
Polynomial Functors:
A Mathematical Theory of

Interaction

•

•

•

•

• •

•

• •

•

•

• •

•

•

•

•

• •

•

• •

•

Nelson Niu David I. Spivak

Last updated: July 17, 2024

Source: https://github.com/ToposInstitute/poly

https://github.com/ToposInstitute/poly

ii

This page intentionally left blank.

iii

Nelson Niu David I. Spivak

University of Washington Topos Institute

Seattle, WA Berkeley, CA

iv

To André Joyal
—D.S.

To my graduate cohort at UW
—N.N.

Preface

The proposal is also intended to [serve] equally as a foundation for the

academic, intellectual, and technological, on the one hand, and for the

curious, the moral, the erotic, the political, the artistic, and the sheerly

obstreperous, on the other.

—Brian Cantwell Smith

On the Origin of Objects

And that is the way to get the greatest possible variety, but with all the

order there could be; i.e. it is the way to get as much perfection as there

could be.

—Gottfried Wilhelm Leibniz

Monadology, 58.

During the Fifth International Conference onApplied Category Theory in 2022, at least

twelve of the fifty-nine presentations and two of the ten posters referenced the category

of polynomial functors and dependent lenses or its close cousins (categories of optics

andDialectica categories) and theway theymodel diverse forms of interactive behavior.

At the same time, all that is needed to grasp the construction of this category—called

Poly for short—is an understanding of mathematical sets and functions. There is no

need for the theory and applications of polynomial functors to remain the stuff of

technical papers; Poly is far too versatile, too full of potential, to be kept out of reach.

Informally, a polynomial functor is a collection of elements we call positions and, for
each position, a collection of elementswe call directions. There is then a natural notion of

a morphism between polynomial functors that sends positions forward and directions

backward, modeling two-way communication. From these basic components, category

theory allows us to construct an immense array of mathematical gadgets that model

a diverse range of interactive processes. In this book, we will establish the theory of

polynomial functors and categorical constructions on them while exploring how they

model interaction.

v

vi

Purpose and prerequisites

A categorical theory of general interaction must be interdisciplinary by its very nature.

Already, drafts of this text have been read by everyone from algebraic geometers to

neuroscientists and AI developers. We hope to extend our reach ever further, to bring

together thinkers and tinkerers from a diverse array of backgrounds under a common

language bywhich to study interactive systems categorically. In short—we know about

Poly; you know about other things; but only our collective knowledge can reveal how

Poly could be applied to those other things.

As such, we have strived to write a friendly and accessible expository text that

can serve as a stepping stone toward further investigations into polynomial functors.

We include exercises and, crucially, solutions to guide the learning process; we draw

extensive analogies to provide motivation and develop intuition; we pose examples

whenever necessary. Proofs may bear far more detail than youwould find in a research

paper, but not so much detail that it would clutter the key ideas. A few critical proofs

are even argued through pictures, yet we contend that they are no less rigorous than

the clouds of notation whose places they take.

On the other hand, there is some deep mathematical substance to the work we

will discuss, drawing from the well-established theory of categories. Although you

will find, for example, a complete proof of the Yoneda lemma within these pages,

we don’t intend to build up everything from scratch. There are plenty of excellent

resources for learning category theory out there, catering to a variety of needs, without

adding our own to the mix when our primary goal is to introduce Poly. So for the

sake of contributing only what is genuinely helpful, we assume a certain level of

mathematical background. You are ready to read this book if you can define the

following fundamental concepts from category theory, and give examples of each:

• categories,

• functors,

• natural transformations,

• (co)limits,

• adjunctions, and

• (symmetric) monoidal categories.

Wewill additionally assume a passing familiarity with the language of graph-theoretic

trees (e.g. vertices, roots, leaves, paths).

That said, with a little investment on your part, you could very well use this book as

a way to teach yourself some category theory. If you have ever tried to learn category

theory, only to become lost in abstraction or otherwise overwhelmed by seemingly

endless lists of examples from foreign fields, perhaps you will benefit from a focused

case study of one particularly fruitful category. If you encounter terms or ideas that

you would like to learn more about, we encourage you to look them up elsewhere, and

you may find yourself spending a pleasant afternoon doing a deep dive into a new

definition or theorem. Then come back when you’re ready—we’ll be here.

CHOICES AND CONVENTIONS vii

Outline

This book is designed to be read linearly. Part I introduces the category Poly and

illustrates how it models interaction protocols; while Part II highlights a crucial opera-

tion on Poly, the composition product, which upgrades the theory so that it properly

captures the time evolution of a dynamical system.

Part I (The category of polynomial functors) consists of:

• Chapter 1 (Representable functors from the category of sets), in which we review

category-theoretic constructions on sets and the Yoneda lemma;

• Chapter 2 (Polynomial functors), in which we introduce our objects of study and

present several perspectives from which to view them;

• Chapter 3 (The category of polynomial functors), in which we define Poly by

introducing its morphisms and demonstrate many ways to work with them,

including how they model interaction protocols;

• Chapter 4 (Dynamical systems as dependent lenses), in which we use a specific

class of morphisms in Poly to model discrete-time dynamical systems; and

• Chapter 5 (More categorical properties of polynomials), in which we describe a

smorgasbord of additional category-theoretic structures on Poly.

Part II (A different category of categories) consists of:

• Chapter 6 (The composition product), in which we examine a monoidal structure

on Poly given by substituting one polynomial into another;

• Chapter 7 (Polynomial comonoids and retrofunctors), in which we show that

the category of comonoids in Poly with respect to the composition product is

equivalent to a category of small categories we call Cat♯ whose morphisms are

not functors;

• Chapter 8 (Categorical properties of polynomial comonoids), in which we study

the structure and utility of Cat♯; and
• Chapter 9 (New horizons), in which we list open questions.

Choices and conventions

Throughout this book, we have chosen to focus on polynomial functors of a single

variable on the category of sets. The motivation for this seemingly narrow scope is

twofold: to keep matters as concrete and intuitive as possible, with easy access to

elements that we can work with directly; and to demonstrate the immense versatility

of even this small corner of the theory. Furthermore, the subject of multi-variate

polynomials arises by considering what are called comonoids and comodules in Poly
[Spi23].

Below is a list of conventions we adopt; while it is not comprehensive, any unusual

choices are justified within the text, often as a footnote.

viii

The natural numbers include 0, so N B {0, 1, 2, . . .}. Throughout this book, when

referring to finite sets, we will adopt the following convention: 0 B {} = ∅, 1 B {1},
2 B {1, 2}, 3 B {1, 2, 3}, and so on, with n B {1, . . . , 𝑛}, an 𝑛-element set, for each

natural number 𝑛. For example, in standard font, 5 represents theusual natural number,

while in sans serif font, 5 represents the 5-element set {1, 2, 3, 4, 5}. When the same

variable name appears in both italicized and sans serif fonts, the italicized variable

denotes a natural number and the sans serif variable denotes the corresponding set; for

example, if we state that 𝑚 ∈ N, then we also understand m to mean the set {1, . . . , 𝑚}.

The names of categories will be capitalized. We will mostly ignore size issues,

but roughly speaking small categories will be written in script (e.g. C,D), while large

categories (usually, but not always, named) will be written in bold (e.g. Poly,C). We

use Set to denote the category of (small) sets and functions and Cat to denote the

category of (small) categories and functors. We use exponential notationDC
to denote

the category of functors C→ D and natural transformations.

We write either 𝑐 ∈ ObC or 𝑐 ∈ C to denote an object 𝑐 of a category C. We use

∑
rather than

∐
to denote coproducts. We denote the collection of morphisms 𝑓 : 𝑐 → 𝑑

in a category C by using the name of the category itself, followed by the ordered pair

of objects: C(𝑐, 𝑑). We denote the domain of 𝑓 by dom 𝑓 and the codomain of 𝑓 by

cod 𝑓 . We use B for definitions and temporary assignments, as opposed to = for

identifications that can be observed and proven. We use � to indicate an isomorphism

of objects and = to indicate an equality of objects, although the choice of the former

does not preclude the possibility of the latter, nor does the latter necessarily imply any

significance beyond an arbitrary selection that has been made. We will freely use the

definite article “the” to refer to objects that are unique only up to unique isomorphism.

We list nullary operations before binary ones: for example, we denote a monoidal

category C with monoidal unit 𝐼 and monoidal product ⊙ by (C, 𝐼 ,⊙), or say that (𝐼 ,⊙)
is a monoidal structure on C.

Past, present, and future

The idea for this book began in 2020, originally as part of a joint work with David Jaz

Myers on using categories to model dynamical systems. It soon became clear, however,

that our writing and his—while intimately related—would be better off as separate

volumes. His book is nonetheless an excellent companion to ours: see [Mye22].

In the summer of 2021, we taught a course on a draft of this book that was

livestreamed from the Topos Institute. Lecture recordings are freely available at

https://topos.site/poly-course/. A follow-upworkshopwith additional recorded

lectures and write-ups was held in early 2024; see https://topos.site/events/

poly-at-work/.

The theory and application of polynomial functors comprise an active area of re-

https://topos.site/poly-course/
https://topos.site/events/poly-at-work/
https://topos.site/events/poly-at-work/

PAST, PRESENT, AND FUTURE ix

search. We have laid the foundations here, but work is still ongoing. Even while

writing this, we discovered new results and uses for polynomial functors, which only

goes to show how bountiful Poly can be in its rewards—but of course, we had to cut

things off somewhere. We say this in the hope that you will keep the following in

mind: where this book ends, the story will have just begun.

Acknowledgments

Special thanks to David Jaz Myers: a brilliant colleague, a wonderful conversation

partner, a congenial housemate, a superb chef, and an all-around good guy.

Thanks go to John Baez, Eric Bond, Spencer Breiner, Kris Brown, Matteo Capucci,

Valeria de Paiva, Joseph Dorta, Brendan Fong, Richard Garner, Bruno Gavranović,

Neil Ghani, Ben Goertzel, Tim Hosgood, Samantha Jarvis, Max Lieblich, Shaowei

Lin, Owen Lynch, Joachim Kock, Jérémie Koenig, Sophie Libkind, Joshua Meyers,

Dominic Orchard, Nathaniel Osgood, Evan Patterson, Brandon Shapiro, Juliet Szatko,

Tish Tanski, Todd Trimble, Adam Vandervorst, Jonathan Weinberger, and Christian

Williams.

This material is based upon work supported by the AFOSR under award numbers

FA9550-20-1-0348 and FA9550-23-1-0376.

Contents

Purpose and prerequisites . vi

Choices and conventions . vii

Past, present, and future . viii

I The category of polynomial functors 1

1 Representable functors from the category of sets 3
1.1 Representable functors and the Yoneda lemma 3

1.2 Sums and products of sets . 6

1.3 Expanding products of sums . 12

1.4 Sums and products of functors Set→ Set 15

1.5 Summary and further reading . 18

1.6 Exercise solutions . 18

2 Polynomial functors 25
2.1 Introducing polynomial functors . 25

2.2 Special classes of polynomial functors . 28

2.3 Interpreting positions and directions . 29

2.4 Corolla forests . 31

2.5 Polyboxes . 34

2.6 Summary and further reading . 37

2.7 Exercise solutions . 37

3 The category of polynomial functors 41
3.1 Dependent lenses between polynomial functors 41

3.2 Dependent lenses as interaction protocols 44

3.3 Corolla forest pictures of dependent lenses 46

3.4 Polybox pictures of dependent lenses . 47

3.5 Computations with dependent lenses . 49

3.6 Dependent lenses between special polynomials 52

x

CONTENTS xi

3.7 Translating between natural transformations and lenses 57

3.8 Identity lenses and lens composition . 60

3.9 Polybox pictures of lens composition . 62

3.10 Symmetric monoidal products of polynomial functors 64

3.11 Summary and further reading . 71

3.12 Exercise solutions . 72

4 Dynamical systems as dependent lenses 83
4.1 Moore machines . 83

4.1.1 Deterministic state automata . 88

4.2 Dependent dynamical systems . 90

4.3 Constructing new dynamical systems from old 96

4.3.1 Categorical products: multiple interfaces operating on the same

states . 96

4.3.2 Parallel products: juxtaposing dynamical systems 98

4.3.3 Composing lenses: wrapper interfaces 101

4.3.4 Sections as wrappers . 103

4.4 General interaction . 106

4.4.1 Wrapping juxtaposed dynamical systems together 106

4.4.2 Sectioning juxtaposed dynamical systems off together 111

4.4.3 Wiring diagrams as interaction patterns 115

4.4.4 More examples of general interaction 120

4.5 Closure of ⊗ . 124

4.6 Summary and further reading . 128

4.7 Exercise solutions . 129

5 More categorical properties of polynomials 145
5.1 Special polynomials and adjunctions . 145

5.2 Epi-mono factorization of lenses . 148

5.3 Cartesian closure . 152

5.4 Limits and colimits of polynomials . 153

5.5 Vertical-cartesian factorization of lenses 158

5.6 Monoidal ∗-bifibration over Set . 163

5.7 Summary and further reading . 166

5.8 Exercise solutions . 166

II A different category of categories 177

6 The composition product 179
6.1 Defining the composition product . 179

6.1.1 Composite functors . 180

6.1.2 Composite positions and directions 183

xii CONTENTS

6.1.3 Composition product on corolla forests 185

6.1.4 Dynamical systems and the composition product 190

6.2 Lenses to composites . 194

6.2.1 Lenses to composites as polyboxes 194

6.2.2 The composition product of lenses as polyboxes 198

6.3 Categorical properties of the composition product 204

6.3.1 Interaction with products and coproducts 204

6.3.2 Interaction with limits on the left 206

6.3.3 Interaction with limits on the right 209

6.3.4 Interaction with parallel products 213

6.3.5 Interaction with vertical and cartesian lenses 215

6.4 Summary and further reading . 215

6.5 Exercise solutions . 216

7 Polynomial comonoids and retrofunctors 227
7.1 State systems, categorically . 227

7.1.1 The do-nothing section . 228

7.1.2 The transition lens . 229

7.1.3 The do-nothing section coheres with the transition lens 230

7.1.4 The transition lens is coassociative 233

7.1.5 Running dynamical systems . 235

7.1.6 State systems as comonoids . 237

7.2 Polynomial comonoids are categories . 241

7.2.1 Translating between polynomial comonoids and categories 242

7.2.2 Examples of categories as comonoids 248

7.3 Morphisms of polynomial comonoids are retrofunctors 254

7.3.1 Introducing comonoid morphisms and retrofunctors 254

7.3.2 Examples of retrofunctors . 259

7.3.3 Equivalent characterizations of retrofunctors from state categories 270

7.4 Summary and further reading . 277

7.5 Exercise solutions . 278

8 Categorical properties of polynomial comonoids 291
8.1 Cofree comonoids . 291

8.1.1 The carrier of the cofree comonoid 292

8.1.2 Cofree comonoids as categories . 303

8.1.3 Exhibiting the forgetful-cofree adjunction 314

8.1.4 The many (inter)faces of the cofree comonoid 316

8.1.5 Morphisms between cofree comonoids 319

8.1.6 Some categorical properties of cofree comonoids 319

8.2 More categorical properties of Cat♯ . 321

8.2.1 Other special comonoids and adjunctions 321

CONTENTS xiii

8.2.2 Vertical-cartesian factorization of retrofunctors 322

8.2.3 Limits and colimits of comonoids 325

8.2.4 Parallel product comonoids . 326

8.3 Comodules over polynomial comonoids 327

8.3.1 Left and right comodules . 328

8.3.2 Bicomodules . 332

8.3.3 More equivalences . 333

8.3.4 Bicomodules are parametric right adjoints 336

8.3.5 Bicomodules in dynamics . 337

8.4 Summary and further reading . 339

8.5 Exercise solutions . 339

9 New horizons 349

Bibliography 351

Part I

The category of polynomial functors

1

Chapter 1

Representable functors from
the category of sets

In this chapter, we lay the categorical groundwork needed to define our category of

interest, the category of polynomial functors. We begin by examining a special kind

of polynomial functor that you may already be familiar with—representable functors

from the category Set of sets and functions. We highlight the role these representable

functors play in what is arguably the fundamental theorem of category theory, the

Yoneda lemma. We will also discuss sums and products of sets and of set-valued

functors, which we will need to construct our polynomial functors.

1.1 Representable functors and the Yoneda lemma

Representable functors—special functors to the category of sets—provide the founda-

tion for the category Poly. While much of the following theory applies to representable

functors from any category, we need only focus on representable functors Set→ Set.

Definition 1.1 (Representable functor). For a set 𝑆, we denote by y𝑆 : Set → Set the
functor that sends each set 𝑋 to the set 𝑋𝑆 = Set(𝑆, 𝑋) and each function ℎ : 𝑋 → 𝑌 to

the function ℎ𝑆 : 𝑋𝑆 → 𝑌𝑆 that sends 𝑔 : 𝑆→ 𝑋 to 𝑔 # ℎ : 𝑆→ 𝑌.a

We call a functor (isomorphic to one) of this form a representable functor, or a rep-
resentable. In particular, we call y𝑆 the functor represented by 𝑆, and we call 𝑆 the

representing set of y𝑆. As y𝑆 denotes raising a variable to the power of 𝑆, we will also

refer to representables as pure powers.
a
Throughout this text, given morphisms 𝑓 : 𝐴→ 𝐵 and 𝑔 : 𝐵→ 𝐶 in a category, we will denote their

composite morphism 𝐴→ 𝐶 interchangeably as 𝑓 # 𝑔 or 𝑔 ◦ 𝑓 (or even 𝑔 𝑓), whichever is more convenient.

The symbol y stands for Yoneda, for reasons we will explain in Lemma 1.10 and

Exercise 1.12 #5.

3

4 CHAPTER 1. REPRESENTABLE FUNCTORS FROM THE CATEGORY OF SETS

Throughout this book, we will use the notation 0 B {} = ∅, 1 B {1}, 2 B {1, 2},
3 B {1, 2, 3}, and so on, with n B {1, . . . , 𝑛}

Example 1.2. The functor that sends each set 𝑋 to 𝑋 × 𝑋 and each function ℎ : 𝑋 → 𝑌

to (ℎ × ℎ) : (𝑋 ×𝑋) → (𝑌 ×𝑌) is representable. After all, 𝑋 ×𝑋 � 𝑋2
, so this functor is

the pure power y2
.

Exercise 1.3 (Solution here). For each of the following functors Set→ Set, say if it is

representable or not; if it is, give the set that represents it.

1. The identity functor 𝑋 ↦→ 𝑋, which sends each function to itself.

2. The constant functor 𝑋 ↦→ 2, which sends every function to the identity on 2.
3. The constant functor 𝑋 ↦→ 1, which sends every function to the identity on 1.
4. The constant functor 𝑋 ↦→ 0, which sends every function to the identity on 0.
5. A functor 𝑋 ↦→ 𝑋N

. If it could be representable, where should it send each

function?

6. A functor 𝑋 ↦→ 2𝑋 . If it could be representable, where should it send each

function? ♦

Now that we have introduced representable functors, we study the maps between

them. As representables are functors, the maps between them are natural transforma-

tions.

Proposition 1.4. For any function 𝑓 : 𝑅→ 𝑆, there is an inducednatural transformation

y 𝑓 : y𝑆 → y𝑅; on any set 𝑋 its 𝑋-component 𝑋 𝑓
: 𝑋𝑆 → 𝑋𝑅

is given by sending

𝑔 : 𝑆→ 𝑋 to 𝑓 # 𝑔 : 𝑅→ 𝑋.

Proof. See Exercise 1.5. □

Exercise 1.5 (Solution here). To prove Proposition 1.4, show that for any function

𝑓 : 𝑅→ 𝑆, the given construction y 𝑓 : y𝑆 → y𝑅 really is a natural transformation. That

is, for any function ℎ : 𝑋 → 𝑌, show that the following naturality square commutes:

𝑋𝑆 𝑌𝑆

𝑋𝑅 𝑌𝑅

ℎ𝑆

𝑋 𝑓 𝑌 𝑓

ℎ𝑅

?
(1.6)

♦

1.1. REPRESENTABLE FUNCTORS AND THE YONEDA LEMMA 5

Exercise 1.7 (Solution here). Let 𝑋 be an arbitrary set. For each of the following sets

𝑅, 𝑆 and functions 𝑓 : 𝑅 → 𝑆, describe the 𝑋-component 𝑋 𝑓
: 𝑋𝑆 → 𝑋𝑅

of the natural

transformation y 𝑓 : y𝑆 → y𝑅.

1. 𝑅 = 5, 𝑆 = 5, 𝑓 = id5. (You should describe the function 𝑋 id5
: 𝑋5 → 𝑋5

.)

2. 𝑅 = 2, 𝑆 = 1, 𝑓 is the unique function.
3. 𝑅 = 1, 𝑆 = 2, 𝑓 (1) = 1.

4. 𝑅 = 1, 𝑆 = 2, 𝑓 (1) = 2.

5. 𝑅 = 0, 𝑆 = 5, 𝑓 is the unique function.
6. 𝑅 = N, 𝑆 = N, 𝑓 (𝑛) = 𝑛 + 1. ♦

These representable functors and natural transformations live in the larger category

SetSet
, whose objects are functors Set → Set and whose morphisms are the natural

transformations between them.

Exercise 1.8 (Solution here). Show that the construction 𝑓 ↦→ y 𝑓 from Proposition 1.4

defines a functor

y− : Setop → SetSet
(1.9)

by verifying functoriality, as follows.

1. Show that for any set 𝑆, the natural transformation yid𝑆
: y𝑆 → y𝑆 is the identity.

2. Show that for functions 𝑓 : 𝑅→ 𝑆 and 𝑔 : 𝑆→ 𝑇, we have y𝑔 # y 𝑓 = y 𝑓 #𝑔 . ♦

We now have all the ingredients we need to state and prove the Yoneda lemma on

the category of sets.

Lemma 1.10 (Yoneda lemma). Given a functor 𝐹 : Set → Set and a set 𝑆, there is an

isomorphism

𝐹(𝑆) � SetSet(y𝑆 , 𝐹) (1.11)

where the right hand side is the set of natural transformations y𝑆 → 𝐹. Moreover,

(1.11) is natural in both 𝑆 and 𝐹.

Proof. Given a natural transformation 𝑚 : y𝑆 → 𝐹, consider its 𝑆-component 𝑚𝑆 : 𝑆𝑆 →
𝐹(𝑆). Applying this function to id𝑆 ∈ 𝑆𝑆 yields an element 𝑚𝑆(id𝑆) ∈ 𝐹(𝑆).

Conversely, given an element 𝑎 ∈ 𝐹(𝑆), there is a natural transformation we denote

by 𝑚𝑎
: y𝑆 → 𝐹 whose 𝑋-component is the function 𝑋𝑆 → 𝐹(𝑋) that sends 𝑔 : 𝑆 → 𝑋

to 𝐹(𝑔)(𝑎). In Exercise 1.12 we ask you to show that this is indeed natural in 𝑋; that

these two constructions, 𝑚 ↦→ 𝑚𝑆(id𝑆) and 𝑎 ↦→ 𝑚𝑎
, are mutually inverse; and that the

resulting isomorphism is natural. □

Exercise 1.12 (Solution here). In this exercise, we fill in the details of the preceding

proof.

