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Introduction

Computer scientists like initial algebras and category theory:

» Inductive types are ubiquitous in computer science: natural
numbers, lists, trees...

> Initial algebras for polynomial endofunctors give semantics to
inductive types

Mathematicians like inductive types and type theory:

» They know initial algebras exist in general (under some
conditions)

» Inductive types provide an explicit description of these

> Type theory gives a way to reason syntactically about
categorical constructs (internal languages)
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Introduction

Two standard ways to describe inductive types:

» By using a schema as in e.g. Coq - strict positivity
requirement

» By a single general construction: (Martin-Lof) type of
well-founded trees (W-types)

Initial algebras and inductive types:
» Coincide in extensional type theory (Dybjer '96)
» Do not coincide in intensional type theory

» Coincide in homotopy type theory after replacing initiality by
homotopy-initiality (Awodey, Gambino, S. '12)
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Extensional Type Theory

Dependent type theory (Martin-Lof) has:
» Types (sets/objects) A and terms (elements/arrows 1 — A)
a:A
» Dependent types (families of sets/indexed sets/arrows
B—A) B(a) and terms (sections A— B) b(a) : B(a)
» Equality judgements: A= B and a=, bfora,b: A

> Identity reflection: equal types and terms are treated as
identical

Intended as a foundation for constructive mathematics.
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The traditional set interpretation
Suppose we have terms of ascending identity types:
a, b: A
p, q:a=ab
a, B:p=(a=b) q

We have the following interpretation into sets:

Types ~»  Sets
Terms ~~  Elements
a:A ~» Elementac A
p:a=ab ~» Element of a singleton set
~»  Element of a singleton set

QP =(a=pb) G
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Well-founded trees

Inductive types: “structures freely generated by a collection of
operators”.

The W-type W(A, B) is generated by
sup : (a: A)— (B(a) = W(A, B)) — W(A, B)

where
> A is the type of constructors
» B(a) gives the arity of constructor a: A

Examples:
» For natural numbers N, A:=2 and B is given by B(T) :=0
and B(L) = 1.

» For lists List[C], A:==1+ C and B is given by B(inl(—)) =0
and B(inr(—)) = 1.



Well-founded trees

Principle of induction: To prove that a property P(w) holds for
each well-founded tree w : W, it suffices to prove that P(sup(a, f))
holds whenever P(f b) holds for each branch f(b) : W.

Type-theoretically: given a function
> e (a:A)—>(f : B(a)—>W)—>
((b: B(a))—= P(f b)) — P(sup(a, £))
we have a function
> F:(w:W)—P(w)
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Well-founded trees

Principle of induction: To prove that a property P(w) holds for
each well-founded tree w : W, it suffices to prove that P(sup(a, f))
holds whenever P(f b) holds for each branch f(b) : W.

Type-theoretically: given a function
> e (a:A)—>(f : B(a)—>W)—>
((b: B(a))—= P(f b)) — P(sup(a, £))
we have a function
> F:(w:W)—P(w)
such that
> F(sup(a,f)) = e(a,b— F(fb)))

Example: Defining P(w) := W and e(a, —, g) :=sup(a, b — g(b))
is an inductive way of defining the identity map on W.
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The “algebra” arrow is precisely the sup constructor.

It “remains” to prove the induction principle. Let P and e be
given.



Initial algebras are well-founded trees (and vice versa)

Let W be an initial algebra for the polynomial endofunctor
X = X(a: A)(B(a) — X)
The “algebra” arrow is precisely the sup constructor.

It “remains” to prove the induction principle. Let P and e be
given.

