[[ϕ]]Y ]. It follows that:
x ∼ y ⇒ x ≡ y.

Proof By structural induction on ϕ. Induction step, modal case, use
that (writing 2X for QX):

2X 2Y
2foo

2TX

2γ

OO

2TY

2δ

OO

2Tfoo

(2X)n

[[♥]]X

OO

(2Y )n

[[♥]]Y

OO

(2f )n
oo

which says:
for all x ∈ X , and all U1, . . . , Un:

γ(x) ∈ [[♥]]X(f−1[U1], . . . , f−1[Un])

i�
δ(f(x)) ∈ [[♥]]Y (U1, . . . , Un)
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Yoneda Correspondence

Via Yoneda Lemma, 1-1 correspondence:

predicate liftings [[♥]] : (2−)n ⇒ 2T−

subsets C♥ ⊆ T (2n)

Alternative view on predicate lifting: “allowed 0-1 patterns”

X
〈[[ϕ1]],...,[[ϕn]]〉

//

γ

��

2n

TX
T 〈[[ϕ]]...,[[ϕn]]〉

// T (2n)
χC♥

// 2

where χC♥ is characteristic function that says which 0-1 patterns of
T -structures are “allowed” by ♥.

It also tells us how many predicate liftings, there are.
E.g. for P : there are 2P(2) = 16 unary predicate liftings.

cf. [Schröder’08],[Gumm]
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Expressive Logics and Separating Liftings

Def. A logic LΛ is expressive if X, x ≡ Y, y implies X, x ∼ Y, y.

Def. The collection [[Λ]] = ([[♥]])♥∈Λ is separating (for T ) if for all
t1 6= t2 in TX there is a ♥ ∈ Λ (n-ary) and (A1, . . . , An) ∈ (QX)n

such that t1 ∈ [[♥]]X(A1, . . . , An) and t2 /∈ [[♥]]X(A1, . . . , An), or vice
versa. [Pattinson’04]

Theorem If T is �nitary and [[Λ]] is separating, then LΛ is expressive.

Theorem [Schröder’08]
If T is �nitary, then there is a separating set of (n-ary) predicate
liftings for T (and hence an expressive modal logic).
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Coalgebraic Modal Logic via Relation Li�ng

Introduced by [Moss’00].

Basic idea:

• Language has one “canonical” modality ∇ that takes elements
from T (L) as argument (where L is the set of formulas).

• Semantics of ∇ via lifting of satisfaction relation |=⊆ X × L: For
α ∈ T (L),

(X, γ), x |= ∇α i� (γ(x), α) ∈ T (|=)

where T is the so-called Barr lifting:

T (R) = {〈T (π1)(u), T (π2)(u)〉 | u ∈ T (R)} ⊆ T (X1)× T (X2)

Remarks:

• To show adequacy, T needs to preserve weak pullbacks.
• ∇-logic is always expressive.
• Canonical language, but non-standard.
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Example: ∇ for P-coalgebras

Example: For T = P , P is also known as the Egli-Milner lifting

P(R) = {(U, V ) ∈ PX × PY | ∀u ∈ U∃v ∈ V : (u, v) ∈ R}∩
{(U, V ) ∈ PX × PY | ∀v ∈ V ∃u ∈ U : (u, v) ∈ R}

That means, for a set Φ ∈ P(L) of formulas
x |= ∇Φ i�

• all R-successors of x satisfy some ϕ ∈ Φ, and
• all ϕ ∈ Φ are satis�ed by some R-successor of x.

In other words, ∇Φ is equivalent with:

2
∨
ϕ∈Φ

ϕ ∧
∧
ϕ∈Φ

3ϕ

In general, ∇ can be expressed by predicate liftings and vice versa.
[Leal & Kurz]
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Extensions

Extensions of basic coalgebraic modal logic:

• with �xpoints: coalgebraic µ-calculus (both ∇ and pred.lifts)
[Venema, Kupke, Fontaine, Enqvist, Seifan,...]

• with temporal operators [Cirstea]
• coalgebraic dynamic logic (PDL) [H, Kupke]
• coalgebraic predicate logic [Litak, Sano, Pattinson, Schröder]
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Uniform Theorems

Some coalgebraic generalisations of classic results

• Hennessy-Milner thm (Schröder),
• Van Benthem Characterisation thm: CML = FOL/∼
(Pattinson, Schröder, Litak, Sano)

• Janin-Walukiewics thm: µ-CML = MSOL/∼
(Enqvist,Seifan,Venema)

• Goldblatt-Thomason thm: modal analogue of Birkho� Variety
thm. (Kurz, Rosický)

• Completeness
• coalgebraic canonical model construction (Pattinson, Schröder),
• ∇-logic (Kupke, Kurz, Venema),
• coalgebraic dynamic logics (H, Kupke)

• Decidability in PSPACE (Schröder, Pattinson)
• Uniform Interpolation (Marti, Enqvist, Seifan, Venema)
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Modal Logic via Dual Adjunctions

Stone-type duality:

Coalg(T )
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Q
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kk

Generalise to non-classical base logic and other base categories

Coalg(T )
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cf. [Kupke et al’04], [Bonsangue & Kurz’05], [Klin’07], [Jacobs &
Sokolova’10], [Klin & Rot’16], [de Groot et al.’20] m.m. (cf. next talk) 23
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Concluding Part 2

• Universal coalgebra: unifying theory of state-based systems,
parametric in T

• Coalgebraic modal logic: uniform development of modal logics
for coalgebras.

• Modal logics are coalgebraic: fundamental relationship between
modal expressiveness and behavioral equivalence/bisimilarity.

• Many theorems proved at level of T -coalgebras, by identifying
conditions on the functor T etc.

• Polynomial functors are well-behaved (weak pullback
preserving, ωop-continuous): nice coalgebraic theory and modal
logics.

THANK YOU
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