6 CHAPTER 1. REPRESENTABLE FUNCTORS FROM THE CATEGORY OF SETS

1. Show that for any 𝑎 ∈ 𝐹(𝑆), the maps 𝑋𝑆 → 𝐹(𝑋) defined in the proof of

Lemma 1.10 are natural in 𝑋.

2. Show that the two mappings given in the proof of Lemma 1.10 are mutually

inverse, thus defining the isomorphism (1.11).

3. Show that (1.11) as defined is natural in 𝐹.

4. Show that (1.11) as defined is natural in 𝑆.

5. As a corollary of Lemma 1.10, show that the functor y− : Setop → SetSet
from

(1.9) is fully faithful—in particular, there is an isomorphism 𝑆𝑇 � SetSet(y𝑆 , y𝑇)
for sets 𝑆, 𝑇. For this reason, we call y− the Yoneda embedding. ♦

How will we go from these representable functors to polynomial ones? Recall that,

in algebra, a polynomial is just a sum of pure powers. So we will define a polynomial
functor Set → Set to be a sum of pure power functors—that is, the representable

functors y𝐴 for each set 𝐴 we just introduced.
1

All of our polynomials will be in one variable, y. Every other letter or number

that shows up in our notation for a polynomial will denote a set. For example, in the

polynomial

RyZ + 3y3 + y𝐴 +
∑
𝑖∈𝐼

y𝑅𝑖+𝑄
2
𝑖 , (1.13)

R denotes the set of real numbers, Z denotes the set of integers, 2 and 3 respectively

denote the sets {1, 2} and {1, 2, 3}, and 𝐴, 𝐼, 𝑄𝑖 , and 𝑅𝑖 denote arbitrary sets.

To make sense of these polynomials, we need to define functor addition, both

in the binary case (i.e. what is y𝐴 + y𝐵?) and more generally over arbitrary sets (i.e.

what is

∑
𝑖∈𝐼 y

𝐴𝑖
?). This will allow us to interpret polynomials like (1.13). In particular,

just as 3𝑦3 = 𝑦3 + 𝑦3 + 𝑦3
in algebra, the summand 3y3

of (1.13) denotes the sum of

representables y3 + y3 + y3
, while the summand RyZ denotes the sum over R of copies

of yZ.

While polynomial functors will be defined as sums, products of polynomials will

turn out to be polynomials as well, again mimicking polynomials in algebra. To make

sense of these products, we will also define functor multiplication. The construction

of sums and products of functors Set → Set will rely on the construction of sets and

products of sets themselves.

1.2 Sums and products of sets

Let 𝐼 be a set, and let 𝑋𝑖 be a set for each 𝑖 ∈ 𝐼. Classically, we may denote this 𝐼-indexed
family of sets by (𝑋𝑖)𝑖∈𝐼 . Categorically, wemay view this data as a specific kind of functor:

if we identify the set 𝐼 with the discrete category on 𝐼, whose objects are the elements of

𝐼 and whose morphisms are all identities, then (𝑋𝑖)𝑖∈𝐼 can be identified with a functor

1
This analogy isn’t perfect: in algebra, polynomials are generally finite sums of pure powers, whereas

our polynomial functors may be infinite sums of representables. However, we are not the first to use the

term “polynomial” this way, and the name stuck.

1.2. SUMS AND PRODUCTS OF SETS 7

𝑋 : 𝐼 → Set with 𝑋(𝑖) B 𝑋𝑖 . To compromise, we will denote an indexed family of sets

by 𝑋 : 𝐼 → Set for a set 𝐼 viewed as a discrete category (although we will occasionally

use the classical notation when convenient), but denote the set obtained by evaluating

𝑋 at each 𝑖 ∈ 𝐼 by 𝑋𝑖 rather than 𝑋(𝑖).
To pick out an element of one of the sets in the indexed family 𝑋 : 𝐼 → Set, we need

to specify both an index 𝑖 ∈ 𝐼 and an element 𝑥 ∈ 𝑋𝑖 . We call the set of such pairs (𝑖 , 𝑥)
the sum of this indexed family, as below.

Definition 1.14 (Sum of sets). Let 𝐼 be a set and 𝑋 : 𝐼 → Set be an 𝐼-indexed family of

sets. The sum
∑
𝑖∈𝐼 𝑋𝑖 of the indexed family 𝑋 is the set∑

𝑖∈𝐼
𝑋𝑖 B {(𝑖 , 𝑥) | 𝑖 ∈ 𝐼 and 𝑥 ∈ 𝑋𝑖}.

When 𝐼 B {𝑖1 , . . . , 𝑖𝑛} is finite, we may alternatively denote this sum as

𝑋𝑖1 + · · · + 𝑋𝑖𝑛 .

Say instead we pick an element from every set in the indexed family: that is, we

construct an assignment 𝑖 ↦→ 𝑥𝑖 , where each 𝑥𝑖 ∈ 𝑋𝑖 . If every 𝑋𝑖 were the same set 𝑋,

then this would just be a function 𝐼 → 𝑋. More generally, this assignment is what we

call a dependent function: its codomain 𝑋𝑖 depends on its input 𝑖. We write the signature

of such a dependent function as

𝑓 : (𝑖 ∈ 𝐼) → 𝑋𝑖 .

Note that the indexed family of sets 𝑋 : 𝐼 → Set completely determines this signature.

The set of all dependent functions whose signature is determined by a given indexed

family of sets is the product of that indexed family, as below.

Definition 1.15 (Product of sets). Let 𝐼 be a set and 𝑋 : 𝐼 → Set be an 𝐼-indexed family

of sets. The product
∏

𝑖∈𝐼 𝑋𝑖 of the indexed family 𝑋 is the set of dependent functions∏
𝑖∈𝐼

𝑋𝑖 B { 𝑓 : (𝑖 ∈ 𝐼) → 𝑋𝑖}.

When 𝐼 B {𝑖1 , . . . , 𝑖𝑛} is finite, we may alternatively denote this product as

𝑋𝑖1 × · · · × 𝑋𝑖𝑛 or 𝑋𝑖1 · · ·𝑋𝑖𝑛 .

For a dependent function 𝑓 : (𝑖 ∈ 𝐼) → 𝑋𝑖 , we may denote the element of 𝑋𝑖 that

𝑓 assigns to 𝑖 ∈ 𝐼 by 𝑓 (𝑖), 𝑓 𝑖 , or 𝑓𝑖 . When 𝐼 B {𝑖1 , . . . , 𝑖𝑛} is finite, we may identify 𝑓

with the 𝑛-tuple (𝑓 (𝑖1), . . . , 𝑓 (𝑖𝑛)); similarly, when 𝐼 B N, we may identify 𝑓 with the

infinite sequence (𝑓0 , 𝑓1 , 𝑓2 , . . .).

8 CHAPTER 1. REPRESENTABLE FUNCTORS FROM THE CATEGORY OF SETS

Example 1.16. If 𝐼 B 2 = {1, 2}, then an 𝐼-indexed family 𝑋 : 𝐼 → Set consists of two

sets—say 𝑋1 B {𝑎, 𝑏, 𝑐} and 𝑋2 B {𝑐, 𝑑}. Their sum is then the disjoint union∑
𝑖∈2

𝑋𝑖 = 𝑋1 + 𝑋2 = {(1, 𝑎), (1, 𝑏), (1, 𝑐), (2, 𝑐), (2, 𝑑)}.

The cardinality
a
of 𝑋1 + 𝑋2 will always be the sum of the cardinalities of 𝑋1 and 𝑋2,

justifying the use of the word “sum.”

Meanwhile, their product is the usual cartesian product∏
𝑖∈2

𝑋𝑖 � 𝑋1 × 𝑋2 = {(𝑎, 𝑐), (𝑎, 𝑑), (𝑏, 𝑐), (𝑏, 𝑑), (𝑐, 𝑐), (𝑐, 𝑑)}.

The cardinality of 𝑋1 × 𝑋2 will always be the product of the cardinalities of 𝑋1 and 𝑋2,

justifying the use of the word “product.”

a
The cardinality of a set is the number of elements it contains, at least when the set is finite; with care

the notion can be extended to infinite sets as well.

Exercise 1.17 (Solution here). Let 𝐼 be a set.

1. Show that there is an isomorphism of sets 𝐼 �
∑
𝑖∈𝐼 1.

2. Show that there is an isomorphism of sets 1 �
∏

𝑖∈𝐼 1.
As a special case, suppose that 𝐼 B 0 = ∅ and that 𝑋 : ∅ → Set is the unique empty

indexed family of sets.

3. Is it true that 𝑋𝑖 = 1 for each 𝑖 ∈ 𝐼?
4. Justify the statement “the empty sum is 0” by showing that there is an isomor-

phism of sets

∑
𝑖∈∅ 𝑋𝑖 � 0.

5. Justify the statement “the empty product is 1” by showing that there is an iso-

morphism of sets

∏
𝑖∈∅ 𝑋𝑖 � 1. ♦

The following standard factdescribes the constructions fromDefinitions 1.14 and1.15

categorically and further justifies why we call them sums and products.

Proposition 1.18. Let 𝐼 be a set and 𝑋 : 𝐼 → Set be an 𝐼-indexed family of sets. Then

the sum

∑
𝑖∈𝐼 𝑋𝑖 is the categorical coproduct of these sets in Set (i.e. the colimit of the

functor 𝑋 : 𝐼 → Set, viewed as a diagram), and the product

∏
𝑖∈𝐼 𝑋𝑖 is the categorical

product of these sets in Set (i.e. the limit of the functor 𝑋 : 𝐼 → Set, viewed as a

diagram).

Proof. The sum

∑
𝑖∈𝐼 𝑋𝑖 comes equipped with an inclusion 𝜄 𝑗 : 𝑋𝑗 →

∑
𝑖∈𝐼 𝑋𝑖 for each

𝑗 ∈ 𝐼 given by 𝑥 ↦→ (𝑗 , 𝑥). The product

∏
𝑖∈𝐼 𝑋𝑖 comes equipped with a projection

𝜋 𝑗 :
∏

𝑖∈𝐼 𝑋𝑖 → 𝑋𝑗 for each 𝑗 ∈ 𝐼 sending each 𝑓 : (𝑖 ∈ 𝐼) → 𝑋𝑖 to 𝑓 (𝑗). These satisfy

the universal properties for categorical coproducts and products, respectively; see

Exercise 1.19. □

1.2. SUMS AND PRODUCTS OF SETS 9

Exercise 1.19 (Solution here).
1. Show that

∑
𝑖∈𝐼 𝑋𝑖 along with the inclusions 𝜄 𝑗 : 𝑋𝑗 →

∑
𝑖∈𝐼 𝑋𝑖 described in the

proof of Proposition 1.18 satisfy the universal property of a categorical coproduct:

for any set 𝑌 with functions 𝑔 𝑗 : 𝑋𝑗 → 𝑌 for each 𝑗 ∈ 𝐼, there exists a unique

function ℎ :

∑
𝑖∈𝐼 𝑋𝑖 → 𝑌 for which 𝜄 𝑗 # ℎ = 𝑔 𝑗 for all 𝑗 ∈ 𝐼.

2. Show that

∏
𝑖∈𝐼 𝑋𝑖 along with the projections 𝜋 𝑗 :

∏
𝑖∈𝐼 𝑋𝑖 → 𝑋𝑗 described in the

proof of Proposition 1.18 satisfy the universal property of a categorical product:

for any set 𝑌 with functions 𝑔 𝑗 : 𝑌 → 𝑋𝑗 for each 𝑗 ∈ 𝐼, there exists a unique

function ℎ : 𝑌 →∏
𝑖∈𝐼 𝑋𝑖 for which ℎ # 𝜋 𝑗 = 𝑔 𝑗 for all 𝑗 ∈ 𝐼. ♦

Though we proved above explicitly that Set has all small products and coproducts,

from here on out, we will assume the standard categorical fact that Set is complete (has

all small limits) and cocomplete (has all small colimits).

Wehave constructed categorical sums andproducts of sets, butwe can also construct

categorical sums and products of the maps between them: functions.

Definition 1.20 (Categorical sumandproduct of functions). Let 𝐼 be a set and𝑋,𝑌 : 𝐼 →
Set be 𝐼-indexed families of sets. Given a natural transformation 𝑓 : 𝑋 → 𝑌, i.e. an

𝐼-indexed family of functions (𝑓𝑖 : 𝑋𝑖 → 𝑌𝑖)𝑖∈𝐼 , its categorical sum (or coproduct) is the

function ∑
𝑖∈𝐼

𝑓𝑖 :
∑
𝑖∈𝐼

𝑋𝑖 →
∑
𝑖∈𝐼
𝑌𝑖

that, given 𝑖 ∈ 𝐼 and 𝑥 ∈ 𝑋𝑖 , sends (𝑖 , 𝑥) ↦→ (𝑖 , 𝑓𝑖(𝑥)); while its categorical product is the
function ∏

𝑖∈𝐼
𝑓𝑖 :

∏
𝑖∈𝐼

𝑋𝑖 →
∏
𝑖∈𝐼

𝑌𝑖

that sends each 𝑔 : (𝑖 ∈ 𝐼) → 𝑋𝑖 to the composite dependent function (𝑖 ∈ 𝐼) → 𝑌𝑖 , denoted

𝑔 # 𝑓 or 𝑓 ◦ 𝑔, which sends 𝑖 ∈ 𝐼 to 𝑓𝑖(𝑔(𝑖)).
When 𝐼 B {𝑖1 , . . . , 𝑖𝑛} is finite, we may alternatively denote this categorical sum

and product of functions respectively as
a

𝑓𝑖1 + · · · + 𝑓𝑖𝑛 and 𝑓𝑖1 × · · · × 𝑓𝑖𝑛 .
a
We will take care to highlight when this notation may clash with a sum (resp. product) of functions

with common domain and codomain whose codomain has an additive (resp. multiplicative) structure.

Exercise 1.21 (Solution here).
1. Show that the categorical sum of functions is the one induced by the universal

property of the categorical sum of sets. That is, given a set 𝐼, two 𝐼-indexed

families of sets 𝑋,𝑌 : 𝐼 → Set, and a natural transformation 𝑓 : 𝑋 → 𝑌, the

function

∑
𝑖∈𝐼 𝑓𝑖 :

∑
𝑖∈𝐼 𝑋𝑖 →

∑
𝑖∈𝐼 𝑌𝑖 that we called the categorical sum is induced

10 CHAPTER 1. REPRESENTABLE FUNCTORS FROM THE CATEGORY OF SETS

by the following composite maps for 𝑗 ∈ 𝐼:

𝑋𝑗
𝑓𝑗−→ 𝑌𝑗

𝜄′
𝑗−→

∑
𝑖∈𝐼
𝑌𝑖 ,

where 𝜄′
𝑗
is the inclusion. It then follows by a standard categorical argument that

the sum is functorial, i.e. that the sum of identities is an identity and that the sum

of composites is the composite of sums.

2. Similarly, show that the categorical product of functions is the one induced by

the universal property of the categorical product of sets. That is, given the same

setup as the previous part, the function

∏
𝑖∈𝐼 𝑓𝑖 :

∏
𝑖∈𝐼 𝑋𝑖 →

∏
𝑖∈𝐼 𝑌𝑖 that we called

the categorical product is induced by the following composite maps for 𝑗 ∈ 𝐽:∏
𝑖∈𝐼

𝑋𝑖
𝜋𝑗−→ 𝑋𝑗

𝑓𝑗−→ 𝑌𝑗 .

Again, this implies that the product is functorial. ♦

We now highlight some tools and techniques to help us workwith sum and product

sets.

Exercise 1.22 (Solution here). Let 𝐼 be a set and 𝑋 : 𝐼 → Set be an indexed family.

There is a projection function 𝜋1 :

∑
𝑖∈𝐼 𝑋𝑖 → 𝐼 defined by 𝜋1(𝑖 , 𝑥) B 𝑖.

1. What is the signature of the second projection 𝜋2(𝑖 , 𝑥) B 𝑥? (Hint: it’s a depen-

dent function.)

2. A section of a function 𝑟 : 𝐴 → 𝐵 is a function 𝑠 : 𝐵 → 𝐴 such that 𝑠 # 𝑟 = id𝐵.

Show that the product of the indexed family is isomorphic to the set of sections

of 𝜋1: ∏
𝑖∈𝐼

𝑋𝑖 �

{
𝑠 : 𝐼 →

∑
𝑖∈𝐼

𝑋𝑖

����� 𝑠 # 𝜋1 = id𝐼

}
.

♦

A helpful way to think about sum or product sets is to consider what choices must

be made to specify an element of such a set. In the following examples, say that we

have a set 𝐼 and an 𝐼-indexed family 𝑋 : 𝐼 → Set.
Below, we give the instructions for choosing an element of

∑
𝑖∈𝐼 𝑋𝑖 .

To choose an element of

∑
𝑖∈𝐼 𝑋𝑖 :

1. choose an element 𝑖 ∈ 𝐼;
2. choose an element of 𝑋𝑖 .

Then the projection 𝜋1 from Exercise 1.22 sends each element of

∑
𝑖∈𝐼 𝑋𝑖 to the

element of 𝑖 ∈ 𝐼 chosen in step 1, while the projection 𝜋2 sends each element of

∑
𝑖∈𝐼 𝑋𝑖

to the element of 𝑋𝑖 chosen in step 2.

1.2. SUMS AND PRODUCTS OF SETS 11

Next, we give the instructions for choosing an element of

∏
𝑖∈𝐼 𝑋𝑖 .

To choose an element of

∏
𝑖∈𝐼 𝑋𝑖 :

1. for each element 𝑖 ∈ 𝐼:
1.1. choose an element of 𝑋𝑖 .

Armed with these interpretations, we can tackle more complicated expressions,

including those with nested

∑
’s and

∏
’s such as

𝐴 B
∑
𝑖∈𝐼

∏
𝑗∈𝐽(𝑖)

∑
𝑘∈𝐾(𝑖 , 𝑗)

𝑋(𝑖 , 𝑗 , 𝑘). (1.23)

The instructions for choosing an element of 𝐴 form a nested list, as follows.

To choose an element of 𝐴:

1. choose an element 𝑖 ∈ 𝐼;
2. for each element 𝑗 ∈ 𝐽(𝑖):

2.1. choose an element 𝑘 ∈ 𝐾(𝑖 , 𝑗);
2.2. choose an element of 𝑋(𝑖 , 𝑗 , 𝑘).

Here the choice of 𝑘 ∈ 𝐾(𝑖 , 𝑗)may depend on 𝑖 and 𝑗: different values of 𝑖 and 𝑗 may

lead to different sets 𝐾(𝑖 , 𝑗).
By describing 𝐴 like this, we see that each 𝑎 ∈ 𝐴 can be projected to an element

𝑖 B 𝜋1(𝑎) ∈ 𝐼, chosen in step 1, and a dependent function 𝜋2(𝑎), chosen in step 2. This

dependent function in turn sends each 𝑗 ∈ 𝐽(𝑖) to a pair that can be projected to an

element 𝑘 B 𝜋1(𝜋2(𝑎)(𝑗)) ∈ 𝐾(𝑖 , 𝑗) chosen in step 2.1 and an element 𝜋2(𝜋2(𝑎)(𝑗)) ∈
𝑋(𝑖 , 𝑗 , 𝑘) chosen in step 2.2.

Example 1.24. Let 𝐼 B {1, 2}; let 𝐽(1) B { 𝑗} and 𝐽(2) B { 𝑗 , 𝑗′}; let 𝐾(1, 𝑗) B {𝑘1 , 𝑘2},
𝐾(2, 𝑗) B {𝑘1}, and 𝐾(2, 𝑗′) B {𝑘′}; and let 𝑋(𝑖 , 𝑗 , 𝑘) B {𝑥, 𝑦} for all 𝑖 , 𝑗 , 𝑘. Now the

formula ∑
𝑖∈𝐼

∏
𝑗∈𝐽(𝑖)

∑
𝑘∈𝐾(𝑖 , 𝑗)

𝑋(𝑖 , 𝑗 , 𝑘)

from (1.23) specifies a fixed set. Here is a list of all eight of its elements:
(
1, 𝑗 ↦→ (𝑘1 , 𝑥)

)
,

(
1, 𝑗 ↦→ (𝑘1 , 𝑦)

)
,

(
1, 𝑗 ↦→ (𝑘2 , 𝑥)

)
,

(
1, 𝑗 ↦→ (𝑘2 , 𝑦)

)
,(

2, 𝑗 ↦→ (𝑘1 , 𝑥), 𝑗′ ↦→ (𝑘′, 𝑥)
)
,

(
2, 𝑗 ↦→ (𝑘1 , 𝑥), 𝑗′ ↦→ (𝑘′, 𝑦)

)
,(

2, 𝑗 ↦→ (𝑘1 , 𝑦), 𝑗′ ↦→ (𝑘′, 𝑥)
)
,

(
2, 𝑗 ↦→ (𝑘1 , 𝑦), 𝑗′ ↦→ (𝑘′, 𝑦)

)


In each case, we first chose an element 𝑖 ∈ 𝐼, either 1 or 2. Then for each 𝑗 ∈ 𝐽(𝑖) we

chose an element 𝑘 ∈ 𝐾(𝑖 , 𝑗) and an element of 𝑋(𝑖 , 𝑗 , 𝑘).

12 CHAPTER 1. REPRESENTABLE FUNCTORS FROM THE CATEGORY OF SETS

Exercise 1.25 (Solution here). Consider the set

𝐵 B
∏
𝑖∈𝐼

∑
𝑗∈𝐽(𝑖)

∏
𝑘∈𝐾(𝑖 , 𝑗)

𝑋(𝑖 , 𝑗 , 𝑘). (1.26)

1. Give the instructions for choosing an element of 𝐵 as a nested list, like we did for

𝐴 just below (1.23).

2. With 𝐼, 𝐽, 𝐾, and 𝑋 as in Example 1.24, how many elements are in 𝐵?

3. Write out three of these elements in the style of Example 1.24. ♦

1.3 Expanding products of sums

We will often encounter sums of sets nested within products, as in (1.23) and (1.26).

The following proposition helps us work with these; it is sometimes called the type-
theoretic axiom of choice, but it is perhaps more familiar as a set-theoretic analogue of

the distributive property of multiplication over addition. While the identity may look

foreign, it captures for sets the same process that youwould use to multiply multi-digit

numbers from grade school arithmetic or polynomials from high school algebra.

Proposition 1.27 (Pushing

∏
past

∑
). For any sets 𝐼 , (𝐽(𝑖))𝑖∈𝐼 , and (𝑋(𝑖 , 𝑗))𝑖∈𝐼 , 𝑗∈𝐽(𝑖), we

have a natural isomorphism∏
𝑖∈𝐼

∑
𝑗∈𝐽(𝑖)

𝑋(𝑖 , 𝑗) �
∑

𝑗∈∏𝑖∈𝐼 𝐽(𝑖)

∏
𝑖∈𝐼

𝑋(𝑖 , 𝑗(𝑖)).a (1.28)

a
We draw a bar over 𝑗 in 𝑗 to remind ourselves that 𝑗 is no longer just an index but a (dependent)

function.