» To use the initiality of W, we must first turn P into an
algebra: we use the total space

Y(w:W)P(w)

as the carrier set.
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Initial algebras are well-founded trees (and vice versa)

We recall the endofunctor is X — ¥(a: A)(B(a) — X).
» To endow X(w : W)P(w) with an algebra structure, we map
a:Aand fx: B(a) —X(w: W)P(w) to ex(a, fx) =
(sup (2, b+ my(fi b)), e(a, b my(f b), b — mo(f b)))

» The initiality of W gives us a map Fy : W —=X(w : W)P(w)
» Our map (w : W) — P(w) is thus F(w) := m(Fx(w))

» But: only if we can show 71 (Fy(w)) = w for each w : W.
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Initial algebras are well-founded trees (and vice versa)

We use the uniqueness part of initiality:

» The map w — w is clearly an algebra morphisms from
W—W.

» So is the map w — 71 (Fx(w)) since we have

1 (Fz(sup(a, f))): 1 (ez(a, b Fz(f b)))
= sup (a7 b mi(Fs(f b)))

» The above two maps are thus equal and we are done.



Outline

00 N o s b=

Introduction

Extensional type theory

Well-founded trees

Initial algebras are well-founded trees (and vice versa)
Homotopy type theory

Homotopy-initial algebras

Homotopy-initial algebras = well-founded trees

Conclusion



Homotopy Type Theory

An extension of intensional type theory with concepts motivated by
abstract homotopy theory.

» Consistent: we have interpretations into Quillen model
categories (Awodey, Warren '09), groupoids (Hofmann,
Streicher '96), simplicial sets (Voevodsky et al. '12), cubical
sets (Bezem, Coquand, et al. '14).
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Homotopy Type Theory

An extension of intensional type theory with concepts motivated by
abstract homotopy theory.

» Consistent: we have interpretations into Quillen model
categories (Awodey, Warren '09), groupoids (Hofmann,
Streicher '96), simplicial sets (Voevodsky et al. '12), cubical
sets (Bezem, Coquand, et al. '14).

» Fully formal: we use proof assistants (Coq, Agda, Lean) to
formalize results from homotopy theory, algebraic topology.

» Type-theoretic reasoning can lead to a novel proof of a known
result, e.g., the fundamental group of the circle 71(S?)
(Licata, Shulman '12).

» We can use geometric intuition to motivate further
type-theoretic constructs.
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The new homotopical interpretation
Suppose we have terms of ascending identity types:
a, b: A
p, q:a=ab
a, B:p=(a=pb) q

We have the following interpretation into topological spaces:

Types ~» Spaces
Terms ~~  Points
a:A ~» PointacA
p:a=ab ~ PathfromatobinA
~»  Homotopy from p to g in A

QP =(a=pb) G



Types as Spaces

points
= terms

A
\topologica|

path from M to
N
S@:M=N

space
= type




Operations on Paths

idy:M=,M
a’:N=M
Boa:M=,P

E DA
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Homotopy-initial algebras

Consider the endofunctor X — 1 + X.

> We recall that an algebra for this functor is a triple
(X,0x,sx), where Ox : X and sx : X — X.

» A morphism (X,0x,sx)—=(Y,0y,sy) is a triple (f, 6, 0s),
where f : X —Y and 6, s witness the commutativity of the
following two diagrams:

1 1 X—X

Ox 0o Oy SX s Sy

X—Y X—Y
f f
» An algebra (N, 0, suc) is homotopy-initial if the type of
morphisms to any other algebra is contractible, i.e., having a
unique inhabitant up to equality.
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Homotopy-initial algebras = well-founded trees

In homotopy type theory, we have a correspondence (Awodey,
Gambino, S., '12) between
» Inductive types 0, 1, 2, A+ B, N, List[A], W(A, B) (with
propositional computation rules)
» Homotopy-initial algebras for the appropriate endofunctors

So e.g., (N, 0,suc) is homotopy-initial among algebras of the form
(Xa OXa SX)-
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Let W be a homotopy-initial algebra for the polynomial endofunctor
X — X(a:A)(B(a)—X)
The “algebra” arrow is precisely the sup constructor.

To prove the induction principle, let P and e be given.

» To use the homotopy-initiality of W, we must first turn P into
an algebra: we use the total space

Y(w:W)P(w)

as the carrier set.