Proof. First, we construct amap from the left hand set to the right. An element of the set

on the left is a dependent function 𝑓 : (𝑖 ∈ 𝐼) → ∑
𝑗∈𝐽(𝑖) 𝑋(𝑖 , 𝑗), which we can compose

with projections from its codomain to yield 𝜋1(𝑓 (𝑖)) ∈ 𝐽(𝑖) and 𝜋2(𝑓 (𝑖)) ∈ 𝑋(𝑖 ,𝜋1(𝑓 (𝑖)))
for every 𝑖 ∈ 𝐼. We can then form the following pair:

2

(𝑖 ↦→ 𝜋1 𝑓 𝑖 , 𝑖 ↦→ 𝜋2 𝑓 𝑖).

This is an element of the right hand set, because 𝑖 ↦→ 𝜋1 𝑓 𝑖 is a dependent function in∏
𝑖∈𝐼 𝐽(𝑖) and 𝑖 ↦→ 𝜋2 𝑓 𝑖 is a dependent function in

∏
𝑖∈𝐼 𝑋(𝑖 ,𝜋1 𝑓 𝑖).

Nowwe go from right to left. An element of the right hand set is a pair of dependent

functions, 𝑗 : (𝑖 ∈ 𝐼) → 𝐽(𝑖) and 𝑔 : (𝑖 ∈ 𝐼) → 𝑋(𝑖 , 𝑗𝑖). We map this pair to the following

element of the left hand set, a dependent function (𝑖 ∈ 𝐼) → ∑
𝑗∈𝐽(𝑖) 𝑋(𝑖 , 𝑗):

𝑖 ↦→ (𝑗𝑖 , 𝑔𝑖).
2
Weomit parentheses for function applicationhere and throughout the text for compactnesswhenever

the meaning is clear.

1.3. EXPANDING PRODUCTS OF SUMS 13

Finally, we verify that the maps are mutually inverse. An element (𝑗 , 𝑔) of the right
hand set is sent by one map and then the other to the pair

(𝑖 ↦→ 𝜋1(𝑗𝑖 , 𝑔𝑖), 𝑖 ↦→ 𝜋2(𝑗𝑖 , 𝑔𝑖)) = (𝑖 ↦→ 𝑗𝑖 , 𝑖 ↦→ 𝑔𝑖) = (𝑗 , 𝑔)

Meanwhile, an element 𝑓 of the left hand set is sent by one map and then the other to

the dependent function

𝑖 ↦→ (𝜋1 𝑓 𝑖 ,𝜋2 𝑓 𝑖).

As 𝑓 𝑖 is a pair whose components are 𝜋1 𝑓 𝑖 and 𝜋2 𝑓 𝑖, the dependent function above is

precisely 𝑓 . □

When 𝐽(𝑖) = 𝐽 does not depend on 𝑖 ∈ 𝐼, we can simplify the formula in (1.28).

Corollary 1.29. For any sets 𝐼 , 𝐽 , and (𝑋(𝑖 , 𝑗))𝑖∈𝐼 , 𝑗∈𝐽 , we have a natural isomorphism∏
𝑖∈𝐼

∑
𝑗∈𝐽

𝑋(𝑖 , 𝑗) �
∑
𝑗 : 𝐼→𝐽

∏
𝑖∈𝐼

𝑋(𝑖 , 𝑗𝑖), (1.30)

where 𝑗 ranges over all (standard, non-dependent) functions 𝐼 → 𝐽.

Proof. Take 𝐽(𝑖) B 𝐽 for all 𝑖 ∈ 𝐼 in (1.28). Then the set

∏
𝑖∈𝐼 𝐽(𝑖) becomes

∏
𝑖∈𝐼 𝐽

(which we may denote in exponential form by 𝐽 𝐼); its elements, dependent functions

𝑗 : (𝑖 ∈ 𝐼) → 𝐽(𝑖) = 𝐽, become standard functions 𝑗 : 𝐼 → 𝐽. □

It turns out that being able to push

∏
past

∑
as in (1.28) is not a property that is

unique to sets. In general, we refer to a category having this property as follows.

Definition 1.31 (Completely distributive category). A category C with all small prod-

ucts and coproducts is completely distributivea
if products distribute over coproducts as

in (1.28); that is, for any set 𝐼, sets (𝐽(𝑖))𝑖∈𝐼 , and objects (𝑋(𝑖 , 𝑗))𝑖∈𝐼 , 𝑗∈𝐽(𝑖) from C, we have

a natural isomorphism ∏
𝑖∈𝐼

∑
𝑗∈𝐽(𝑖)

𝑋(𝑖 , 𝑗) �
∑

𝑗∈∏𝑖∈𝐼 𝐽(𝑖)

∏
𝑖∈𝐼

𝑋(𝑖 , 𝑗𝑖). (1.32)

a
While our terminology generalizes that of a completely distributive lattice, which has the additional

requirement that the category be a poset, it is unfortunately not standard: a completely distributive

category refers to a different concept in some categorical literature. We will not use this other concept, so

there is no ambiguity.

The term“completelydistributive” comes from lattice theory. As such it is consistent

with two different extensions to categories that may not be posets. We use it to mean

that the category has all sums and products and that products distribute over sums.

Other authors use it to mean that the category has all colimits and limits and a sort of

distributivity between them.

14 CHAPTER 1. REPRESENTABLE FUNCTORS FROM THE CATEGORY OF SETS

So Proposition 1.27 states that Set is completely distributive. Once we define the

category of polynomial functors, we will see that it, too, is completely distributive.

Corollary 1.29 generalizes to all completely distributive categories as well; we state

this formally below.

Corollary 1.33. Let C be a completely distributive category. For any sets 𝐼 and 𝐽 and

objects (𝑋(𝑖 , 𝑗))𝑖∈𝐼 , 𝑗∈𝐽 in C, we have a natural isomorphism∏
𝑖∈𝐼

∑
𝑗∈𝐽

𝑋(𝑖 , 𝑗) �
∑
𝑗 : 𝐼→𝐽

∏
𝑖∈𝐼

𝑋(𝑖 , 𝑗𝑖). (1.34)

Proof. Again, take 𝐽(𝑖) B 𝐽 for all 𝑖 ∈ 𝐼 in (1.32). □

Exercise 1.35 (Solution here). Let C be a completely distributive category. How is the

usual distributive law

𝑋 × (𝑌 + 𝑍) � 𝑋 × 𝑌 + 𝑋 × 𝑍

for 𝑋,𝑌, 𝑍 ∈ C a special case of (1.32)? ♦

Throughout this book, such as in the exercise below, you will see expressions con-

sisting of alternating products and sums. Using (1.32), you can always rewrite such

an expression as a sum of products, in which every

∑
appears before every

∏
.
3
This

is analogous to how products of sums in high school algebra can always be expanded

into sums of products via the distributive property.

Exercise 1.36 (Solution here). Let 𝐼 , (𝐽(𝑖))𝑖∈𝐼 , and (𝐾(𝑖 , 𝑗))(𝑖 , 𝑗)∈𝐼𝐽 be sets, and for each

(𝑖 , 𝑗 , 𝑘) ∈ 𝐼𝐽𝐾, let 𝑋(𝑖 , 𝑗 , 𝑘) be an object in a completely distributive category.

1. Rewrite ∑
𝑖∈𝐼

∏
𝑗∈𝐽(𝑖)

∑
𝑘∈𝐾(𝑖 , 𝑗)

𝑋(𝑖 , 𝑗 , 𝑘)

so that every

∑
appears before every

∏
.

2. Rewrite ∏
𝑖∈𝐼

∑
𝑗∈𝐽(𝑖)

∏
𝑘∈𝐾(𝑖 , 𝑗)

𝑋(𝑖 , 𝑗 , 𝑘)

so that every

∑
appears before every

∏
.

3. Rewrite ∏
𝑖∈𝐼

∏
𝑗∈𝐽(𝑖)

∑
𝑘∈𝐾(𝑖 , 𝑗)

𝑋(𝑖 , 𝑗 , 𝑘)

so that every

∑
appears before every

∏
. ♦

3
When an expression is written so that every

∑
appears before every

∏
, it is said to be in disjunctive

normal form.

1.4. SUMS AND PRODUCTS OF FUNCTORS Set→ Set 15

Now that we understand sums and products of sets, we are ready to explore sums

and products of set-valued functors.

1.4 Sums and products of functors Set→ Set

Recall that our goal is to define polynomial functors such as y2 + 2y + 1 and the maps

between them. We have defined representable functors such as y2
, y, and 1; we just

need to interpret sums of functors Set→ Set. But wemight as well introduce products

of functors at the same time, because they will very much come in handy. Both these

concepts generalize to limits and colimits in SetSet
.

Proposition 1.37. The category SetSet
has all small limits and colimits, and they are

computed pointwise. In particular, on objects, given a small category J and a functor

𝐹 : J→ SetSet
, for all 𝑋 ∈ Set, the limit and colimit of 𝐹 satisfy isomorphisms(

lim

𝑗∈J
𝐹(𝑗)

)
(𝑋) � lim

𝑗∈J

(
𝐹(𝑗)(𝑋)

)
and

(
colim

𝑗∈J
𝐹(𝑗)

)
(𝑋) � colim

𝑗∈J

(
𝐹(𝑗)(𝑋)

)
natural in 𝑋.

Proof. This is a special case of a more general fact when SetSet
is replaced by an

arbitrary functor category DC
, where D is a category that (like Set) has all small limits

and colimits; see [MM92, pages 22–23, displays (24) and (25)]. □

Focusing on the case of coproducts and products, the following corollary is imme-

diate.

16 CHAPTER 1. REPRESENTABLE FUNCTORS FROM THE CATEGORY OF SETS

Corollary 1.38 (Sums andproducts of functorsSet→ Set). Given functors 𝐹, 𝐺 : Set→
Set, their categorical coproduct or sum inSetSet

, denoted 𝐹+𝐺, is the functorSet→ Set
defined for 𝑋,𝑌 ∈ Set and 𝑓 : 𝑋 → 𝑌 by

(𝐹 + 𝐺)(𝑋) B 𝐹(𝑋) + 𝐺(𝑋) and (𝐹 + 𝐺)(𝑓) B 𝐹(𝑓) + 𝐺(𝑓);

while their categorical product in SetSet
, denoted 𝐹×𝐺 or 𝐹𝐺, is the functor Set→ Set

defined for 𝑋,𝑌 ∈ Set and 𝑓 : 𝑋 → 𝑌 by

(𝐹 × 𝐺)(𝑋) B 𝐹(𝑋) × 𝐺(𝑋) and (𝐹 × 𝐺)(𝑓) B 𝐹(𝑓) × 𝐺(𝑓).

Moregenerally, given functors (𝐹𝑖)𝑖∈𝐼 indexedover a set 𝐼, their categorical coproduct

or sum and categorical product in SetSet
, respectively denoted∑

𝑖∈𝐼
𝐹𝑖 : Set→ Set and

∏
𝑖∈𝐼

𝐹𝑖 : Set→ Set,

are respectively defined for 𝑋 ∈ Set by(∑
𝑖∈𝐼

𝐹𝑖

)
(𝑋) B

∑
𝑖∈𝐼

𝐹𝑖(𝑋) and

(∏
𝑖∈𝐼

𝐹𝑖

)
(𝑋) B

∏
𝑖∈𝐼

𝐹𝑖(𝑋).

and for functions 𝑓 : 𝑋 → 𝑌 by(∑
𝑖∈𝐼

𝐹𝑖

)
(𝑓) B

∑
𝑖∈𝐼

𝐹𝑖(𝑓) and

(∏
𝑖∈𝐼

𝐹𝑖

)
(𝑓) B

∏
𝑖∈𝐼

𝐹𝑖(𝑓).

We also note the special case of initial and terminal objects. Given a set 𝐼 ∈ Set, we

will also use 𝐼 to denote the constant functor Set→ Set that sends every set to 𝐼.

Corollary 1.39 (Initial and terminal functorsSet→ Set). The constant functor 0 : Set→
Set is initial in SetSet

, while the constant functor 1 : Set→ Set is terminal in SetSet
.

Proof. As the set 0 is initial in Set (for every set 𝑋 there is a unique map 0 → 𝑋),

Proposition 1.37 implies that the constant functor 0 is initial in SetSet
. Similarly, as the

set 1 is terminal in Set (for every set 𝑋 there is a unique map 𝑋 → 1), Proposition 1.37

implies that the constant functor 1 is terminal in SetSet
. □

Finally, we note that SetSet
inherits the distributivity of Set.

Proposition 1.40. The category SetSet
is completely distributive.

Proof. This followsdirectly from the fact thatSet itself is completelydistributive (Propo-

sition 1.27) and the fact that sums and products in SetSet
are computed pointwise

(Corollary 1.38). □

1.4. SUMS AND PRODUCTS OF FUNCTORS Set→ Set 17

The following exercises justify some notational shortcuts wewill usewhen denoting

polynomial functors. First, for any set 𝐴 and functor 𝐹 : Set → Set, we may write an

𝐴-indexed sum of copies of 𝐹 as 𝐴𝐹, the product of 𝐹 and the constant functor 𝐴; for

instance, y + y � 2y.

Exercise 1.41 (Solution here). Show that for a set 𝐴 ∈ Set and a functor 𝐹 : Set→ Set,
an 𝐴-indexed sum of copies of 𝐹 is isomorphic to the product of the constant functor

𝐴 and 𝐹: ∑
𝑎∈𝐴

𝐹 � 𝐴𝐹.

(This is analogous to the fact that adding up 𝑛 copies of number is equal to multiplying

that same number by 𝑛.) ♦

Similarly, we may wish to write an 𝐴-indexed product of copies of 𝐹 in exponential

form as 𝐹𝐴. But since we have already introduced exponential notation for repre-

sentable functors, this yields two possible interpretations for the functor Set → Set
denoted by y𝐴: as the functor represented by 𝐴, or as the 𝐴-indexed product of copies

of the identity functor y : Set→ Set. In fact, the following exercise shows that there is

no ambiguity, as the two interpretations are isomorphic.

Exercise 1.42 (Solution here).
1. Show that for a set 𝐼 ∈ Set, an 𝐼-indexed product of copies of the identity functor

y : Set→ Set is isomorphic to the functor y𝐼 : Set→ Set represented by 𝐼:∏
𝑖∈𝐼

y � y𝐼 .

(This is analogous to the fact that multiplying 𝑛 copies of a number together is

equal to raising that same number to the power of 𝑛.)

2. Show that the 𝐼-indexed product of copies of a representable functor y𝐴 : Set→
Set for some 𝐴 ∈ Set is isomorphic to the functor y𝐼𝐴 : Set→ Set represented by

the product set 𝐼𝐴: ∏
𝑖∈𝐼

y𝐴 � y𝐼𝐴.

(Hint: You may use the fact that following natural isomorphism holds between

sets of functions:

{ 𝑓 : 𝐼 × 𝐴→ 𝑋} � {𝑔 : 𝐼 → 𝑋𝐴}.

The process of converting a function 𝑓 in the left hand set to the corresponding

function 𝑖 ↦→ (𝑎 ↦→ 𝑓 (𝑖 , 𝑎)) in the right is known as currying.) ♦

Henceforth, given 𝐴 ∈ Set and a functor 𝐹 : Set→ Set, we define

𝐹𝐴 B
∏
𝑎∈𝐴

𝐹.

18 CHAPTER 1. REPRESENTABLE FUNCTORS FROM THE CATEGORY OF SETS

The exercise above shows that this notation does not conflict with the way we write

representable functors as powers of the identity functor y. The exercise also shows how

a power of a representable functor can be simplified to a single representable functor.

With these ingredients, we are finally ready to define what a polynomial functor is.

We will begin with this definition in the next chapter.

1.5 Summary and further reading

In this chapter, we reviewed the definition of a representable functor y𝑆 : Set → Set for
𝑆 ∈ Set sending 𝑋 ↦→ 𝑋𝑆

. We then stated and proved the Yoneda lemma, a founda-

tional result characterizing maps out of these representables: for an arbitrary functor

𝐹 : Set → Set, natural transformations y𝑆 → 𝐹 are in natural correspondence with

elements of 𝐹(𝑆).
We then reviewed other categorical constructions in Set, many of which carry over

to the polynomial functors we introduce in the next chapter. For a set 𝐼, we can view

it as a discrete category and consider a functor 𝑋 : 𝐼 → Set as an 𝐼-indexed family of
sets comprised of a set 𝑋𝑖 for each 𝑖 ∈ 𝐼. An 𝐼-indexed family of sets 𝑋 has a sum (or

coproduct), the set of pairs (𝑖 , 𝑥)with 𝑖 ∈ 𝐼 and 𝑥 ∈ 𝑋𝑖 ; and a product, the set of dependent
functions 𝑓 : (𝑖 ∈ 𝐼) → 𝑋𝑖 . Such a dependent function sends each 𝑖 ∈ 𝐼 to an element of

𝑋𝑖 . These constructions satisfy the universal properties of coproducts and products;

moreover, products distribute over coproducts, making Set a completely distributive

category. All these constructions and properties are inherited by SetSet
, whose limits

(including products) and colimits (including coproducts) are computed pointwise: on

one object at a time according to limits and colimits in Set.
For other introductions to the Yoneda lemma, the category of sets, or both, take

your pick of [Pie91; Bor94; Mac98; Lei14; Rie17; FS19; Che22].

1.6 Exercise solutions
Solution to Exercise 1.3.

1. The identity functor 𝑋 ↦→ 𝑋 is represented by the set 1: a function 1→ 𝑋 can be identified with

an element of 𝑋, so Set(1, 𝑋) � 𝑋. Alternatively, note that 𝑋1 � 𝑋.

2. The constant functor 𝑋 ↦→ 2 is not representable: it sends 1 to 2, but 1𝑆 � 1 ̸� 2 for any set 𝑆.

3. The constant functor 𝑋 ↦→ 1 is represented by 𝑆 = 0: there is exactly one function 0 → 𝑋, so

Set(0, 𝑋) � 1. Alternatively, note that 𝑋0 � 1.
4. The constant functor 𝑋 ↦→ 0 is not representable for the same reason as in #2.

5. The functor yN that sends 𝑋 ↦→ 𝑋N
is represented by N, by definition. It should send each

function ℎ : 𝑋 → 𝑌 to the function ℎN : 𝑋N → 𝑌N
that sends each 𝑔 : N→ 𝑋 to 𝑔 # ℎ : N→ 𝑌.

6. No Set→ Set functor 𝑋 ↦→ 2𝑋 is representable, for the same reason as in #2. (There is, however,

a functor Setop → Set sending 𝑋 ↦→ 2
𝑋
that is understood to be representable in a more general

sense.)

Solution to Exercise 1.5.
To show that (1.6) commutes, we note that by the construction of the components of y 𝑓 in the statement

of Proposition 1.4, both vertical maps in the diagram compose functions from 𝑆 with 𝑓 : 𝑅→ 𝑆 on the

1.6. EXERCISE SOLUTIONS 19

left; and by Definition 1.1, both horizontal maps compose functions to 𝑋 with ℎ : 𝑋 → 𝑌 on the right.

So by the associativity of composition, the diagram commutes: (𝑓 # 𝑔) # ℎ = 𝑓 # (𝑔 # ℎ) for all 𝑔 : 𝑆→ 𝑋.

Solution to Exercise 1.7.
In each case, given 𝑓 : 𝑅→ 𝑆, we canfind the𝑋-component𝑋 𝑓

: 𝑋𝑆 → 𝑋𝑅 of thenatural transformation

y 𝑓 : y𝑆 → y𝑅 by applying Proposition 1.4, which says that 𝑋 𝑓
sends each 𝑔 : 𝑆→ 𝑋 to 𝑓 # 𝑔 : 𝑅→ 𝑋.

1. Here 𝑋 id5
: 𝑋5 → 𝑋5

is the identity function.

2. If 𝑓 : 2→ 1 is the unique function, then 𝑋 𝑓
: 𝑋1 → 𝑋2

sends each 𝑔 ∈ 𝑋 (i.e. function 𝑔 : 1→ 𝑋)

to the function that maps both elements of 2 to 𝑔. We can think of 𝑋 𝑓
as the diagonal 𝑋 → 𝑋×𝑋.

3. If 𝑓 : 1→ 2 sends 1 ↦→ 1, then 𝑋 𝑓
: 𝑋2 → 𝑋1

sends each 𝑔 : 2→ 𝑋 to 𝑔(1), viewed as a function

1→ 𝑋. We can think of 𝑋 𝑓
as the left projection 𝑋 × 𝑋 → 𝑋.

4. If 𝑓 : 1→ 2 sends 1 ↦→ 2, then 𝑋 𝑓
: 𝑋2 → 𝑋1

sends each 𝑔 : 2→ 𝑋 to 𝑔(2), viewed as a function

1→ 𝑋. We can think of 𝑋 𝑓
as the right projection 𝑋 × 𝑋 → 𝑋.

5. Here 𝑋 𝑓
: 𝑋5 → 𝑋0 � 1 is the unique function.

6. If 𝑓 : N → N sends 𝑛 ↦→ 𝑛 + 1, then 𝑋 𝑓
: 𝑋N → 𝑋N

sends each 𝑔 : N → 𝑋 to the function

ℎ : N → 𝑋 defined by ℎ(𝑛) B 𝑔(𝑛 + 1) for all 𝑛 ∈ N. We can think of 𝑋 𝑓
as removing the

first term of an infinite sequence of elements (𝑔(0), 𝑔(1), 𝑔(2), . . .) of 𝑋 to obtain a new sequence

(𝑔(1), 𝑔(2), 𝑔(3), . . .).

Solution to Exercise 1.8.
1. The fact that yid𝑆

: y𝑆 → y𝑆 is the identity is just a generalization of Exercise 1.7 #1. For any set

𝑋, the 𝑋-component 𝑋 id𝑆
: 𝑋𝑆 → 𝑋𝑆 of yid𝑆

sends each ℎ : 𝑆 → 𝑋 to id𝑆 # ℎ = ℎ, so 𝑋 id𝑆
is the

identity natural transformation on 𝑋𝑆 . Hence yid𝑆
is the identity on y𝑆 .

2. Fix 𝑓 : 𝑅→ 𝑆 and 𝑔 : 𝑆→ 𝑇; we wish to show that y𝑔 # y 𝑓 = y 𝑓 #𝑔 . It suffices to show componen-

twise that 𝑋𝑔 # 𝑋 𝑓 = 𝑋 𝑓 #𝑔
for every set 𝑋. Indeed, 𝑋𝑔

sends each ℎ : 𝑇 → 𝑋 to 𝑔 # ℎ; then 𝑋 𝑓

sends 𝑔 # ℎ to 𝑓 # 𝑔 # ℎ = 𝑋 𝑓 #𝑔(ℎ).

Solution to Exercise 1.12.
1. To check that 𝑋𝑆 → 𝐹(𝑋) is natural in 𝑋, we verify that the naturality square

𝑋𝑆 𝑌𝑆

𝐹(𝑋) 𝐹(𝑌)

ℎ𝑆

𝐹(−)(𝑎) 𝐹(−)(𝑎)

𝐹(ℎ)

commutes for all ℎ : 𝑋 → 𝑌. The top map ℎ𝑆 sends any 𝑔 : 𝑆→ 𝑋 to 𝑔 # ℎ (Definition 1.1), which

is then sent to 𝐹(𝑔 # ℎ)(𝑎) by the right map. Meanwhile, the left map sends 𝑔 to 𝐹(𝑔)(𝑎), which is

then sent to 𝐹(ℎ)(𝐹(𝑔)(𝑎)) by the bottom map. So by the functoriality of 𝐹, the square commutes.

2. We show that the maps 𝑚 ↦→ 𝑚𝑆(id𝑆) and 𝑎 ↦→ 𝑚𝑎
defined in the proof of Lemma 1.10 are

mutually inverse. First, we show that for any natural transformation 𝑚 : y𝑆 → 𝐹, we have

𝑚𝑚𝑆(id𝑆) = 𝑚. Given a set𝑋, the𝑋-component of𝑚𝑚𝑆(id𝑆)
sends each 𝑔 : 𝑆→ 𝑋 to 𝐹(𝑔)(𝑚𝑆(id𝑆));

it suffices to show that this is alsowhere the𝑋-component of𝑚 sends 𝑔. Indeed, by the naturality

of 𝑚, the square

𝑆𝑆 𝑋𝑆

𝐹(𝑆) 𝐹(𝑋)

𝑔𝑆

𝑚𝑆 𝑚𝑋

𝐹(𝑔)

commutes, so in particular, following id𝑆 ∈ 𝑆𝑆 around this diagram, we have

𝐹(𝑔)(𝑚𝑆(id𝑆)) = 𝑚𝑋 (𝑔𝑆(id𝑆)) = 𝑚𝑋 (id𝑆 # 𝑔) = 𝑚𝑋 (𝑔). (1.43)

In the other direction, we show that for any 𝑎 ∈ 𝐹(𝑆), we have 𝑚𝑎
𝑆
(id𝑆) = 𝑎: by construction,

𝑚𝑎
𝑆

: 𝑆𝑆 → 𝐹(𝑆) sends id𝑆 to 𝐹(id𝑆)(𝑎) = 𝑎.

20 CHAPTER 1. REPRESENTABLE FUNCTORS FROM THE CATEGORY OF SETS

3. It suffices to show that given functors 𝐹, 𝐺 : Set→ Set and a natural transformation 𝛼 : 𝐹 → 𝐺,

the naturality square

SetSet(y𝑆 , 𝐹) 𝐹(𝑆)

SetSet(y𝑆 , 𝐺) 𝐺(𝑆)

−#𝛼

∼

𝛼𝑆

∼

commutes. The top map sends any 𝑚 : y𝑆 → 𝐹 to 𝑚𝑆(id𝑆), which in turn is sent by the right map

to 𝛼𝑆(𝑚𝑆(id𝑆)) = (𝑚 # 𝛼)𝑆(id𝑆). This is also where the bottom map sends 𝑚 # 𝛼, so the square

commutes.

4. It suffices to show that given a function 𝑔 : 𝑆→ 𝑋, the naturality square

SetSet(y𝑆 , 𝐹) 𝐹(𝑆)

SetSet(y𝑋 , 𝐹) 𝐹(𝑋)

y𝑔#−

∼

𝐹(𝑔)
∼

commutes. The left map sends any 𝑚 : y𝑆 → 𝐹 to y𝑔 # 𝑚, which is sent by the bottom map to

(y𝑔 # 𝑚)𝑋 (id𝑋) = 𝑚𝑋 (𝑋𝑔(id𝑋)) = 𝑚𝑋 (𝑔 # id𝑋) = 𝑚𝑋 (𝑔). Meanwhile, the top map sends 𝑚 to

𝑚𝑆(id𝑆), which is sent by the right map to 𝐹(𝑔)(𝑚𝑆(id𝑆)). So the square commutes by (1.43).

5. To show that SetSet(y𝑆 , y𝑇) � 𝑆𝑇 , just take 𝐹 B y𝑇 in Lemma 1.10 so that 𝐹(𝑆) � 𝑆𝑇 .

Solution to Exercise 1.17.
1. To show that 𝐼 �

∑
𝑖∈𝐼 1, observe that 𝑥 ∈ 1 = {1} if and only if 𝑥 = 1, so

∑
𝑖∈𝐼 1 = {(𝑖 , 1) | 𝑖 ∈ 𝐼}.

Then the function 𝐼 → ∑
𝑖∈𝐼 1 that sends each 𝑖 ∈ 𝐼 to (𝑖 , 1) is clearly an isomorphism.

2. To show that 1 �
∏
𝑖∈𝐼 1, it suffices to show that there is a unique dependent function 𝑓 : (𝑖 ∈

𝐼) → 1. As 1 = {1}, such a function 𝑓 must always send 𝑖 ∈ 𝐼 to 1. This uniquely characterizes 𝑓 ,

so there is indeed only one such dependent function.

3. Yes: since 𝐼 is empty, there are no 𝑖 ∈ 𝐼. So it is true that 𝑋𝑖 = 1 holds whenever 𝑖 ∈ 𝐼 holds,
because 𝑖 ∈ 𝐼 never holds. We say that this sort of statement is vacuously true.

4. As 𝐼 = 0 = ∅, we have

∑
𝑖∈∅ 𝑋𝑖 =

∑
𝑖∈𝐼 1 � 𝐼 = 0, where the equation on the left follows from #3

and the isomorphism in the middle follows from #1.

5. As 𝐼 = ∅, we have

∏
𝑖∈∅ 𝑋𝑖 =

∏
𝑖∈𝐼 1 � 1, where the equation on the left follows from #3 and the

isomorphism on the right follows from #2.

Solution to Exercise 1.19.
1. Any function ℎ :

∑
𝑖∈𝐼 𝑋𝑖 → 𝑌 for which 𝜄 𝑗 # ℎ = 𝑔 𝑗 for all 𝑗 ∈ 𝐼 must satisfy ℎ(𝑗 , 𝑥) = ℎ(𝜄 𝑗(𝑥)) =

𝑔 𝑗(𝑥) for all 𝑗 ∈ 𝐼 and 𝑥 ∈ 𝑋𝑗 . This uniquely characterizes ℎ, so if we define ℎ(𝑗 , 𝑥) B 𝑔 𝑗(𝑥) we

are done.

2. Any function ℎ : 𝑌 → ∏
𝑖∈𝐼 𝑋𝑖 for which ℎ # 𝜋𝑗 = 𝑔 𝑗 for all 𝑗 ∈ 𝐼 must satisfy ℎ(𝑦)𝑗 = 𝜋𝑗(ℎ(𝑦)) =

𝑔 𝑗(𝑦) for all 𝑦 ∈ 𝑌 and 𝑗 ∈ 𝐼. This uniquely characterizes ℎ(𝑦) and thus ℎ, so if we define

ℎ(𝑦) : (𝑖 ∈ 𝐼) → 𝑋𝑖 to be the dependent function given by 𝑖 ↦→ 𝑔𝑖(𝑦)we are done.

Solution to Exercise 1.21.
1. It suffices to show that the following square, where the verticalmaps are the inclusions, commutes

for all 𝑗 ∈ 𝐼:

𝑋𝑗 𝑌𝑗

∑
𝑖∈𝐼 𝑋𝑖

∑
𝑖∈𝐼 𝑌𝑖

𝜄 𝑗

𝑓𝑗

𝜄′
𝑗∑

𝑖∈𝐼 𝑓𝑖

Given 𝑥 ∈ 𝑋𝑗 , the left inclusion map sends 𝑥 to (𝑗 , 𝑥), which the bottom sum of maps sends to

(𝑗 , 𝑓𝑗(𝑥)). Meanwhile, the top map sends 𝑥 to 𝑓𝑗(𝑥), which the right inclusion map again sends to

(𝑗 , 𝑓𝑗(𝑥)).

1.6. EXERCISE SOLUTIONS 21

2. It suffices to show that the following square, where the vertical maps are the projections, com-

mutes for all 𝑗 ∈ 𝐼: ∏
𝑖∈𝐼 𝑋𝑖

∏
𝑖∈𝐼 𝑌𝑖

𝑋𝑗 𝑌𝑗

𝜋𝑗

∏
𝑖∈𝐼 𝑓𝑖

𝜋′
𝑗

𝑓𝑗

Given 𝑔 : (𝑖 ∈ 𝐼) → 𝑋𝑖 in
∏
𝑖∈𝐼 𝑋𝑖 , the top product of maps sends 𝑔 to 𝑓 ◦ 𝑔, which the right

projection map sends to 𝑓𝑗(𝑔(𝑗)). Meanwhile, the left projection map sends 𝑔 to 𝑔(𝑗), which the

bottom map again sends to 𝑓𝑗(𝑔(𝑗)).

Solution to Exercise 1.22.
1. The second projection 𝜋

2
(𝑖 , 𝑥) = 𝑥 sends each pair 𝑝 B (𝑖 , 𝑥) ∈ ∑

𝑖∈𝐼 𝑋𝑖 to 𝑥, an element of 𝑋𝑖 .

Note that we can write 𝑖 in terms of 𝑝 as 𝜋
1
(𝑝). This allows us to write the signature of 𝜋

2
as

𝜋
2

: (𝑝 ∈ ∑
𝑖∈𝐼 𝑋𝑖) → 𝑋𝜋1(𝑝).

2. Let 𝑆 := {𝑠 : 𝐼 → ∑
𝑖∈𝐼 𝑋𝑖 | 𝑠 # 𝜋

1
= id𝐼} be the set of sections of 𝜋

1
. To show that

∏
𝑖∈𝐼 𝑋𝑖 � 𝑆,

we will exhibit maps in either direction and show that they are mutually inverse. For each

𝑓 : (𝑖 ∈ 𝐼) → 𝑋𝑖 in
∏
𝑖∈𝐼 𝑋𝑖 , we have 𝑓 (𝑖) ∈ 𝑋𝑖 for 𝑖 ∈ 𝐼, sowe can define a function 𝑠 𝑓 : 𝐼 → ∑

𝑖∈𝐼 𝑋𝑖
that sends 𝑖 ↦→ (𝑖 , 𝑓 (𝑖)). Then 𝜋

1
(𝑠 𝑓 (𝑖)) = 𝜋

1
(𝑖 , 𝑓 (𝑖)) = 𝑖, so 𝑠 𝑓 is a section of 𝜋

1
. Hence 𝑓 ↦→ 𝑠 𝑓 is

a map

∏
𝑖∈𝐼 𝑋𝑖 → 𝑆.

In the other direction, for each section 𝑠 : 𝐼 → ∑
𝑖∈𝐼 𝑋𝑖 wehave𝜋

1
(𝑠(𝑖)) = 𝑖 for 𝑖 ∈ 𝐼, sowe canwrite

𝑠(𝑖) as an ordered pair (𝑖 ,𝜋
2
(𝑠(𝑖)))with 𝜋

2
(𝑠(𝑖)) ∈ 𝑋𝑖 . Hence we can define a dependent function

𝑓𝑠 : (𝑖 ∈ 𝐼) → 𝑋𝑖 sending 𝑖 ↦→ 𝜋
2
(𝑠(𝑖)). Then 𝑠 ↦→ 𝑓𝑠 is a map 𝑆 → ∏

𝑖∈𝐼 𝑋𝑖 . By construction

𝑠 𝑓𝑠 (𝑖) = (𝑖 , 𝑓𝑠 (𝑖)) = (𝜋1
(𝑠(𝑖)),𝜋

2
(𝑠(𝑖))) = 𝑠(𝑖) and 𝑓𝑠 𝑓 (𝑖) = 𝜋

2
(𝑠 𝑓 (𝑖)) = 𝜋

2
(𝑖 , 𝑓 (𝑖)) = 𝑓 (𝑖), so these

maps are mutually inverse.

Solution to Exercise 1.25.
1. Here are the instructions for choosing an element of 𝐵 as a nested list.

To choose an element of 𝐵:

1. for each element 𝑖 ∈ 𝐼:
1.1. choose an element 𝑗 ∈ 𝐽(𝑖);
1.2. for each element 𝑘 ∈ 𝐾(𝑖 , 𝑗):
1.2.1. choose an element of 𝑋(𝑖 , 𝑗 , 𝑘).

2. Given 𝐼 B {1, 2}, 𝐽(1) B { 𝑗}, 𝐽(2) B { 𝑗 , 𝑗′}, 𝐾(1, 𝑗) B {𝑘
1
, 𝑘

2
}, 𝐾(2, 𝑗) B {𝑘

1
}, 𝐾(2, 𝑗′) B {𝑘′},

and 𝑋(𝑖 , 𝑗 , 𝑘) B {𝑥, 𝑦} for all 𝑖 , 𝑗 , 𝑘, our goal is to count the number of elements in 𝐵. To compute

the cardinality of 𝐵, we can use the fact that the cardinality of a sum (resp. product) is the sum

(resp. product) of the cardinalities of the summands (resp. factors). So

|𝐵| =
∏
𝑖∈𝐼

∑
𝑗∈𝐽(𝑖)

∏
𝑘∈𝐾(𝑖 , 𝑗)

|𝑋(𝑖 , 𝑗 , 𝑘)|

=

∏
𝑖∈{1,2}

∑
𝑗∈𝐽(𝑖)

∏
𝑘∈𝐾(𝑖 , 𝑗)

2

=
©­«

∑
𝑗∈𝐽(1)

2
|𝐾(1, 𝑗)|ª®¬ ©­«

∑
𝑗∈𝐽(2)

2
|𝐾(2, 𝑗)|ª®¬

=

(
2

2

) (
2

1 + 2
1

)
= 16.

3. Here are three of the elements of 𝐵 (you may have written down others):

• (1 ↦→ (𝑗 , 𝑘
1
↦→ 𝑥, 𝑘

2
↦→ 𝑦), 2 ↦→ (𝑗′, 𝑘′ ↦→ 𝑥))

• (1 ↦→ (𝑗 , 𝑘
1
↦→ 𝑦, 𝑘

2
↦→ 𝑦), 2 ↦→ (𝑗 , 𝑘

1
↦→ 𝑦))

• (1 ↦→ (𝑗 , 𝑘
1
↦→ 𝑦, 𝑘

2
↦→ 𝑥), 2 ↦→ (𝑗′, 𝑘′ ↦→ 𝑦))

22 CHAPTER 1. REPRESENTABLE FUNCTORS FROM THE CATEGORY OF SETS

Solution to Exercise 1.35.
We wish to show that 𝑋 × (𝑌 + 𝑍) � 𝑋 × 𝑌 + 𝑋 × 𝑍 using (1.32). On the left hand side, we are taking

a 2-fold product: a single object times a 2-fold sum. So we should let 𝐼 B 2 and let 𝐽(1) B 1, with

𝑋(1, 1) B 𝑋; and 𝐽(2) B 2, with 𝑋(2, 1) B 𝑌 and 𝑋(2, 2) B 𝑍. Then

𝑋 × (𝑌 + 𝑍) �
∏
𝑖∈2

∑
𝑗∈𝐽(𝑖)

𝑋(𝑖 , 𝑗) �
∑

𝑗∈∏𝑖∈2 𝐽(𝑖)

∏
𝑖∈2

𝑋(𝑖 , 𝑗(𝑖)) �
∑

𝑗∈∏𝑖∈2 𝐽(𝑖)
𝑋(1, 𝑗(1)) × 𝑋(2, 𝑗(2)),

where the middle isomorphism follows from (1.32). The set

∏
𝑖∈2 𝐽(𝑖) contains two functions: (1 ↦→

1, 2 ↦→ 1) and (1 ↦→ 1, 2 ↦→ 2). So we can rewrite the right hand side as

𝑋(1, 1) × 𝑋(2, 1) + 𝑋(1, 1) × 𝑋(2, 2) � 𝑋 × 𝑌 + 𝑋 × 𝑍.

Solution to Exercise 1.36.
1. By applying (1.32), we can rewrite ∑

𝑖∈𝐼

∏
𝑗∈𝐽(𝑖)

∑
𝑘∈𝐾(𝑖 , 𝑗)

𝑋(𝑖 , 𝑗 , 𝑘)

as ∑
𝑖∈𝐼

∑
𝑘∈∏𝑗∈𝐽 𝐾(𝑖 , 𝑗)

∏
𝑗∈𝐽(𝑖)

𝑋(𝑖 , 𝑗 , 𝑘 𝑗).

2. By applying (1.32), we can rewrite ∏
𝑖∈𝐼

∑
𝑗∈𝐽(𝑖)

∏
𝑘∈𝐾(𝑖 , 𝑗)

𝑋(𝑖 , 𝑗 , 𝑘)

as ∑
𝑗∈∏𝑖∈𝐼 𝐽(𝑖)

∏
𝑖∈𝐼

𝑋(𝑖 , 𝑗𝑖)
∏

𝑘∈𝐾(𝑖 , 𝑗𝑖)
𝑋(𝑖 , 𝑗𝑖 , 𝑘).

3. By applying (1.32), we can rewrite ∏
𝑖∈𝐼

∏
𝑗∈𝐽(𝑖)

∑
𝑘∈𝐾(𝑖 , 𝑗)

𝑋(𝑖 , 𝑗 , 𝑘)

once as ∏
𝑖∈𝐼

∑
𝑘∈∏𝑗∈𝐽 𝐾(𝑖 , 𝑗)

∏
𝑗∈𝐽(𝑖)

𝑋(𝑖 , 𝑗 , 𝑘 𝑗)

and then again as ∑
¯̄𝑘∈∏𝑖∈𝐼

∏
𝑗∈𝐽 𝐾(𝑖 , 𝑗)

∏
𝑖∈𝐼

∏
𝑗∈𝐽(𝑖)

𝑋(𝑖 , 𝑗 , ¯̄𝑘(𝑖 , 𝑗)).

Solution to Exercise 1.41.
It suffices to show that for all 𝑋 ∈ Set, there is an isomorphism∑

𝑎∈𝐴
𝐹(𝑋) � (𝐴𝐹)(𝑋)

natural in 𝑋. The left hand side is the set {(𝑎, 𝑠) | 𝑎 ∈ 𝐴 and 𝑠 ∈ 𝐹(𝑋)} � 𝐴 × 𝐹(𝑋), while the right

hand side is also naturally isomorphic to the set 𝐴(𝑋) × 𝐹(𝑋) � 𝐴 × 𝐹(𝑋). Alternatively, since SetSet

is completely distributive by Proposition 1.40, the result also follows from (1.32), with 𝐼 B 2, 𝐽(1) B
𝐴, 𝐽(2) B 1, 𝑋(1, 𝑎) B 1 (the constant functor) for 𝑎 ∈ 𝐴, and 𝑋(2, 1) B 𝐹:

𝐴𝐹 �

(∑
𝑎∈𝐴

1

)
𝐹 �

∏
𝑖∈2

∑
𝑗∈𝐽(𝑖)

𝑋(𝑖 , 𝑗) �
∑

𝑗∈∏𝑖∈2 𝐽(𝑖)

∏
𝑖∈2

𝑋(𝑖 , 𝑗(𝑖)) �
∑
𝑎∈𝐴

1 × 𝐹 �
∑
𝑎∈𝐴

𝐹.

Here we used the fact that 𝐴 �
∑
𝑎∈𝐴 1 from Exercise 1.17 #1 (there we proved the statement for sets,

but the same statement for the corresponding constant set-valued functors follows immediately).

1.6. EXERCISE SOLUTIONS 23

Solution to Exercise 1.42.
1. It suffices to show that for all 𝑋 ∈ Set, there is an isomorphism∏

𝑖∈𝐼
y(𝑋) � y𝐼 (𝑋).

natural in 𝑋. We have that y(𝑋) � 𝑋 and that y𝐼 (𝑋) � 𝑋 𝐼 . So both sides are naturally isomorphic

to the set of functions 𝐼 → 𝑋.

2. It suffices to show that for all 𝑋 ∈ Set, there is an isomorphism∏
𝑖∈𝐼

y𝐴(𝑋) � y𝐼𝐴(𝑋).

natural in 𝑋. We have that y𝐴(𝑋) � 𝑋𝐴, so ∏
𝑖∈𝐼 y𝐴(𝑋) � (𝑋𝐴)𝐼 , and that y𝐼𝐴(𝑋) � 𝑋 𝐼𝐴. By

currying, both sides are naturally isomorphic to the set of functions 𝐼 × 𝐴→ 𝑋.

Chapter 2

Polynomial functors

In this chapter, we will formally introduce our objects of study: polynomial functors.

In addition to the set-theoretic perspective, we will present several more concrete ways

to think about polynomials to aid intuition that we will use throughout the rest of

this book. We keep the mathematical content of this chapter fairly light, preferring

to solidify our conceptual understanding of polynomials, before advancing to deeper

categorical content.

2.1 Introducing polynomial functors

Definition 2.1 (Polynomial functor). A polynomial functor (or simply polynomial) is a

functor 𝑝 : Set→ Set such that there exists a set 𝐼, an 𝐼-indexed family of sets (𝑝[𝑖])𝑖∈𝐼 ,
and an isomorphism

𝑝 �
∑
𝑖∈𝐼

y𝑝[𝑖]

to the corresponding 𝐼-indexed sum of representables.

So, up to isomorphism, a polynomial functor is just a sum of representables.

Remark 2.2. Given sets 𝐼 , 𝐴 ∈ Set, it follows from Exercise 1.41 that we have an isomor-

phism of polynomials ∑
𝑖∈𝐼

y𝐴 � 𝐼y𝐴.

So when we write down a polynomial, we will often combine identical representable

summands y𝐴 by writing them in the form 𝐼y𝐴. In particular, the constant functor 1
is a representable functor (1 � y0

), so every constant functor 𝐼 is a polynomial functor:

𝐼 �
∑
𝑖∈𝐼 1.

Exercise 2.3 (Solution here). Consider the polynomial 𝑞 B y8 + 4y.
1. Does the polynomial 𝑞 have a representable summand y2

?

25

26 CHAPTER 2. POLYNOMIAL FUNCTORS

2. Does the polynomial 𝑞 have a representable summand y?

3. Does the polynomial 𝑞 have a representable summand 4y? ♦

Example 2.4. Consider the polynomial 𝑝 B y2 + 2y + 1. It denotes a functor Set→ Set;
where does this functor send the set𝑋 B {𝑎, 𝑏}? To be precise, wewill rather verbosely

say that 𝐼 B 4 and

𝑝[1] B 2, 𝑝[2] B 1, 𝑝[3] B 1, and 𝑝[4] B 0

so that 𝑝 �
∑
𝑖∈𝐼 y

𝑝[𝑖]
. Now we have

𝑝(𝑋) �
∑
𝑖∈4
{𝑎, 𝑏}𝑝[𝑖]

= {𝑎, 𝑏}2 + {𝑎, 𝑏}1 + {𝑎, 𝑏}1 + {𝑎, 𝑏}0

� {(1, (𝑎, 𝑎)), (1, (𝑎, 𝑏)), (1, (𝑏, 𝑎)), (1, (𝑏, 𝑏)), (2, (𝑎)), (2, (𝑏)), (3, (𝑎)), (3, (𝑏)), (4, ())}.