Homotopy-initial algebras = well-founded trees

We recall the endofunctor is X — ¥(a: A)(B(a) — X).



Homotopy-initial algebras = well-founded trees

We recall the endofunctor is X — ¥(a: A)(B(a) — X).

» To endow X(w : W)P(w) with an algebra structure, we map
a:Aand fy : B(a) —X(w : W)P(w) to es(a, fx) ==



Homotopy-initial algebras = well-founded trees

We recall the endofunctor is X — ¥(a: A)(B(a) — X).

» To endow X(w : W)P(w) with an algebra structure, we map
a:Aand fy : B(a) —X(w : W)P(w) to es(a, fx) ==

(sup (a,b > m1(fs b)), e(a, b s my(f b), b mo(fy b)))



Homotopy-initial algebras = well-founded trees

We recall the endofunctor is X — ¥(a: A)(B(a) — X).

» To endow X(w : W)P(w) with an algebra structure, we map
a:Aand fy : B(a) —X(w : W)P(w) to es(a, fx) ==

(sup (a,b > m1(fs b)), e(a, b s my(f b), b mo(fy b)))

» Homotopy-initiality of W gives us Fy : W —%(w : W)P(w)



Homotopy-initial algebras = well-founded trees

We recall the endofunctor is X — ¥(a: A)(B(a) — X).
» To endow X(w : W)P(w) with an algebra structure, we map
a:Aand fy : B(a) —X(w : W)P(w) to es(a, fx) ==
(sup (a,b > m1(fs b)), e(a, b s my(f b), b mo(fy b)))

» Homotopy-initiality of W gives us Fy : W —%(w : W)P(w)
» Some work is now required to show that we have a family of
paths a(w) : m1(Fx(w)) = w for each w : W.



Homotopy-initial algebras = well-founded trees

We recall the endofunctor is X — ¥(a: A)(B(a) — X).

» To endow X(w : W)P(w) with an algebra structure, we map
a:Aand fy : B(a) —X(w : W)P(w) to es(a, fx) ==

(sup (a,b > m1(fs b)), e(a, b s my(f b), b mo(fy b)))

» Homotopy-initiality of W gives us Fy : W —%(w : W)P(w)

» Some work is now required to show that we have a family of
paths a(w) : m1(Fx(w)) = w for each w : W.

» We put F(w) = a(w) #p m(Fs(w)), where we use a(w) to
transport m2(Fx(w)) from the fiber P(m1(Fx(w))) to the
fiber P(w).
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Homotopy-initial algebras = well-founded trees

To construct « we use the uniqueness part of homotopy-initiality:

» The map w — w is clearly an algebra morphisms from
W—W.

» So is the map w > 71 (Fx(w)) since we have

71 (Fs(sup(a, f)))= m1(ex(a, b — Fx(f b)))
= sup (a, b — m(Fx(f b)))

where the first path follows from the computation rule for Fy
and the second is reflexivity.

» The above two maps are thus equal but we are not done.
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induced by the equality of the two morphisms w — w and
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Homotopy-initial algebras = well-founded trees

It remains to show that the homotopy a(w) : m1(Fs(w)) = w
induced by the equality of the two morphisms w — w and
w — 71(F(w)) is coherent:

» Forany a: Aand f: B(a)—W, the following diagram

commutes:
a(sup(a, f
71 (F(sup(a, f))) (Fupz, 7) sup(a, f)
sup (a, b — m1(Fx(f b))) sup(a, b+ f b)

via funext(b — a(f b))



Conclusion

There is a similar (but much more complicated) correspondence
between:

» W-quotients, a higher-inductive version of W-types

» homotopy-initial algebras of an appropriate form



Conclusion

There is a similar (but much more complicated) correspondence
between:

» W-quotients, a higher-inductive version of W-types

» homotopy-initial algebras of an appropriate form

Moreover, we know that:

P even more complicated higher inductive types such as set and
groupoid quotients are special cases of W-quotients

» hence set and groupoid quotients inherit the characterization
as homotopy-initial algebras