Above, we denote each function 𝑓 : 𝑝[𝑖] → {𝑎, 𝑏} in the set {𝑎, 𝑏}𝑝[𝑖] by the 𝑛-tuple

(𝑓 (1), . . . , 𝑓 (𝑛)) whenever 𝑝[𝑖] B n. For ease of reading, we may drop the parentheses

around these 𝑛-tuples to obtain the equivalent set

𝑝(𝑋) � {(1, 𝑎, 𝑎), (1, 𝑎, 𝑏), (1, 𝑏, 𝑎), (1, 𝑏, 𝑏), (2, 𝑎), (2, 𝑏), (3, 𝑎), (3, 𝑏), (4)}.

As wemight expect, the set 𝑝(𝑋) contains 2
2+ 2+ 2+ 1 = 9 elements, equal to the value

obtained when we plug |𝑋| = 2 into the original polynomial 𝑝 when we interpret its

coefficients and exponents as numbers instead of sets.

In general, a polynomial 𝑝 B
∑
𝑖∈𝐼 y

𝑝[𝑖]
applied to a set 𝑋 expands to∑

𝑖∈𝐼
𝑋𝑝[𝑖]

and can be thought of as the set of all pairs comprised of an element of 𝐼 and a function

𝑝[𝑖] → 𝑋 or, equivalently, a 𝑝[𝑖]-tuple of elements of 𝑋.

Exercise 2.5 (Solution here). In the verbose style of Example 2.4, write out all the

elements of 𝑝(𝑋) for 𝑝 and 𝑋 as follows (if there are infinitely many, denote the set 𝑝(𝑋)
some other way):

1. 𝑝 B y3
and 𝑋 B {4, 9}.

2. 𝑝 B 3y2 + 1 and 𝑋 B {𝑎}.
3. 𝑝 B 0 and 𝑋 B N.

4. 𝑝 B 4 and 𝑋 B N.

5. 𝑝 B y and 𝑋 B N. ♦

2.1. INTRODUCING POLYNOMIAL FUNCTORS 27

The following proposition shows how the polynomial functor 𝑝 itself determines

the set 𝐼 over which we sum up representables to obtain 𝑝.

Proposition 2.6. Let 𝑝 B
∑
𝑖∈𝐼 y

𝑝[𝑖]
be an arbitrary polynomial functor. Then 𝐼 � 𝑝(1),

so there is an isomorphism of functors

𝑝 �
∑
𝑖∈𝑝(1)

y𝑝[𝑖]. (2.7)

Proof. We need to show that 𝐼 � 𝑝(1); the latter claim follows directly. In Exercise 1.17

#1, we showed that 𝐼 �
∑
𝑖∈𝐼 1, so it suffices to show that (y𝑝[𝑖])(1) � 1 for all 𝑖 ∈ 𝐼.

Indeed, 1𝑝[𝑖] � 1 because there is a unique function 𝑝[𝑖] → 1 for each 𝑝[𝑖]. □

We can draw an analogy between Proposition 2.6 and evaluating 𝑝(1) for a polynomial

𝑝 from high school algebra, which yields the sum of the coefficients of 𝑝. The notation

in (2.7) will be howwe denote arbitrary polynomials from now on, and we will use the

following terms to denote the sets 𝑝(1) and 𝑝[𝑖] for 𝑖 ∈ 𝑝(1) on which a polynomial 𝑝

depends.

Definition 2.8 (Position and direction). Given a polynomial functor

𝑝 �
∑
𝑖∈𝑝(1)

y𝑝[𝑖] ,

we call an element 𝑖 ∈ 𝑝(1) a position of 𝑝 or a 𝑝-position, and we call an element 𝑎 ∈ 𝑝[𝑖]
a direction of 𝑝 at 𝑖 or a 𝑝[𝑖]-direction. We call 𝑝(1) the position-set of 𝑝 and 𝑝[𝑖] the
direction-set of 𝑝 at 𝑖.

Note that the position-set 𝑝(1) along with the 𝑝(1)-indexed family of direction-sets

𝑝[−] : 𝑝(1) → Set uniquely characterize a polynomial 𝑝 up to isomorphism. Through-

out this book, we will often specify a polynomial by giving its positions and its direc-

tions at each position.

Exercise 2.9 (Solution here). We saw in Proposition 2.6 how to interpret the position-

set 𝑝(1) of a polynomial 𝑝, e.g. 𝑝 B y3+3y2+4, as the sum of the coefficients of 𝑝: here

𝑝(1) � 1 + 3 + 4 � 8. How might you interpret 𝑝(0)? ♦

As a functor Set → Set, a polynomial should act on functions as well as on sets.

Below, we explain how.

Proposition 2.10. Let 𝑝 be an arbitrary polynomial functor, which our notation lets us

write as 𝑝 �
∑
𝑖∈𝑝(1) y

𝑝[𝑖]
, and let 𝑓 : 𝑋 → 𝑌 be an arbitrary function. Then 𝑝(𝑓) : 𝑝(𝑋) →

𝑝(𝑌) sends each (𝑖 , 𝑔) ∈ 𝑝(𝑋), with 𝑖 ∈ 𝑝(1) and 𝑔 : 𝑝[𝑖] → 𝑋, to (𝑖 , 𝑔 # 𝑓) in 𝑝(𝑌).

28 CHAPTER 2. POLYNOMIAL FUNCTORS

Proof. For each 𝑖 ∈ 𝑝(1), by Definition 1.1, the functor y𝑝[𝑖] sends 𝑓 to the function

𝑋𝑝[𝑖] → 𝑌𝑝[𝑖] mapping each 𝑔 : 𝑝[𝑖] → 𝑋 to 𝑔 # 𝑓 : 𝑝[𝑖] → 𝑌. So the sum of these

functors over 𝑖 ∈ 𝑝(1) sends each (𝑖 , 𝑔) ∈ 𝑝(𝑋) to (𝑖 , 𝑔 # 𝑓) ∈ 𝑝(𝑌). □

Example 2.11. Suppose 𝑝 B y2 + 2y + 1. Let 𝑋 B {𝑎1 , 𝑎2 , 𝑏1} and 𝑌 B {𝑎, 𝑏, 𝑐}, and
let 𝑓 : 𝑋 → 𝑌 be the function sending 𝑎1 , 𝑎2 ↦→ 𝑎 and 𝑏1 ↦→ 𝑏. The induced function

𝑝(𝑓) : 𝑝(𝑋) → 𝑝(𝑌), according to Proposition 2.10, is shown below:

(1, 𝑎1 , 𝑎1) (1, 𝑎1 , 𝑎2) (1, 𝑎1 , 𝑏1) (1, 𝑎, 𝑎) (1, 𝑎, 𝑏) (1, 𝑎, 𝑐)

(1, 𝑎2 , 𝑎1) (1, 𝑎2 , 𝑎2) (1, 𝑎2 , 𝑏1) (1, 𝑏, 𝑎) (1, 𝑏, 𝑏) (1, 𝑏, 𝑐)

(1, 𝑏1 , 𝑎1) (1, 𝑏1 , 𝑎2) (1, 𝑏1 , 𝑏1) (1, 𝑐, 𝑎) (1, 𝑐, 𝑏) (1, 𝑐, 𝑐)

(2, 𝑎1) (2, 𝑎2) (2, 𝑏1) (2, 𝑎) (2, 𝑏) (2, 𝑐)

(3, 𝑎1) (3, 𝑎2) (3, 𝑏1) (3, 𝑎) (3, 𝑏) (3, 𝑐)

(4) (4)

Exercise 2.12 (Solution here). Let 𝑝 B y2 + y. Choose a function 𝑓 : 1→ 2 and write

out the induced function 𝑝(𝑓) : 𝑝(1) → 𝑝(2). ♦

2.2 Special classes of polynomial functors

Here we describe several special classes of polynomials. We have already defined two

such special classes: representables and constants. A representable polynomial (or simply

a representable) is a representable functor, i.e. a polynomial functor isomorphic to y𝐴

for some set 𝐴. Meanwhile, a constant polynomial (or simply a constant) is a constant

functor, i.e. a polynomial functor isomorphic to 𝐼, interpreted as a functor, for some set

𝐼.

Exercise 2.13 (Solution here).
1. Characterize when a polynomial 𝑝 is representable in terms of its positions and/or

its directions.

2. Characterize when a polynomial 𝑝 is constant in terms of its positions and/or its

directions. ♦

2.3. INTERPRETING POSITIONS AND DIRECTIONS 29

Like constants, the other two special classes of polynomials we define here will

share their names with their algebraic analogues. Throughout, let 𝑝 �
∑
𝑖∈𝑝(1) y

𝑝[𝑖]
be a

polynomial functor.

Definition 2.14 (Linear, affine). We say that 𝑝 is lineara
if 𝑝 � 𝐼y for some set 𝐼.

a
Unlike linear polynomials from high school algebra (which are really affine linear functions rather

than necessarily linear functions), our linear polynomial functors have no (nonzero) constant terms: they

always send 0 to 0. A polynomial is affine if it is of the form 𝐴y + 𝐵, though we will not use this concept

much in the book.

Definition 2.15 (Monomial). We say that 𝑝 is a monomial if 𝑝 � 𝐼y𝐴 for sets 𝐼 and 𝐴.

Example 2.16. Every constant polynomial 𝐼 � 𝐼y0
is a monomial, as is every linear

polynomial 𝐼y � 𝐼y1
and every representable y𝐴 � 1y𝐴. On the other hand, there

are monomials that are neither constant, linear, nor representable, such as 2y2
or NyR.

Moreover, there are polynomials that are not monomials, such as y4 + 3 or

∑
𝑛∈N yn

.

There is only one polynomial that is both constant and linear, namely 0 � 0y.
Similarly, there is only one polynomial (up to isomorphism) that is both constant and

representable, namely1 � y0
. Finally, there is onlyonepolynomial (up to isomorphism)

that is both linear and representable, namely the identity functor 1y � y � y1
.

In general, every set 𝑆 has a corresponding constant polynomial 𝑆, linear polynomial

𝑆y, and representable polynomial y𝑆; and as long as |𝑆| ≥ 2, these are all distinct.

Exercise 2.17 (Solution here).
1. Characterize when a polynomial 𝑝 is linear in terms of its positions and/or its

directions.

2. Characterize when a polynomial 𝑝 is a monomial in terms of its positions and/or

its directions. ♦

Later on in Section 5.1, wewill see howall four of these special classes of polynomials

arise from various adjunctions.

2.3 Interpreting positions and directions

Let usmake an informal digression on howwewill think about positions anddirections

of polynomials in this book. While this section has little mathematical content, the

intuition we build here will guide us as we delve into the deeper theory of polynomials

and their applications to modeling interaction.

Themain idea is that a position is some status thatmay be held, while the directions at
each position are the options available when holding that status. While these positions

and directions may be imagined abstractly, here we give some concrete examples.

30 CHAPTER 2. POLYNOMIAL FUNCTORS

Example 2.18 (Directions as menu options). Consider a representable and thus polyno-

mial functor y𝐴 for a set 𝐴. It has 1 position and the elements of 𝐴 as its directions. We

may think of 𝐴 as a menu of options to choose from.

The menu may consist of dinner options available at a wedding; then the corre-

sponding representable functor could be

y{chicken, beef, vegetarian};

or it may be the menu of a text editor, in which case the representable could be

y{cut, copy, paste}.

In both these cases, there are exactly 3 directions, so there is an isomorphism of

representable functors

y{chicken, beef, vegetarian} � y{cut, copy, paste}.

Similarly, we may interpret the representable y2
as a 2-option menu. Such menus

are ubiquitous in life: yes or no, true or false, heads or tails, 0 or 1. A 1-option menu,

represented by y1 � y, is also familiar as an unavoidable choice, the only option: “sorry,

ya just gotta go through it.” Having no options, represented by y0 � 1, is when you

actually don’t get through it: an impossible decision, a “dead end.”

In contrast, we may interpret the representable y[0,1] as a menu with an infinite

range of options: a slider with one end labeled 0 and the other labeled 1, able to take

on any value in between.

For consistency, we will favor the term “direction” over “option” when referring to

the elements of 𝐴 for a summand y𝐴 of a polynomial. Nevertheless, when we think of

a polynomial’s directions, we will often think of them as options to choose from.

Example 2.18 shows how we may interpret the directions of a single representable

summand as options in a menu. By having multiple representable summands—one

for each position—a polynomial may capture more general scenarios with a range of

possible menus.

Example 2.19 (Modeling with a polynomial). Consider a coin jar with a slot that may

be open or closed. When the slot is open, the jar may accept a penny, a nickel, a dime,

or a quarter—there are 4 options to choose from. When the slot is closed, the jar may

not accept any coins at all—there are 0 options. We may model this scenario with the

polynomial

y{penny, nickel, dime, quarter} + y0 � y4 + 1.

This polynomial has 2 positions, corresponding to the two statuses the slot could take:

open or closed. To delineate these positions, we could take advantage of the fact that

2.4. COROLLA FORESTS 31

every singleton set is isomorphic to 1 and that 1y𝐴 � y𝐴 to rewrite the abovepolynomial

as

{open}y{penny, nickel, dime, quarter} + {closed}y0 � y4 + 1.

Exercise 2.20 (Solution here). Give another example of a real-world scenario that may

be modeled by a polynomial with more than 1 position. ♦

2.4 Corolla forests

We would like to have graphical depictions of our polynomials to make them easy to

visualize. These will take the form of special graphs known as corolla forests. We build

up to defining them as follows.

Our first definition will be familiar to students of graph theory, although we will

add some technical details suited to our purposes.

Definition 2.21 (Rooted tree). A rooted tree is a directed acyclic graph with a distin-

guished vertex called the root such that there exists a unique directed path from the

root to each vertex.

We allow infinitely and even uncountably many vertices and infinitely and even

uncountably many edges incident to each vertex; on the other hand, each pair of

vertices is connected by a (necessarily unique) path of finitely many adjacent edges.

Since all our trees will be rooted, we may refer to them simply as trees—roots are

implied. We will draw our trees with roots at the bottom and other vertices “growing”

upward.

The following terminology will be handy when working with our trees; these terms

should be familiar, or at the very least they should match your intuition.

Definition 2.22 (Rooted path; height). A rooted path is a (directed) path in a rooted tree

from its root to any vertex.

Given a vertex of a rooted tree, its height is the length of (i.e. number of edges in)

the rooted path to that vertex.

In any rooted tree, the root has height 0, the length of the empty rooted path to the

root itself; every neighbor of the root has height 1; every neighbor of a vertex of height

1 either is the root or has height 2; and so forth.

Now we can define a special kind of tree that we will use to depict representable

functors.

32 CHAPTER 2. POLYNOMIAL FUNCTORS

Definition 2.23 (Corolla). A corolla is a rooted tree in which every vertex aside from

the root has height 1. We call these vertices the leaves of the corolla.
The corolla associated to a representable functor y𝐴 for 𝐴 ∈ Set is the corolla whose

leaves are in bĳection with 𝐴.

Example 2.24. Here are the corollas associated to various representables:

•
y1 � y

•
y5

•
y10

•
y20

•
y40

•
y[0,1]

In the example above, the roots are indicated by dots (•), and the leaves are indicated

by arrows (↑). Because the direction-set of the representable is in bĳection with the

leaves of the associated corolla, we can think of each leaf as a direction, so itmakes sense

to draw the leaves as arrows pointing in different directions. Thinking of directions as

menu options like in the previous section, we may view these corollas as mini-decision

trees, indicating all the possible options we could select.

Example 2.25. The corolla associated to y0 � 1 has no leaves: it is the rooted tree

consisting of one vertex—the root—and no edges.

•
y0 � 1

By definition, the root itself is not a leaf, so the corolla above does in fact have 0 leaves.

With no arrows pointing out, it is the corolla associated to a representable with no

directions.

As each representable functor has an associated corolla, each polynomial functor

will have an associated disjoint union of corollas that we call a corolla forest.

Definition 2.26 (Corolla forest). A corolla forest is a disjoint union of corollas.

The corolla forest associated to a polynomial functor 𝑝 �
∑
𝑖∈𝑝(1) y

𝑝[𝑖]
is the disjoint union

of the corollas associated to each representable summand y𝑝[𝑖] of 𝑝. When we draw

the corolla forest associated to 𝑝, we may say that we are drawing 𝑝 as a (corolla) forest.
We call the corollas in this forest corresponding to 𝑝-positions 𝑝-corollas and the leaves

corresponding to 𝑝[𝑖]-directions 𝑝[𝑖]-leaves.

Example 2.27. We may draw 𝑝 B y2 + 2y + 1 as a forest like so:

• • • • (2.28)

Each of the 4 corollas in (2.28) corresponds to one of the 4 representable summands of

2.4. COROLLA FORESTS 33

𝑝. The 4 roots in (2.28) correspond to the 4 positions of 𝑝, and the leaves connected to

each root correspond to the directions at each position. Note that 𝑝 has 1 position with

2 directions, 2 positions with 1 direction each, and 1 position with 0 directions. Hence

(2.28) is the disjoint union of 1 corolla with 2 leaves, 2 corollas with 1 leaf each, and 1

corolla with 0 leaves.

Since 𝑝(1) � 4, we could label the positions of 𝑝 with the elements of 4 = {1, 2, 3, 4}
so that

𝑝[1] = 2, 𝑝[2] = 1, 𝑝[3] = 1, 𝑝[4] = 0.

Then we could give these same labels to the roots in (2.28):

•
1

•
2

•
3

•
4

Similarly, we could label the directions and their corresponding leaves, but we will

reserve leaf labels for another purpose.

Exercise 2.29 (Solution here). Consider the polynomial 𝑝 B 2y3 + 2y + 1.
1. Draw 𝑝 as a corolla forest.

2. How many roots does this forest have?

3. How many positions of 𝑝 do these roots represent?

4. For each 𝑝-corolla, say how many leaves it has.

5. For each 𝑝-position, say how many directions it has. ♦

The position-set or any of the direction-sets of a polynomial may be infinite. This

makes their associated corolla forests impossible to draw precisely, but they may be

approximated. We sketch the polynomial y3 +Ny[0,1] as a forest below.

• • • • · · ·

Exercise 2.30 (Solution here). If you were a suitor choosing the corolla forest you

love, aesthetically speaking, which would strike your interest? Answer by selecting the

associated polynomial:

1. y2 + y + 1
2. y3 + 3y2 + 3y + 1
3. y2

4. y + 1
5. (Ny)N
6. 𝑆y𝑆 for some set 𝑆

7. y100 + y2 + 3y
8. y + 2y4 + 3y9 + 4y16 + · · ·

34 CHAPTER 2. POLYNOMIAL FUNCTORS

9. Your polynomial’s name 𝑝 here.

Any reason for your choice? Draw a sketch of your forest. ♦

Corolla forests help us visualize the positions and directions of polynomials, and

theywill especially come inhandy in thenext chapter, whenwedescribe themorphisms

between our polynomials and how they interact with positions and directions. They

may also depict the elements of a polynomial functor applied to a given set, as follows.

We have seen that for a polynomial 𝑝 and a set 𝑋,

𝑝(𝑋) �
∑
𝑖∈𝑝(1)

𝑋𝑝[𝑖] � {(𝑖 , 𝑓) | 𝑖 ∈ 𝑝(1), 𝑓 : 𝑝[𝑖] → 𝑋}.

So an element of 𝑝(𝑋) is a 𝑝-position 𝑖 along with a function 𝑓 that maps each direction

at 𝑖 to an element of 𝑋. Equivalently, it is a 𝑝-corolla along with a function that maps

each of its leaves to an element of 𝑋. Then to draw an element (𝑖 , 𝑓) ∈ 𝑝(𝑋), we simply

need to draw the 𝑝-corolla corresponding to 𝑖 and label its leaves with elements of 𝑋

according to 𝑓 .

Example 2.31. In Example 2.27, we drew 𝑝 B y2 + 2y + 1 as a corolla forest like so:

•
1

•
2

•
3

•
4

Previously, in Example 2.4, wewrote out all 9 elements of 𝑝 applied to the set𝑋 B {𝑎, 𝑏}
as tuples. We could draw them out instead—an element of 𝑝(𝑋) may be depicted as

one of the four corollas above with each of its leaves labeled with an element of 𝑋:

•
1

𝑎 𝑎

•
1

𝑎 𝑏
•
1

𝑏 𝑎

•
1

𝑏 𝑏
•
2

𝑎

•
2

𝑏
•
3

𝑎

•
3

𝑏
•
4

Throughout this book, we will generally use corolla forests to depict polynomials

with relatively small numbers of positions or directions, where drawing out entire

corolla forests is manageable. Later, we will study how building larger rooted trees

out of these corollas corresponds to conducting various categorical operations on our

polynomials.

2.5 Polyboxes

Before we conclude this chapter, we introduce one more tool for visualizing polynomi-

als whose full power will not be evident until later.

Throughout this book, we may depict a polynomial 𝑝 as a pair of boxes stacked on

top of each other, like so:

𝑝

𝑝(1)
𝑝[−]

2.5. POLYBOXES 35

We call this picture the polyboxes for 𝑝. Think of these boxes as cells in a spreadsheet.

The bottom cell, or the position box, is restricted to values in the set 𝑝(1) (as indicated
by the label to its left)—it must be filled with a 𝑝-position, say 𝑖 ∈ 𝑝(1):

𝑖

𝑝

𝑝(1)
𝑝[−]

The top cell, or the direction box, cannot be filled until the position box below it is.

Once the position box contains a 𝑝-position 𝑖, the direction box must be filled with a

𝑝[𝑖]-direction, say 𝑎 ∈ 𝑝[𝑖]:
𝑎

𝑖

𝑝

𝑝(1)
𝑝[−]

The 𝑝[−] label to the left of the direction box reminds us that the 𝑎 within it is an

element of 𝑝[𝑖], where 𝑖 is the entry in the position box. Once we are accustomed to

polyboxes, we will often drop these reminder labels, so that

𝑎

𝑖

𝑝

serves as a graphical shorthand for the statement “consider a polynomial functor 𝑝

with position 𝑖 ∈ 𝑝(1) and direction 𝑎 ∈ 𝑝[𝑖].”
Viewing polynomials as these restricted two-cell spreadsheets reinforces the idea

that directions are like menu options: imagine a dropdown menu for the direction

box above a filled position box that lists all the directions to choose from at the given

position. Polyboxes also help us conceptualize the possible pairs of positions and

directions of a polynomial whose corolla forest is impractical to draw, as suggested by

the following example.

Example 2.32. Consider the polynomial

𝑝 B
∑
𝑟∈R

y[−|𝑟|,|𝑟|] ,

whose positions are the real numbers and whose directions at position 𝑟 are the real

numbers withmagnitude at most |𝑟|. There is no clear way to draw 𝑝 as a corolla forest,

but we could draw its polyboxes

𝑠

𝑟

𝑝

𝑝(1)
𝑝[−]

36 CHAPTER 2. POLYNOMIAL FUNCTORS

with the condition that 𝑟 and 𝑠 are real numbers satisfying |𝑠| ≤ |𝑟|.

We may also use polyboxes to highlight our special classes of polynomials. When a

position box may only be filled with one possible entry, we shade it in like so:

𝑝 � y𝐴

𝑝(1) � 1
𝐴

The idea is that if there is only one entry that could fill a given box, then it should

come pre-filled—no further choice needs to be made to fill it. Here 𝑝(1) � 1, so 𝑝
is representable; indeed, 𝑝 � y𝐴, where 𝐴 is the set of possible entries for the unfilled

direction box.

Similarly, the polyboxes for a linear polynomial 𝐼y, whose direction-set at each

position is a singleton, can be drawn like so:

𝐼y

𝐼

No matter what fills the position box, there is exactly one entry that could fill the

direction box, so it comes pre-filled. The identity polynomial functor y, which is both

representable and linear, therefore has the following polyboxes:

y

It has exactly one position and exactly one direction, so both its boxes come pre-filled.

Finally, a constant polynomial 𝐼 for some set 𝐼 has empty direction-sets. We indicate

this by coloring its direction box red:

𝐼

𝐼

Because every direction-set is empty, there is nothing that may be written in the di-

rection box. The red suggests a kind of error—the direction box cannot be filled.

The polynomial functor 1, which is both representable and constant, therefore has the

following polyboxes:

1

In the next chapter, we will introduce the morphisms between polynomial functors

and see how their behavior may be depicted using polyboxes.

2.6. SUMMARY AND FURTHER READING 37

2.6 Summary and further reading

In this chapter, we introduced the main objects of study in this book: polynomial
functors, which are sums of representable functors Set→ Set. Wewrite a polynomial 𝑝

as

∑
𝑖∈𝑝(1) y

𝑝[𝑖]
, calling the elements of 𝑝(1) the positions of 𝑝 and the elements of 𝑝[𝑖] the

directions of 𝑝 at position 𝑖. As a polynomial is determined up to isomorphism by its

position-set and direction-sets, we can think of the data of a polynomial as an indexed

family of sets (𝑝[𝑖])𝑖∈𝑝(1).
We highlighted four special classes of polynomials (here 𝐼 and 𝐴 are sets):

• constants 𝐼, whose direction-sets are all empty;

• linear polynomials 𝐼y, whose direction-sets are all singletons;

• representables y𝐴, whose position-sets are singletons;

• monomials 𝐼y𝐴, whose direction-sets all have the same cardinality.

Throughout this book, we will use polynomials to model decision-making agents

that hold positions and take directions from those positions. We can draw apolynomial

𝑝 graphically as a corolla forest, with a corolla (a rooted tree whose non-root vertices are

all leaves) for every 𝑝-position 𝑖 that has a leaf for every 𝑝[𝑖]-direction. We can also

depict a polynomial as a polybox picture, resembling two stacked cells in a spreadsheet,

to be filled in with an element of 𝑖 below and an element of 𝑝[𝑖] above.
There are many fine sources on polynomial functors. Some of the computer science

literature is more relaxed about what a polynomial is. For example, the “coalgebra

community” often defines a polynomial to include finite power sets (see e.g. [Jac17]).

Other computer science communities use the same definition of polynomial, but refer

to it as a container and use differentwords for its positions (they call them “shapes”) and

directions (they call them, rather unfortunately, “positions”). See e.g. [Abb03; AAG05].

But the notion of polynomial functors seems to have originated from André Joyal.

A good introduction to polynomial functors—including an extensive bibliography of

references—can be found in [GK12] and more extensive notes in [Koc]; in particular

the related work section on page 3 provides a nice survey of the field. A reader may

also be interested in the Workshops on Polynomial Functors organized by the Topos

Institute: https://topos.site/p-func-workshop/.

2.7 Exercise solutions
Solution to Exercise 2.3.

1. No, 𝑞 does not have y2
as a representable summand.

2. Yes, 𝑞 does have y as a representable summand.

3. No, 𝑞 does not have 4y as a representable summand, because 4y is not a representable functor!

But to make amends, we could say that 4y is a summand; this means that there is some 𝑞′ such
that 𝑞 � 𝑞′ + 4y, namely 𝑞′ B y8

. So 3y is also a summand, but y2
and 5y are not.

Solution to Exercise 2.5.
1. Let 𝐼 B 1 and 𝑝[1] B 3 so that 𝑝 B y3 �

∑
𝑖∈𝐼 y𝑝[𝑖]. Then

𝑝(𝑋) � {(1, 4, 4, 4), (1, 4, 4, 9), (1, 4, 9, 4), (1, 4, 9, 9), (1, 9, 4, 4), (1, 9, 4, 9), (1, 9, 9, 4), (1, 9, 9, 9)}.

https://topos.site/p-func-workshop/

38 CHAPTER 2. POLYNOMIAL FUNCTORS

2. Let 𝐼 B 4, 𝑝[1] B 𝑝[2] B 𝑝[3] B 2, and 𝑝[4] B 1, so that 𝑝 B 3y2 + 1 �
∑
𝑖∈𝐼 y𝑝[𝑖]. Then

𝑝(𝑋) � {(1, 𝑎, 𝑎), (2, 𝑎, 𝑎), (3, 𝑎, 𝑎), (4)}.
3. Let 𝐼 B 0 so that 𝑝 B 0 �

∑
𝑖∈𝐼 y𝑝[𝑖]. Then 𝑝(𝑋) � 0. Alternatively, note that 0 is the constant

functor that sends every set to 0.
4. Let 𝐼 B 4 and 𝑝[𝑖] B 0 for every 𝑖 ∈ 𝐼 so that 𝑝 B 4 �

∑
𝑖∈𝐼 y𝑝[𝑖]. Then 𝑝(𝑋) � {(1), (2), (3), (4)} �

4. Alternatively, note that 4 is the constant functor that sends every set to 4.
5. Let 𝐼 B 1 and 𝑝[1] B 1 so that 𝑝 B y �

∑
𝑖∈𝐼 y𝑝[𝑖]. So 𝑝(𝑋) � {(1, 𝑛) | 𝑛 ∈ N} � N. Alternatively,

note that y is the identity functor, so it sends N to itself.

Solution to Exercise 2.9.
We consider 𝑝(0) for arbitrary polynomials 𝑝. A representable functor y𝑆 for 𝑆 ∈ Set sends 0 ↦→ 0 if

𝑆 ≠ 0 (as there are then no functions 𝑆 → 0), but sends 0 ↦→ 1 if 𝑆 = 0 (as there is a unique function

0→ 0). So
𝑝(0) �

∑
𝑖∈𝑝(1)

(
y𝑝[𝑖]

)
(0) �

∑
𝑖∈𝑝(1),
𝑝[𝑖]≠0

0 +
∑
𝑖∈𝑝(1),
𝑝[𝑖]=0

1 � {𝑖 ∈ 𝑝(1) | 𝑝[𝑖] = 0}.

That is, 𝑝(0) is the set of constant positions of 𝑝, the positions of 𝑝 that have no directions. For example,

if 𝑝 B y3+3y2+4, then 𝑝(0) = 4. In the language of high school algebra, wemight call 𝑝(0) the constant
term of 𝑝.

Solution to Exercise 2.12.
We have

𝑝(1) � {(1, 1, 1), (2, 1)} and 𝑝(2) � {(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1), (2, 2)}.

Say we choose the function 𝑓 : 1→ 2 that sends 1 ↦→ 1. Then 𝑝(𝑓) would send (1, 1, 1) ↦→ (1, 1, 1) and
(2, 1) ↦→ (2, 1). Ifwehad insteadpicked1 ↦→ 2 asour function 𝑓 , then 𝑝(𝑓)would send (1, 1, 1) ↦→ (1, 2, 2)
and (2, 1) ↦→ (2, 2).

Solution to Exercise 2.13.
1. A polynomial 𝑝 is representable when 𝑝 � y𝐴 for some set 𝐴, and y𝐴 has exactly 1 position.

Conversely, if a polynomial 𝑝 has exactly 1 position, then 𝑝(1) � 1, so we may write 𝑝 (up

to isomorphism) as 𝑝 �
∑

1∈1 y
𝑝[1] � y𝑝[1], which is representable. So a polynomial 𝑝 is

representable if and only if it has exactly 1 position.

2. A polynomial 𝑝 is constant when 𝑝 � 𝐼 for some set 𝐼, and 𝐼 has no directions at any of its

positions. Conversely, if every direction-set of a polynomial 𝑝 is empty, then

𝑝 �
∑
𝑖∈𝑝(1)

y𝑝[𝑖] �
∑
𝑖∈𝑝(1)

y0 �
∑
𝑖∈𝑝(1)

1 � 𝑝(1),

i.e. the set 𝑝(1) viewed as a constant functor. So a polynomial 𝑝 is constant if and only if it has

exactly 0 directions at each position.

Solution to Exercise 2.17.
1. A polynomial 𝑝 is linear when 𝑝 � 𝐼y for some set 𝐼, and 𝐼y has exactly 1 direction at each

position. (Note that this is even true when 𝑝 � 0y � 0, for then it is true vacuously.) Conversely,

if a polynomial 𝑝 has exactly 1 direction at each position, then 𝑝[𝑖] � 1 for all 𝑖 ∈ 𝑝(1), so

𝑝 �
∑
𝑖∈𝑝(1)

y𝑝[𝑖] �
∑
𝑖∈𝑝(1)

y1 �
∑
𝑖∈𝑝(1)

y � 𝑝(1)y,

which is linear. So a polynomial 𝑝 is linear if and only if it has exactly 1 direction at each position.

2.7. EXERCISE SOLUTIONS 39

2. A polynomial 𝑝 is a monomial when 𝑝 � 𝐼y𝐴 for sets 𝐼 and 𝐴, implying that there is an

isomorphism of direction-sets 𝑝[𝑖] � 𝐴 � 𝑝[𝑗] for all 𝑝-positions 𝑖 and 𝑗 (i.e. all the direction-

sets of 𝑝 have the same cardinality). Conversely, if all the direction-sets of a polynomial 𝑝 are

isomorphic to each other, then they are all isomorphic to some set 𝐴, so we have

𝑝 �
∑
𝑖∈𝑝(1)

y𝑝[𝑖] �
∑
𝑖∈𝑝(1)

y𝐴 � 𝑝(1)y𝐴 ,

which is a monomial. So a polynomial 𝑝 is a monomial if and only if all of its direction-sets have

the same cardinality.

Solution to Exercise 2.20.
The stopwatch app on my phone has three positions: a zero position, from which I may tap a single

start button; a running position, from which I may tap either a lap button or a stop button; and

a stopped position, from which I may tap either a start button or a reset button. Thinking of the

buttons available to press as the directions at each position, the corresponding polynomial is

{zero}y{start} + {running}y{lap, stop} + {stopped}y{start, reset} � y + 2y2.

Solution to Exercise 2.29.
1. Here is the corolla forest associated to 𝑝 B 2y3 + 2y+ 1 (note that the order in which the corollas

are drawn does not matter):

• • • • •
2. The forest has 5 roots.

3. The roots represent the 5 positions, one position per root.

4. The first and second corollas have 3 leaves each, the third and fourth corollas have 1 leaf each,

and the fifth corolla has 0 leaves.

5. The directions at each position correspond to the leaves in each corolla, so just copy the answer

from #4, replacing “corolla” with “position” and “leaf” with “direction”: the first and second

positions have 3 directions each, the third and fourth positions have 1 direction each, and the

fifth position has 0 directions.

Solution to Exercise 2.30.
Aesthetically speaking, here is a polynomial that may be drawn as a beautiful corolla forest:

𝑝 B y0 + y1 + y2 + y3 + · · ·

It is reminiscent (and formally related) to the notion of lists: if𝐴 is any set, then 𝑝(𝐴) � 𝐴0+𝐴1+𝐴2+· · ·
is the set List(𝐴) of lists (i.e. finite ordered sequences) with entries in 𝐴. Here is a picture of the lovely

forest associated to 𝑝:

• • • • · · ·

Chapter 3

The category of polynomial functors

In this chapter, we will define Poly, our main category of interest, so that we have a

firm foundation fromwhich to speak about interactive systems. The objects of Poly are

the polynomial functors that we defined in the previous chapter. Here wewill examine

the morphisms of Poly: natural transformations between polynomial functors. Along

the way, we will present some of Poly’s most versatile categorical properties.

3.1 Dependent lenses between polynomial functors

Before we define the category Poly of polynomial functors, we note that polynomial

functors live inside a category already: the category SetSet
of functors Set → Set,

whose morphisms are natural transformations. This leads to a natural definition of

morphisms between polynomial functors, from which we can derive a category of

polynomial functors for free. We call such a morphism a dependent lens, or a lens
for short. If you are familiar with lenses from functional programming, we’ll see in

Example 3.41 how our notion of a dependent lens is related.

Definition 3.1 (Dependent lens, Poly). Given polynomial functors 𝑝 and 𝑞, a dependent
lens (or simply lens) from 𝑝 to 𝑞 is a natural transformation 𝑝 → 𝑞. Then Poly is the

category whose objects are polynomial functors and whose morphisms are dependent

lenses.

In other words, Poly is the full subcategory of SetSet
spanned by the polynomial

functors: we take the category SetSet
, throw out all the objects that are not (isomorphic

to) polynomials, but keep all the same morphisms between the objects that remain.

Unraveling the familiar definition of a natural transformation, a dependent lens

between polynomial functors 𝑝 → 𝑞 thus consists of a function 𝑝(𝑋) → 𝑞(𝑋) for every
set 𝑋 such that naturality squares commute. That is a lot of data to keep track of!

Fortunately, there is a much simpler way to think about these lenses, which we will

discover using the Yoneda lemma.

41

42 CHAPTER 3. THE CATEGORY OF POLYNOMIAL FUNCTORS

Exercise 3.2 (Solution here). Given a set 𝑆 and a polynomial 𝑞, show that a lens y𝑆 → 𝑞

can be naturally identified with an element of the set 𝑞(𝑆). That is, show that there is

an isomorphism

Poly(y𝑆 , 𝑞) � 𝑞(𝑆).

natural in both 𝑆 and 𝑞. Hint: Use the Yoneda lemma (Lemma 1.10). ♦

The above exercise gives us an alternative characterization for lenses out of repre-

sentable functors. But before we can characterize lenses out of polynomial functors in

general, we need to describe how coproducts work in Poly. Fortunately, since polyno-
mial functors are defined as coproducts of representables, coproducts in Poly are easy

to understand.

Proposition 3.3. The category Poly has all small coproducts, coinciding with coprod-

ucts in SetSet
given by the operation

∑
𝑖∈𝐼 for each set 𝐼.

Proof. ByCorollary 1.38, the categorySetSet
has all small coproducts given by

∑
𝑖∈𝐼 . The

full subcategory inclusion Poly → SetSet
reflects these coproducts, and by definition

Poly is closed under the operation

∑
𝑖∈𝐼 . □

Explicitly, given an 𝐼-indexed family of polynomials (𝑝𝑖)𝑖∈𝐼 , its coproduct is∑
𝑖∈𝐼

𝑝𝑖 �
∑
𝑖∈𝐼

∑
𝑗∈𝑝𝑖(1)

y𝑝𝑖[𝑗] �
∑

(𝑖 , 𝑗)∈∑𝑖∈𝐼 𝑝𝑖(1)
y𝑝𝑖[𝑗] (3.4)

by Corollary 1.38. This coincides with our notion of polynomial addition from high

school algebra: just add all the terms together, combining like terms to simplify. Binary

coproducts are given by binary sums of functors, appropriately denoted by +, while

the initial object of Poly is the constant polynomial 0.
In particular, (3.4) implies that for any polynomials 𝑝 and 𝑞, their coproduct 𝑝 + 𝑞

is given as follows. The position-set of 𝑝 + 𝑞 is the coproduct of sets 𝑝(1) + 𝑞(1). At

position (1, 𝑖) ∈ 𝑝(1) + 𝑞(1) with 𝑖 ∈ 𝑝(1), the directions of 𝑝 + 𝑞 are just the 𝑝[𝑖]-
directions; at position (2, 𝑗) ∈ 𝑝(1) + 𝑞(1) with 𝑗 ∈ 𝑞(1), the directions of 𝑝 + 𝑞 are just

the 𝑞[𝑗]-directions.
Crucially, we have the following corollary.

Corollary 3.5. In the category Poly, every polynomial 𝑝 is the coproduct of its repre-

sentable summands (y𝑝[𝑖])𝑖∈𝑝(1).

In other words, writing 𝑝 as the sum

∑
𝑖∈𝑝(1) y

𝑝[𝑖]
is not just a coproduct in SetSet

; it

is also a coproduct in Poly itself.

We are now ready to give our alternative characterization of dependent lenses.

Recall that a polynomial 𝑝 �
∑
𝑖∈𝑝(1) y

𝑝[𝑖]
can be uniquely identified with an indexed

family 𝑝[−] : 𝑝(1) → Set, a functor from the set 𝑝(1) viewed as a discrete category.

3.1. DEPENDENT LENSES BETWEEN POLYNOMIAL FUNCTORS 43

Proposition 3.6. Given polynomials 𝑝 and 𝑞, there is an isomorphism

Poly(𝑝, 𝑞) �
∏
𝑖∈𝑝(1)

∑
𝑗∈𝑞(1)

𝑝[𝑖]𝑞[𝑗] (3.7)

natural in 𝑝 and 𝑞. In particular, a lens 𝑓 : 𝑝 → 𝑞 can be identified with a pair (𝑓1 , 𝑓 ♯)

𝑝(1) 𝑞(1)

Set
𝑝[−]

𝑓1

𝑞[−]

𝑓 ♯

⇐ (3.8)

where 𝑓1 : 𝑝(1) → 𝑞(1) is a function (equivalently, a functor between discrete categories)

and 𝑓 ♯ : 𝑞[𝑓1(−)] → 𝑝[−] is a natural transformation: a function 𝑓
♯
𝑖

: 𝑞[𝑓1𝑖] → 𝑝[𝑖] for
each 𝑖 ∈ 𝑝(1).

Proof. We have 𝑝 �
∑
𝑖∈𝑝(1) y

𝑝[𝑖]
. Then by Corollary 3.5 and the universal property of

the coproduct, we have a natural isomorphism

Poly ©­«
∑
𝑖∈𝑝(1)

y𝑝[𝑖] , 𝑞
ª®¬ �

∏
𝑖∈𝑝(1)

Poly(y𝑝[𝑖] , 𝑞).

Applying Exercise 3.2 (i.e. the Yoneda lemma) and the fact that 𝑞 �
∑
𝑗∈𝑞(1) y

𝑞[𝑗]
yields

the natural isomorphism∏
𝑖∈𝑝(1)

Poly(y𝑝[𝑖] , 𝑞) �
∏
𝑖∈𝑝(1)

𝑞(𝑝[𝑖]) �
∏
𝑖∈𝑝(1)

∑
𝑗∈𝑞(1)

𝑝[𝑖]𝑞[𝑗] ,

so (3.7) follows.

The right hand side of (3.7) is the set of dependent functions 𝑓 : (𝑖 ∈ 𝑝(1)) →∑
𝑗∈𝑞(1) 𝑝[𝑖]𝑞[𝑗]. Each such dependent function is uniquely determined by its two projec-

tions 𝜋1 𝑓 : (𝑖 ∈ 𝑝(1)) → 𝑞(1) and 𝜋2 𝑓 : (𝑖 ∈ 𝑝(1)) → 𝑝[𝑖]𝑞[𝜋1 𝑓 𝑖]
. These can be identified

respectively with a (non-dependent) function 𝑓1 B 𝜋1 𝑓 with signature 𝑝(1) → 𝑞(1)
and a natural transformation 𝑓 ♯ : 𝑞[𝑓1(−)] → 𝑝[−] whose 𝑖-component for 𝑖 ∈ 𝑝(1) is
𝑓
♯
𝑖
B 𝜋2 𝑓 𝑖 ∈ 𝑝[𝑖]𝑞[𝑓1 𝑖]. □

We have now greatly simplified our characterization of a dependent lens 𝑓 : 𝑝 → 𝑞:

rather than infinitelymany functions satisfying infinitelymany naturality conditions, 𝑓

may simply be specified by a function 𝑓1 : 𝑝(1) → 𝑞(1) and, for each 𝑖 ∈ 𝑝(1), a function
𝑓
♯
𝑖

: 𝑞[𝑓1𝑖] → 𝑝[𝑖], without any additional restrictions. This characterization can be

expressed entirely in the language of positions and directions: 𝑓1 is a function from

𝑝-positions to 𝑞-positions, while 𝑓
♯
𝑖
for a 𝑝-position 𝑖 is a function from 𝑞[𝑓1𝑖]-directions

to 𝑝[𝑖]-directions. This leads to the following definition.

44 CHAPTER 3. THE CATEGORY OF POLYNOMIAL FUNCTORS

Definition 3.9 (On-positions function, on-directions map and function). Given a lens

𝑓 : 𝑝 → 𝑞, let (𝑓1 , 𝑓 ♯) denote the pair identified with 𝑓 via Proposition 3.6. Then we

call the function 𝑓1 : 𝑝(1) → 𝑞(1) the (forward) on-positions function of 𝑓 , while we call

the natural transformation 𝑓 ♯ : 𝑞[𝑓1(−)] → 𝑝[−] the (backward) on-directions map of 𝑓 .
For 𝑖 ∈ 𝑝(1), we call the 𝑖-component 𝑓

♯
𝑖

: 𝑞[𝑓1𝑖] → 𝑝[𝑖] of 𝑓 ♯ the (backward) on-directions
function of 𝑓 at 𝑖.

The above definition highlights the bidirectional nature of a lens 𝑓 : 𝑝 → 𝑞: it

consists of a function going forward on positions, following the direction of 𝑓 from 𝑝 to

𝑞, as well as functions going backward on directions, opposing the direction of 𝑓 from

𝑞 to 𝑝. This forward-backward interaction is what drives the applications of Poly we

will study.

We prefer to call a morphism between polynomial functors a “lens” rather than a

“natural transformation” because wewish to emphasize this concrete on-positions and

on-directions perspective. Whenever we do need to view a morphism in Poly as a

natural transformation, we will refer to them as such.

In the next several sections, we will give some examples of lenses and intuition for

thinking about them in terms of interaction protocols, corolla forests, and polyboxes.

3.2 Dependent lenses as interaction protocols

Here is our first example of a dependent lens and a real-world interaction it might

model.

Example 3.10 (Modeling an interaction protocol with a lens). Recall our coin jar poly-

nomial from Example 2.19:

𝑞 B {open}y{penny, nickel, dime, quarter} + {closed}y0.

It has 2 positions: its open position has 4 directions representing the 4 denominations

of coins it may take, while its closed position has 0 directions to indicate that it cannot

take anything.

Now imagine thatwemodel the owner of this coin jarwith the followingpolynomial:

𝑝 B {needy}y{save, spend}

+ {greedy}y{accept, reject, ask for more}

+ {content}y{count, rest}.

Each of its 3 positions represents a possible mood of the owner, and the directions at

each position represent the options available to an owner in the corresponding mood.

We will construct a lens 𝑓 : 𝑝 → 𝑞 to model the interaction between the owner and

their coin jar.

3.2. DEPENDENT LENSES AS INTERACTION PROTOCOLS 45

Say that a needy or greedy owner will keep their coin jar open, while a content

ownerwill keep their coin jar closed. We can express thiswith an on-positions function

𝑓1 from the set of 𝑝-positions (on the left) to the set of 𝑞-positions (on the right), as

follows (the dashed arrows indicate the function assigments):

open

closed

𝑞(1)

greedy

needy

content

𝑝(1)

From there, say that a needy owner whose coin jar receives a nickel or higher

will choose to save it, but one whose coin jar receives a penny will choose to spend

it. Meanwhile, a greedy owner whose coin jar receives a penny or nickel will ask for

more, but one whose coin jar receives a dime or quarterwill accept it. We can express

this behavior with an on-directions map 𝑓 ♯ : 𝑞[𝑓1(−)] → 𝑝[−]. Its needy-component is

the on-directions function 𝑓
♯
needy : 𝑞[𝑓1(needy)] → 𝑝[needy] drawn as follows:

save

spend

𝑝[needy]

nickel

penny

dime

quarter

𝑞[open]

Notice that, by keeping the positions and directions of 𝑝 on the left and those of 𝑞 on

the right, the on-positions function is drawn from left to right, while the on-directions

functions must be drawn right to left. The greedy-component of 𝑓 ♯ is the on-directions

function 𝑓
♯
greedy : 𝑞[𝑓1(greedy)] → 𝑝[greedy] drawn like so:

nickel

penny

dime

quarter

𝑞[open]

reject

accept

ask for more

𝑝[needy]

Finally, since 𝑞[𝑓1(content)] = 𝑞[closed] = 0, the content-component of 𝑓 ♯ is the

vacuously-defined on-directions function 𝑓
♯
content : 0→ 𝑝[content]. Together, the on-

46 CHAPTER 3. THE CATEGORY OF POLYNOMIAL FUNCTORS

positions function 𝑓1 and the on-directions map 𝑓 ♯ defined above completely charac-

terize a lens 𝑓 : 𝑝 → 𝑞 depicting the interaction between the coin jar and its owner.

More generally, a lens depicts what we call an interaction protocol, a kind of dialogue

between two agents regarding their positions and directions. Say that one agent is

represented by a polynomial 𝑝 and another by a polynomial 𝑞. Then a lens 𝑓 : 𝑝 → 𝑞

is an interaction protocol that prescribes how the positions of 𝑝 influence the positions

of 𝑞 and how the directions of 𝑞 influence the directions of 𝑝. Each 𝑝-position 𝑖 ∈ 𝑝(1)
is passed forward via the on-positions function of 𝑓 to a 𝑞-position 𝑓1𝑖 ∈ 𝑞(1). Then

each 𝑞[𝑓1𝑖]-direction 𝑏 is passed backward via the on-directions function of 𝑓 at 𝑖 to a

𝑝[𝑖]-direction 𝑓
♯
𝑖
𝑏.

To visualize these lenses, we may use either our corolla forests or our polyboxes.

3.3 Corolla forest pictures of dependent lenses

The corolla forest associated to a polynomial concretely depicts its positions and direc-

tions, making it easy to extend our corolla forest pictures to depict the dependencies

between the positions and directions of two polynomials that a lens between them

prescribes.

Example 3.11. Let 𝑝 B y3 + 2y and 𝑞 B y4 + y2 + 2. We draw them as corolla forests

with their positions labeled:

•
1

•
2

•
3

𝑝

•
1

•
2

•
3

•
4

𝑞

To give a lens 𝑝 → 𝑞, we must send each 𝑝-position 𝑖 ∈ 𝑝(1) to a 𝑞-position 𝑗 ∈ 𝑞(1),
then send each direction in 𝑞[𝑗] back to one in 𝑝[𝑖]. We can draw such a lens as follows.

•
1

•
1

•
2

•
1

•
3

•
4

This represents one possible lens 𝑓 : 𝑝 → 𝑞. The horizontal solid arrows pointing

rightward in the picture above tell us that the on-positions function 𝑓1 : 𝑝(1) → 𝑞(1) is
given by

𝑓1(1) B 1, 𝑓1(2) B 1, and 𝑓1(3) B 4.

Then the curved dashed arrows pointing leftward in the picture above describe the

on-directions map 𝑓 ♯ : 𝑞[𝑓1(−)] → 𝑝[−]. On the left, the arrows depict one possible

on-directions function 𝑓
♯

1
: 𝑞[1] → 𝑝[1] from the 4 directions in 𝑞[1] to the 3 directions

in 𝑝[1]. In the middle, the arrows depict the only possible on-directions function

3.4. POLYBOX PICTURES OF DEPENDENT LENSES 47

𝑓
♯

2
: 𝑞[1] → 𝑝[2] because |𝑝[2]| = 1. Finally, on the right, there are no curved arrows,

depicting the only possible on-directions function 𝑓
♯

3
: 𝑞[4] → 𝑝[3] because |𝑞[4]| = 0.

Exercise 3.12 (Solution here).
1. Draw the corolla forests associated to 𝑝 B y3 +y+ 1, 𝑞 B y2 +y2 + 2, and 𝑟 B y3

.

2. Pick an example of a dependent lens 𝑝 → 𝑞 and draw it aswe did in Example 3.11.

3. Explain the behavior of your lens as an interaction protocol in terms of positions

and directions.

4. Explain in those terms why there can’t be any lenses 𝑝 → 𝑟. ♦

3.4 Polybox pictures of dependent lenses

Another way to visualize a dependent lens 𝑓 : 𝑝 → 𝑞 is to draw the polyboxes for 𝑝 and

𝑞.

𝑝

𝑝(1)
𝑝[−]

𝑞

𝑞(1)
𝑞[−]

𝑓 : 𝑝 → 𝑞

(3.13)

Thinking of the polyboxes as cells in a spreadsheet, the lens prescribes how the values

of the cells are computed. The boxes colored blue accept user input, while the other

boxes are computed from that input according to the spreadsheet’s rules.

The arrows track the flowof information, starting from the lower left. When the user

fills the blue position box of 𝑝 with some 𝑖 ∈ 𝑝(1), the arrow pointing right indicates

that the lens fills the position box of 𝑞with some 𝑗 ∈ 𝑞(1) based on 𝑖. The corresponding

assignment 𝑖 ↦→ 𝑗 is the on-position function 𝑓1 of the lens.

Then when the user fills the blue direction box of 𝑞 with some 𝑏 ∈ 𝑞[𝑗], the arrow

pointing left indicates that the lens fills the direction box of 𝑝 with some 𝑎 ∈ 𝑝[𝑖] based
on 𝑖 and 𝑏. Fixing 𝑖 ∈ 𝑝(1), the assignment 𝑏 ↦→ 𝑎 is an on-directions function 𝑓

♯
𝑖
of the

lens.

Once all the boxes are filled, we obtain the following:

𝑎

𝑖
𝑝

𝑏

𝑗
𝑞

𝑓1

𝑓 ♯

Here 𝑗 B 𝑓1𝑖 and 𝑎 B 𝑓
♯
𝑖
𝑏. So a lens is any protocol that will fill the remaining boxes

once the user fills the blue boxes, following the directions of the arrows drawn. Be

careful: although the arrow 𝑓 ♯ is drawn from the codomain’s direction box, it also

takes into account what is entered into the domain’s position box previously. After all,

48 CHAPTER 3. THE CATEGORY OF POLYNOMIAL FUNCTORS

the on-directions map of a lens is dependent on both a position of the domain and a

direction of the codomain.

Here is an example of a lens depictedwith polyboxes that would be difficult to draw

with corolla forests.

Example 3.14 (Modeling with a lens in polyboxes). Caroline asks each of her parents

for 20 dollars. Each parent gives Caroline a positive amount of money not exceeding

20 dollars. Caroline spends some of the money she receives before returning the

remainder to each parent proportionally according to the amount she received from

each.

To model this interaction as a lens 𝑓 : 𝑝 → 𝑞, we first define the polynomials 𝑝 and

𝑞. Let

𝑝 B
∑

(𝑖 , 𝑗)∈(0,20]×(0,20]
y[0,𝑖]×[0, 𝑗]

be the polynomial that models the parents: its position (𝑖 , 𝑗) ∈ (0, 20] × (0, 20] consists
of the quantities of money that each parent gives to Caroline, and its direction (𝑖′, 𝑗′) ∈
[0, 𝑖] × [0, 𝑗] at that position consists of the quantities of money that Caroline returns

to each parent. Then let

𝑞 B
∑

𝑘∈(0,∞)
y[0,𝑘]

be the polynomial that models Caroline: its position 𝑘 ∈ (0,∞) is the total money that

Caroline receives (perhaps Caroline is prepared to receive more money than she is

asking for, even if her parents are not prepared to give it), while its direction 𝑟 ∈ [0, 𝑘]
is the money Caroline has remaining after spending some of it. Then we draw the lens

𝑓 that models their interaction in polyboxes as

(
𝑖𝑟

𝑖 + 𝑗 ,
𝑗𝑟

𝑖 + 𝑗

)
(𝑖 , 𝑗)

𝑝
𝑟

𝑖 + 𝑗
𝑞

𝑓1

𝑓 ♯

We interpret this as saying that the on-positions function 𝑓1 from 𝑝(1) = (0, 20]× (0, 20]
to 𝑞(1) = (0,∞) is defined on (𝑖 , 𝑗) ∈ (0, 20] × (0, 20] to be

𝑓1(𝑖 , 𝑗) B 𝑖 + 𝑗 ,

while the on-directions function 𝑓
♯
(𝑖 , 𝑗) from 𝑞[𝑖 + 𝑗] = [0, 𝑖 + 𝑗] to 𝑝[(𝑖 , 𝑗)] = [0, 𝑖] × [0, 𝑗]

is defined on 𝑟 ∈ [0, 𝑖 + 𝑗] to be

𝑓
♯
(𝑖 , 𝑗)(𝑟) B

(
𝑖𝑟

𝑖 + 𝑗 ,
𝑗𝑟

𝑖 + 𝑗

)
;

3.5. COMPUTATIONS WITH DEPENDENT LENSES 49

the polybox picture expresses this more compactly. Notice that the position box of 𝑞

depends only on the position box of 𝑝, while the direction box of 𝑝 depends on the

position box of 𝑝 as well as the direction box of 𝑞.

The above example illustrates how we can use polyboxes to specify a particular

lens—or, equivalently, how we can use polyboxes to define a lens, the same way we

might define a function by writing it as a formula in a dummy variable. Later on we

will see how polyboxes help depict how lenses compose.

3.5 Computations with dependent lenses

Our concrete characterization of dependent lenses allows us to enumerate them.

Example 3.15 (Enumerating lenses). Let 𝑝 B y3 + 2y and 𝑞 B y4 + y2 + 2, as in

Example 3.11. Again, we draw them as corolla forests with their positions labeled:

•
1

•
2

•
3

𝑝

•
1

•
2

•
3

•
4

𝑞

How many lenses are there from 𝑝 to 𝑞? The first 𝑝-position must be sent to any

𝑞-position: 1, 2, 3, or 4. Sending it to 1 would require choosing an on-directions

function 𝑞[1] → 𝑝[1], or 4→ 3; there are 3
4
of these. Similarly, there are 3

2
possible on-

directions functions 𝑞[2] → 𝑝[1], as well as 3
0
on-directions functions 𝑞[3] → 𝑝[1] and

3
0
on-directions functions 𝑞[4] → 𝑝[1]. Hence there are a total of 3

4 + 3
2 + 3

0 + 3
0 = 92

ways to choose 𝑓1(1) and 𝑓
♯

1
.

The second 𝑝-position must also be sent to 1, 2, 3, or 4 before selecting 𝑓
♯

2
; there are

1
4 + 1

2 + 1
0 + 1

0 = 4 ways to do this. Identically, there are 4 ways to choose 𝑓1(3) and 𝑓
♯

3
.

In total, there are 92 · 4 · 4 = 1472 lenses 𝑝 → 𝑞. This coincides with what we obtain

by taking the cardinality of both sides of (3.7) and plugging in our values for 𝑝 and 𝑞:

|Poly(𝑝, 𝑞)| =
∏
𝑖∈𝑝(1)

|𝑞(𝑝[𝑖])|

=

∏
𝑖∈3

(
|𝑝[𝑖]|4 + |𝑝[𝑖]|2 + 2

)
= (34 + 3

2 + 2)(14 + 1
2 + 2)2

= 92 · 42 = 1472.

Exercise 3.16 (Solution here). For any polynomial 𝑝 and set 𝐴, e.g. 𝐴 B 2, the Yoneda
lemma gives an isomorphism Poly(y𝐴 , 𝑝) � 𝑝(𝐴), so the number of lenses y𝐴 → 𝑝

should be equal to the cardinality of 𝑝(𝐴).

50 CHAPTER 3. THE CATEGORY OF POLYNOMIAL FUNCTORS

1. Choose a polynomial 𝑝 with finitely many positions and directions and draw

both y2
and 𝑝 as corolla forests.

2. Count all the lenses y2 → 𝑝. How many are there?

3. Compute the cardinality of 𝑝(2). Is this the same as the previous answer? ♦

Exercise 3.17 (Solution here). For each of the following polynomials 𝑝, 𝑞, compute the

number of lenses 𝑝 → 𝑞.

1. 𝑝 B y3
, 𝑞 B y4

.

2. 𝑝 B y3 + 1, 𝑞 B y4
.

3. 𝑝 B y3 + 1, 𝑞 B y4 + 1.
4. 𝑝 B 4y3 + 3y2 + y, 𝑞 B y.

5. 𝑝 B 4y3
, 𝑞 B 3y. ♦

The following exercises provide alternative formulas for the set of lenses between

two polynomials.

Exercise 3.18 (Solution here).
1. Show that the following are isomorphic:

Poly(𝑝, 𝑞) �
∏
𝑖∈𝑝(1)

∑
𝑗∈𝑞(1)

∏
𝑏∈𝑞[𝑗]

∑
𝑎∈𝑝[𝑖]

1. (3.19)

2. Show that the following are isomorphic:

Poly(𝑝, 𝑞) �
∑

𝑓1 : 𝑝(1)→𝑞(1)

∏
𝑗∈𝑞(1)

Set

(
𝑞[𝑗],

∏
𝑖∈𝑝(1),
𝑓1 𝑖=𝑗

𝑝[𝑖]
)
. (3.20)

3. Using the language of positions and directions, describe how an element of the

right hand side of (3.20) corresponds to a lens 𝑝 → 𝑞. ♦

In (3.4),wegave anexplicit formula for coproducts inPoly inherited fromcoproducts

in SetSet
, as justified by Proposition 3.3. We can now use (3.7) to directly verify that

the expression on the right hand side of (3.4) satisfies the universal property for the

coproduct of polynomials (𝑝𝑖)𝑖∈𝐼 in Poly.

Exercise 3.21 (Solution here). Use (3.7) to verify that

Poly ©­«
∑

(𝑖 , 𝑗)∈∑𝑖∈𝐼 𝑝𝑖(1)
y𝑝𝑖[𝑗] , 𝑞

ª®¬ �
∏
𝑖∈𝐼

Poly(𝑝𝑖 , 𝑞)

for all polynomials (𝑝𝑖)𝑖∈𝐼 and 𝑞. ♦

3.5. COMPUTATIONS WITH DEPENDENT LENSES 51

For the remaining exercises in this section, we introduce the concept of the derivative
¤𝑝 of a polynomial 𝑝.

Example 3.22 (Derivatives). The derivative of a polynomial 𝑝, denoted ¤𝑝, is defined as

¤𝑝 B
∑
𝑖∈𝑝(1)

∑
𝑎∈𝑝[𝑖]

y𝑝[𝑖]−{𝑎}.

For example, if 𝑝 ≔ y{𝑈,𝑉,𝑊} + {𝐴}y{𝑋} + {𝐵}y{𝑋} then

¤𝑝 = {𝑈}y{𝑉,𝑊} + {𝑉}y{𝑈,𝑊} + {𝑊}y{𝑈,𝑉} + {(𝐴, 𝑋)}y0 + {(𝐵, 𝑋)}y0.

Up to isomorphism 𝑝 � y3+2y and ¤𝑝 � 3y2+2. Indeed, this coincideswith the familiar

notion of derivatives of polynomials from calculus.

Since

¤𝑝y �
∑
𝑖∈𝑝(1)

∑
𝑎∈𝑝[𝑖]

y𝑝[𝑖]−{𝑎}y �
∑
𝑖∈𝑝(1)

∑
𝑎∈𝑝[𝑖]

y𝑝[𝑖]−{𝑎}+1 �
∑
𝑖∈𝑝(1)

∑
𝑎∈𝑝[𝑖]

y𝑝[𝑖] ,

there exists a canonical lens ¤𝑝y→ 𝑝; you will define this lens in Exercise 3.23. The lens

arises in computer science in the context of “plugging in to one-hole contexts”; we will

not explore that here, but see [McB01] and [Abb+03] for details.

A lens 𝑓 ′ : 𝑝 → ¤𝑞 is similar to a lens 𝑓 : 𝑝 → 𝑞, except that each 𝑝-position explicitly

selects a direction of 𝑞 to remain unassigned. More precisely, while the on-positions

function of 𝑓 sends each 𝑝-position to a 𝑞-position, the on-positions function of 𝑓 ′

sends each 𝑝-position 𝑖 to some (𝑗 , 𝑎) ∈ ∑
𝑗∈𝑞(1) 𝑞[𝑗], picking out not only a 𝑞-position

𝑗, but also a 𝑞[𝑗]-direction 𝑎. Then the on-directions function of 𝑓 ′ at 𝑖 sends every

𝑞[𝑗]-direction other than 𝑎 back to a 𝑝[𝑖]-direction.

Exercise 3.23 (Solution here). The derivative is not very well-behaved categorically,

but it is nevertheless intriguing. Take 𝑝, 𝑞 ∈ Poly.
1. Give an explicit construction for the canonical lens ¤𝑝y→ 𝑝 from Example 3.22.

2. Is there always a lens 𝑝 → ¤𝑝? If so, prove it; if not, give a counterexample.

3. Is there always a lens ¤𝑝 → 𝑝? If so, prove it; if not, give a counterexample.

4. Given a lens 𝑝 → 𝑞, is there always a lens ¤𝑝 → ¤𝑞? If so, prove it; if not, give a

counterexample.

5. We will define the binary operations ⊗ and [−,−] on Poly later on in (3.66) and

(4.75); and in Exercise 4.80, you will be able to use Exercise 4.78 to deduce that

[𝑝, y] ⊗ 𝑝 �
∑

𝑓 ∈∏𝑖∈𝑝(1) 𝑝[𝑖]

∑
𝑖∈𝑝(1)

y𝑝(1)×𝑝[𝑖] , (3.24)

Construct a canonical lens [𝑝, y] ⊗ 𝑝 → ¤𝑝.

52 CHAPTER 3. THE CATEGORY OF POLYNOMIAL FUNCTORS

6. In Example 3.22, we described a lens 𝑝 → ¤𝑞 in terms of “unassigned” directions.

Describe a lens 𝑝y→ 𝑞 in terms of “unassigned” directions as well. ♦

We will not use derivatives very much in the rest of this text, except as shorthand

to denote the set of all directions of a polynomial: given a polynomial 𝑝, its directions

comprise the set ¤𝑝(1).

Exercise 3.25 (Solution here). Show that ¤𝑝(1) is isomorphic to the set of all directions

of 𝑝 (i.e. the sum of all direction-sets of 𝑝). ♦

3.6 Dependent lenses between special polynomials

In Section 2.2, we considered four special classes of polynomials (here 𝐼 and 𝐴 are

sets): constant polynomials 𝐼, linear polynomials 𝐼y, representable polynomials y𝐴,

and monomials 𝐼y𝐴. Of special note are the constant and linear polynomial 0, the
constant and representable polynomial 1, and the linear and representable polynomial

y. We now consider lenses with these special polynomials as domains or codomains,

highlighting some important examples using polyboxes and leaving most of the rest as

exercises. Let 𝑝 be a polynomial throughout.

Example 3.26 (Lenses from linear polynomials). A lens 𝑓 : 𝐼y → 𝑝 can be drawn in

polyboxes as follows:

𝐼 𝑝(1)
𝑝[−]

𝑓1

!

Recall that we shade in the direction box of a linear polynomial to indicate that it can

only be filledwith one entry. Hence the on-directionsmap of 𝑓 is uniquely determined,

so 𝑓 is completely characterized by its on-positions function 𝑓1. We conclude that lenses

𝐼y→ 𝑝 can be identified with functions 𝐼 → 𝑝(1).

Exercise 3.27 (Lenses from 0 and y; solution here).
1. Use Example 3.26 to verify that 0 is the initial object of Poly.
2. UseExample 3.26 to show that lensesy→ 𝑝 can be identifiedwith 𝑝-positions. ♦

Exercise 3.28 (Lenses to linear polynomials; solution here). Characterize lenses 𝑝 → 𝐼y

in terms of 𝐼 and the positions and directions of 𝑝. ♦

3.6. DEPENDENT LENSES BETWEEN SPECIAL POLYNOMIALS 53

Example 3.29 (Lenses to constants). A lens 𝑓 : 𝑝 → 𝐼 can be drawn in polyboxes as

follows:

𝑝(1)
𝑝[−]

𝐼
𝑓1

!

Recall that we color the direction box of a constant red to indicate that it cannot be filled

with any entry. Hence the on-directions map of 𝑓 is again uniquely determined, so 𝑓 is

completely characterized by its on-positions function 𝑓1. (While the on-directions map

of 𝑓 does exist—it is vacuous—it can never produce an element to fill the direction box

of 𝑝, so we draw it with a dashed line.) We conclude that lenses 𝑝 → 𝐼 can be identified

with functions 𝑝(1) → 𝐼.

Exercise 3.30 (Lenses to 1 and 0; solution here).
1. Use Example 3.29 to show that 1 is the terminal object of Poly.
2. Show that there is exactly one lens whose codomain is 0. What is its domain? ♦

Exercise 3.31 (Lenses from constants such as 1; solution here).
1. Characterize lenses 𝐼 → 𝑝 in terms of 𝐼 and the positions and directions of 𝑝. You

may find it helpful to refer to 𝑝(0); see Exercise 2.9.
2. Use the previous part to characterize lenses 1→ 𝑝. ♦

We already know from the Yoneda lemma (see Exercise 3.2) that lenses y𝐴 → 𝑝

correspond to elements of 𝑝(𝐴), so we understand lenses from representables. Thus

we turn our attention to lenses 𝑝 → y𝐴.

Example 3.32 (Lenses to representables). A lens 𝑓 : 𝑝 → y𝐴 can be drawn in polyboxes

as follows:

𝑝(1)
𝑝[−] 𝐴

!

𝑓 ♯

Recall that we shade in the position box of a representable to indicate that it can only

be filled with one entry. Hence the on-positions function of 𝑓 is uniquely determined,

so 𝑓 is completely characterized by its on-directions map 𝑓 ♯, which takes a 𝑝-position

𝑖 and a direction 𝑎 ∈ 𝐴 and sends them to a direction 𝑏 ∈ 𝑝[𝑖]. We conclude that lenses

𝑝 → y𝐴 can be identified with dependent functions ((𝑖 , 𝑎) ∈ 𝑝(1) × 𝐴) → 𝑝[𝑖].

54 CHAPTER 3. THE CATEGORY OF POLYNOMIAL FUNCTORS

Example 3.33 (Lenses to y). As a special case of the previous example, a lens 𝛾 : 𝑝 → y

can be drawn in polyboxes as follows:

𝑝(1)
𝑝[−]

!

𝛾♯

Such lenses can be identified with dependent functions (𝑖 ∈ 𝑝(1)) → 𝑝[𝑖], which,

abusing notation, we also denote by 𝛾. For each 𝑝-position 𝑖 in the blue position box, 𝛾

picks out a 𝑝[𝑖]-direction to fill the unshaded direction box. (Remember that the arrow

labeled 𝛾♯
depends not only on the direction box to its right, but also on the position

box of 𝑝.) So it makes sense to abbreviate the polybox picture of 𝛾 like so:

𝑝 𝛾

(3.34)

The correspondence between lenses 𝑝 → y and dependent functions (𝑖 ∈ 𝑝(1)) →
𝑝[𝑖] exhibited in the previous example also follows directly from (3.7): taking 𝑞 B y,

we have

Poly(𝑝, y) �
∏
𝑖∈𝑝(1)

∑
𝑗∈1

𝑝[𝑖]1 �
∏
𝑖∈𝑝(1)

𝑝[𝑖], (3.35)

where the right hand side is precisely the set of dependent functions (𝑖 ∈ 𝑝(1)) → 𝑝[𝑖].
By Exercise 1.22, such functions may be identified with the sections of the projection

function from ¤𝑝(1) � ∑
𝑖∈𝑝(1) 𝑝[𝑖], the set of all directions of 𝑝 (see Exercise 3.25), to 𝑝(1),

the set of all positions of 𝑝, sending each (𝑖 , 𝑎) ∈ ¤𝑝(1) to 𝑖 ∈ 𝑝(1). The fact that this

projection determines 𝑝 (up to isomorphism) motivates the following definition.

Definition 3.36 (Section; bundle). For 𝑝 ∈ Poly, a section of 𝑝 is a lens 𝑝 → y. We

denote the set of all sections of 𝑝 by Γ(𝑝); that is,

Γ(𝑝) B Poly(𝑝, y). (3.37)

The bundle of 𝑝, denoted 𝜋𝑝 , is the projection function

¤𝑝(1) �
∑
𝑖∈𝑝(1)

𝑝[𝑖] → 𝑝(1)

sending (𝑖 , 𝑎) ↦→ 𝑖.

With this terminology, we can say that 𝑝 is determined (up to isomorphism) by its

bundle, and that the sections of 𝑝 can be identified with the sections of its bundle.

To visualize the bundle of 𝑝, simply draw it as a corolla forest: a bundle of arrows.

The bundle projects each leaf down to its root. To visualize a section of 𝑝, picture its

3.6. DEPENDENT LENSES BETWEEN SPECIAL POLYNOMIALS 55

corollas piled atop each other; a section 𝛾 : 𝑝 → y is then a cross-section of this pile of

𝑝-corollas, picking out an arrow from each one—a direction at each position.

Alternatively, you could think of the arrow curving back to the polyboxes for 𝑝 in

our picture (3.34) of a section 𝛾 : 𝑝 → y as sectioning off the polyboxes for 𝑝 from any

polyboxes that may otherwise appear to its right. We clarify this intuition by returning

to a previous example of a polynomial and considering its sections.

Example 3.38 (Modeling with sections). Recall from Example 3.14 the polynomial

𝑞 B
∑

𝑘∈(0,∞)
y[0,𝑘]

whose positions 𝑘 ∈ (0,∞) are the possible quantities of money that Caroline receives

from her parents and whose directions 𝑟 ∈ [0, 𝑘] are the possible quantities of money

that Caroline has remaining after spending some of it.

One component that was missing from our model was how Caroline spends her

money. A section for 𝑞 fills in this gap by closing the loop from the money Caroline

receives to the money she has remaining. Explicitly, a section 𝛾 : 𝑞 → y corresponds to

a dependent function (𝑘 ∈ (0,∞)) → [0, 𝑘] that uses the amount ofmoney that Caroline

receives to determine the amount of money that she will have remaining.

For instance, if Caroline always spends half the money she receives, then the poly-

boxes for the section 𝛾 : 𝑞 → y that models this behavior can be drawn as follows:

𝑘/2

𝑘

𝑞 𝛾

Without 𝛾, we do not know howmuch money Caroline will decide to spend; having 𝛾

makesherdecisiondeterministic and sections this decisionoff fromunknownvariables.

Of course, the position box of 𝑞, the amount of money Caroline receives, is still open

to outside influence, as determined by a lens to 𝑞 such as the one from Example 3.14.

The definition of Γ given in (3.37) makes Γ a functor Poly → Setop satisfying the

following.

Proposition 3.39. The sections functor Γ : Poly→ Setop sends (0,+) to (1,×):

Γ(0) � 1 and Γ(𝑝 + 𝑞) � Γ(𝑝) × Γ(𝑞).

Exercise 3.40 (Solution here). Prove Proposition 3.39. ♦

We conclude this section by discussing lenses between monomials, which arise in

functional programming.

56 CHAPTER 3. THE CATEGORY OF POLYNOMIAL FUNCTORS

Example 3.41 (Lenses between monomials are bimorphic lenses). Lenses whose do-

mains and codomains are both monomials are especially simple to write down, be-

cause they can be characterized as a pair of (standard, not dependent) functions that

are independent of each other, as follows.

Given 𝐼 , 𝐽 , 𝐴, 𝐵 ∈ Set, a lens 𝑓 : 𝐼y𝐴 → 𝐽y𝐵 is determined by an on-positions function

𝑓1 : 𝐼 → 𝐽 andanon-directionsmap: for each 𝑖 ∈ 𝐼, anon-directions function 𝑓 ♯
𝑖

: 𝐵→ 𝐴.

But the data of such an on-directions map may be repackaged as a single function

𝑓 ♯ : 𝐼 × 𝐵 → 𝐴. We can do this because every position in 𝐼 has the same direction-set

𝐴, and every position in 𝐽 has the same direction-set 𝐵.

In functional programming, such a pair of functions is called a bimorphic lens, or a
lens for short. In categorical terms, we may say that the monomials in Poly span a full

subcategory of Poly equivalent to the category of bimorphic lenses, defined in [Hed18a]

(here the category is named after its morphisms rather than its objects). When such

a lens arises in functional programming, the two functions that comprise it are given

special names:

get B 𝑓1 : 𝐽 → 𝐼

put B 𝑓 ♯ : 𝐼 × 𝐵→ 𝐴
(3.42)

Each position 𝑖 ∈ 𝐼 gets a position 𝑓1𝑖 ∈ 𝐽 and puts each direction 𝑏 ∈ 𝐵 back to a

direction 𝑓 ♯(𝑖 , 𝑏) ∈ 𝐴.
So a natural transformation between two monomial functors is a bimorphic lens.

Then a natural transformation between two polynomial functors is amore general kind

of lens: a dependent lens, where the direction-sets depend on the positions. Favoring

the dependent version, we call these natural transformations lenses.

Example 3.43 (Very well-behaved lenses). Consider the monomial 𝑆y𝑆. Its position-set

is 𝑆, and its direction-set at each position 𝑠 ∈ 𝑆 is again just 𝑆. We could think of each

direction as pointing to the ‘next’ position to move to. We will start to formalize this

idea in Example 4.43 and continue this work throughout the following chapters.

Then here is one way we can think of a lens 𝑓 : 𝑆y𝑆 → 𝑇y𝑇 . Say that Otto takes

positions in 𝑆, while Tim takes positions in 𝑇. Tim will act as Otto’s proxy as follows.

Tim will model Otto’s position via the on-positions function 𝑆 → 𝑇 of 𝑓 : if Otto is at

position 𝑠 ∈ 𝑆, then Tim will be at position 𝑓1𝑠 ∈ 𝑇. On the other hand, Otto will take

his directions from Tim via the on-directions map 𝑆 × 𝑇 → 𝑆 of 𝑓 : if Tim follows the

direction 𝑡′ ∈ 𝑇, then Otto will head from his current position 𝑠 ∈ 𝑆 in the direction

𝑓 ♯(𝑠, 𝑡′) ∈ 𝑆. We interpret these directions as new positions for Otto and Tim to move

to. So as Otto moves through the positions in 𝑆, he is both modeled and directed by

Tim moving through the positions in 𝑇.

With this setup, there are three conditions that we might expect the lens 𝑓 : 𝑆y𝑆 →
𝑇y𝑇 to satisfy:

3.7. TRANSLATING BETWEEN NATURAL TRANSFORMATIONS AND LENSES 57

1. With Otto at 𝑠 ∈ 𝑆, if Tim stays put at 𝑓1𝑠 (i.e. the direction he selects at 𝑓1𝑠 is still

𝑓1𝑠), then Otto should stay put at 𝑠 (i.e. the direction he selects at 𝑠 is still 𝑠):

𝑓 ♯(𝑠, 𝑓1𝑠) = 𝑠.

2. Once Tim moves to 𝑡 ∈ 𝑇 and Otto moves from 𝑠 ∈ 𝑆 accordingly, Tim’s new

position should model Otto’s new position:

𝑓1(𝑓 ♯(𝑠, 𝑡)) = 𝑡.

3. If Tim moves to 𝑡, then to 𝑡′, Otto should end up at the same position as where

he would have ended up if Tim had moved directly to 𝑡′ in the first place:

𝑓 ♯(𝑓 ♯(𝑠, 𝑡), 𝑡′) = 𝑓 ♯(𝑠, 𝑡′)

Such a lens is known to functional programmers as a very well-behaved lens; the three

conditions above are its lens laws. We will see these conditions emerge from more

general theory in Example 7.85.

3.7 Translating between natural transformations and lenses

We now know that we can specify a morphism 𝑝 → 𝑞 in Poly in one of two ways:

• in the language of functors, by specifying a natural transformation 𝑝 → 𝑞, i.e. for

each 𝑋 ∈ Set, a function 𝑝(𝑋) → 𝑞(𝑋) such that naturality squares commute; or

• in the language of positions and directions, by specifying a lens 𝑝 → 𝑞, i.e. a

function 𝑓1 : 𝑝(1) → 𝑞(1) and, for each 𝑖 ∈ 𝑝(1), a function 𝑓
♯
𝑖

: 𝑞[𝑓1𝑖] → 𝑝[𝑖].

But how are these two formulations related? Given the data of a lens and that of a

natural transformation between polynomials, how can we tell if they correspond to the

same morphism? We want to be able to translate between these two languages.

Our Rosetta Stone turns out to be the proof of the Yoneda lemma. The lemma itself

is the crux of the proof of Proposition 3.6, which states that these two formulations

of morphisms between polynomials are equivalent; so unraveling these proofs reveals

the translation we seek.

58 CHAPTER 3. THE CATEGORY OF POLYNOMIAL FUNCTORS

Proposition 3.44. Given 𝑝, 𝑞 ∈ Poly, let 𝑓1 : 𝑝(1) → 𝑞(1) be a function between their

position-sets (like an on-positions function) and 𝑓 ♯ : 𝑞[𝑓1(−)] → 𝑝[−] be a natural

transformation whose components are functions between their direction-sets (like an

on-directions map). Then the isomorphism in (3.7) identifies (𝑓1 , 𝑓 ♯) with the natural

transformation 𝑓 : 𝑝 → 𝑞 whose 𝑋-component 𝑓𝑋 : 𝑝(𝑋) → 𝑞(𝑋) for 𝑋 ∈ Set sends
each

(𝑖 , 𝑔) ∈
∑
𝑖∈𝑝(1)

𝑋𝑝[𝑖] � 𝑝(𝑋)

with 𝑖 ∈ 𝑝(1) and 𝑔 : 𝑝[𝑖] → 𝑋 to

(𝑓1𝑖 , 𝑓 ♯𝑖 # 𝑔) ∈
∑
𝑗∈𝑞(1)

𝑋𝑞[𝑗] � 𝑞(𝑋).

Proof. As an element of the product over 𝐼 on the right hand side of (3.7), the pair (𝑓1 , 𝑓 ♯)
is equivalently an 𝐼-indexed family of pairs ((𝑓1𝑖 , 𝑓 ♯𝑖))𝑖∈𝐼 , where each pair (𝑓1𝑖 , 𝑓 ♯𝑖) is an
element of ∑

𝑗∈𝑞(1)
𝑝[𝑖]𝑞[𝑗] � 𝑞(𝑝[𝑖]).

By the Yoneda lemma (Lemma 1.10), we have an isomorphism 𝑞(𝑝[𝑖]) � Poly(y𝑝[𝑖] , 𝑞);
and by the proof of the Yoneda lemma, this isomorphism sends (𝑓1𝑖 , 𝑓 ♯𝑖) to the natural

transformation 𝑓 𝑖 : y𝑝[𝑖] → 𝑞 whose 𝑋-component is the function 𝑓 𝑖
𝑋

: 𝑋𝑝[𝑖] → 𝑞(𝑋)
given by sending 𝑔 : 𝑝[𝑖] → 𝑋 to

𝑞(𝑔)(𝑓1𝑖 , 𝑓 ♯𝑖) =
©­«
∑
𝑗∈𝑞(1)

𝑔𝑞[𝑗]
ª®¬ (𝑓1𝑖 , 𝑓 ♯𝑖) (Corollary 1.38)

=

(
𝑓1𝑖 , 𝑔

𝑞[𝑓1 𝑖](𝑓 ♯
𝑖
)
)

(Definition 1.20 and Exercise 1.21)

= (𝑓1𝑖 , 𝑓 ♯𝑖 # 𝑔). (Definition 1.1)

Then the 𝑝(1)-indexed family of natural transformations (𝑓 𝑖)𝑖∈𝑝(1) is an element of

∏
𝑖∈𝑝(1)

Poly(y𝑝[𝑖] , 𝑞) � Poly ©­«
∑
𝑖∈𝑝(1)

y𝑝[𝑖] , 𝑞
ª®¬ ,

where the isomorphism follows from the universal property of coproducts, as in the

proof of Proposition 3.6. Unwinding this isomorphism,we find that (𝑓 𝑖)𝑖∈𝐼 corresponds
to the natural transformation 𝑓 from

∑
𝑖∈𝑝(1) y

𝑝[𝑖] � 𝑝 to 𝑞 that we desire. □

Example 3.45. Let us return oncemore to the polynomials 𝑝 B y3+2y and 𝑞 B y4+y2+2

3.7. TRANSLATING BETWEEN NATURAL TRANSFORMATIONS AND LENSES 59

from Example 3.11 and the lens 𝑓 : 𝑝 → 𝑞 depicted below:

•
1

•
1

•
2

•
1

•
3

•
4

Fix a set 𝑋 B {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}. When viewed as a natural transformation, 𝑓 has as its

𝑋-component a function 𝑓𝑋 : 𝑝(𝑋) → 𝑞(𝑋). In other words, for each element of 𝑝(𝑋),
the lens 𝑓 should tell us how to obtain an element of 𝑞(𝑋).

We saw in Example 2.31 that each (𝑖 , 𝑔) ∈ 𝑝(𝑋) may be drawn as a 𝑝-corolla (cor-

responding to 𝑖) whose leaves are labeled with elements of 𝑋 (according to 𝑔). For

example, here we draw (1, 𝑔) ∈ 𝑝(𝑋), where 𝑔 : 𝑝[1] → 𝑋 is given by 1 ↦→ 𝑐, 2 ↦→ 𝑒 , and

3 ↦→ 𝑎:

•
1

𝑐 𝑒 𝑎

(3.46)

Similarly, each element of 𝑞(𝑋) can be drawn as a 𝑞-corolla whose leaves are labeled

with elements of 𝑋. So what element of 𝑞(𝑋) is 𝑓𝑋(1, 𝑔)?
Proposition 3.44 tells us that 𝑓𝑋(1, 𝑔) = (𝑓1(1), 𝑓 ♯

1

𝑔), so we need only focus on the

behavior of 𝑓 at 𝑝-position 1:

•
1

•
1

To draw (𝑓1(1), 𝑓 ♯
1

𝑔), we first draw the 𝑞-corolla corresponding to 𝑓1(1), the corolla

on the right hand side above. Then we label each leaf of that corolla by following the

arrow from that leaf to a 𝑝[1]-leaf, and use the label there from (3.46) (as prescribed by

𝑔). So 𝑓𝑋(1, 𝑔) looks like

•
1

𝑎 𝑐 𝑎 𝑎

Proposition 3.44 lets us translate from lenses to natural transformations. The fol-

lowing corollary tells us how to go in the other direction. In particular, it justifies the

notation 𝑓1 for the on-positions function of 𝑓 : it is the 1-component of 𝑓 as a natural

transformation.

Corollary 3.47. Let 𝑝 and 𝑞 be polynomial functors, and let 𝑓 : 𝑝 → 𝑞 be a natural

transformation between them. Then the isomorphism in (3.7) sends 𝑓 to the lenswhose

on-positions function 𝑓1 : 𝑝(1) → 𝑞(1) is the 1-component of 𝑓 andwhose on-directions

map 𝑓 ♯ : 𝑞[𝑓1(−)] → 𝑝[−] satisfies, for all 𝑖 ∈ 𝑝(1),

(𝑓1𝑖 , 𝑓 ♯𝑖) = 𝑓𝑝[𝑖](𝑖 , id𝑝[𝑖]).

Proof. By Proposition 3.44, the 1-component of 𝑓 is a function 𝑝(1) → 𝑞(1) sending
every 𝑖 ∈ 𝑝(1) to 𝑓1𝑖 ∈ 𝑞(1), so the on-positions function 𝑓1 is indeed equal to the 1-

60 CHAPTER 3. THE CATEGORY OF POLYNOMIAL FUNCTORS

component of 𝑓 . Moreover, for each 𝑖 ∈ 𝑝(1), the 𝑝[𝑖]-component 𝑓𝑝[𝑖] : 𝑝(𝑝[𝑖]) → 𝑞(𝑝[𝑖])
of 𝑓 sends (𝑖 , id𝑝[𝑖]) ∈ 𝑝(𝑝[𝑖]) to (𝑓1𝑖 , 𝑓 ♯𝑖 # id𝑝[𝑖]) = (𝑓1𝑖 , 𝑓 ♯𝑖). □

3.8 Identity lenses and lens composition

Thus far, we have seen how the category Poly of polynomial functors and natural

transformations can be identified with the category of indexed families of sets and

lenses. But in order to actually discuss the latter category, we need to be able to give

identity lenses and describe how lenses compose. We can do so by translating between

lenses and natural transformations.

For instance, given apolynomial 𝑝, its identity lens should correspond to the identity

natural transformation of 𝑝 as a functor.

Exercise 3.48 (Identity lenses; solution here). For 𝑝 ∈ Poly, let id𝑝 : 𝑝 → 𝑝 be its

identity natural transformation, whose 𝑋-component (id𝑝)𝑋 : 𝑝(𝑋) → 𝑝(𝑋) for 𝑋 ∈ Set
is the identity function on 𝑝(𝑋); that is, (id𝑝)𝑋 = id𝑝(𝑋).

Use Corollary 3.47 to show that the on-positions function (id𝑝)1 : 𝑝(1) → 𝑝(1) and
the on-directions functions (id𝑝)♯𝑖 : 𝑝[(id𝑝)1𝑖] → 𝑝[𝑖] for 𝑖 ∈ 𝑝(1) of id𝑝 are all identity

functions. ♦

Similarly, we may infer how two lenses compose by translating them to natural

transformations, composing those, then translating back to lenses.

Exercise 3.49 (Composing lenses; solution here). For 𝑝, 𝑞, 𝑟 ∈ Poly, let 𝑓 : 𝑝 → 𝑞

and 𝑔 : 𝑞 → 𝑟 be natural transformations, and let ℎ B 𝑓 # 𝑔 be their composite, whose

𝑋-component ℎ𝑋 : 𝑝(𝑋) → 𝑟(𝑋) for 𝑋 ∈ Set is the composite of the 𝑋-components of

𝑓 and 𝑔; that is, ℎ𝑋 = 𝑓𝑋 # 𝑔𝑋 .
Use Proposition 3.44 and Corollary 3.47 to show that the on-positions function

ℎ1 : 𝑝(1) → 𝑟(1) of ℎ is given by ℎ1 = 𝑓1 # 𝑔1, while the on-directions function ℎ
♯
𝑖
of ℎ

for 𝑖 ∈ 𝑝(1) is given by ℎ
♯
𝑖
= 𝑔♯

𝑓1 𝑖
𝑓 ♯

𝑖
. ♦

The following proposition, a restatement of the previous exercise, allows us to inter-

pret commutative diagrams of polynomials in Poly in terms of commutative diagrams

of their position- and direction-sets in Set.

3.8. IDENTITY LENSES AND LENS COMPOSITION 61

Proposition 3.50. Given 𝑝, 𝑞, 𝑟 ∈ Poly and lenses 𝑓 : 𝑝 → 𝑞, 𝑔 : 𝑞 → 𝑟, and ℎ : 𝑝 → 𝑟,

the diagram

𝑝 𝑞

𝑟

𝑓

ℎ
𝑔

commutes in Poly if and only if the forward on-positions diagram

𝑝(1) 𝑞(1)

𝑟(1)

𝑓1

ℎ1
𝑔1

commutes in Set and, for each 𝑖 ∈ 𝑝(1), the backward on-directions diagram

𝑝[𝑖] 𝑞[𝑓1𝑖]

𝑟[ℎ1𝑖]

𝑓
♯
𝑖

𝑔♯
𝑓1 𝑖

ℎ
♯
𝑖

commutes in Set.

We can use this fact to determine whether a given diagram in Poly commutes, as in

the following exercise.

Exercise 3.51 (Solution here). Using Proposition 3.50, verify explicitly that, for 𝑝, 𝑞 ∈
Poly, the polynomial 𝑝 + 𝑞 given by the binary sum of 𝑝 and 𝑞 satisfies the universal

property of the coproduct of 𝑝 and 𝑞. That is, provide lenses 𝜄 : 𝑝 → 𝑝 + 𝑞 and

𝜅 : 𝑞 → 𝑝+𝑞, then show that for any other polynomial 𝑟 equippedwith lenses 𝑓 : 𝑝 → 𝑟

and 𝑔 : 𝑞 → 𝑟, there exists a unique lens ℎ : 𝑝 + 𝑞 → 𝑟 (shown dashed) making the

following diagram commute:

𝑝 𝑝 + 𝑞 𝑞

𝑟

𝜄

𝑓
ℎ

𝜅

𝑔
(3.52)

♦

Now that we know how lens composition works in Poly, we have a better handle

on how it behaves categorically. For instance, we can verify functoriality in Poly, as in
the following exercise.

62 CHAPTER 3. THE CATEGORY OF POLYNOMIAL FUNCTORS

Exercise 3.53 (A functor Top → Poly; solution here). This exercise is for those who

know what topological spaces and continuous maps are. It will not be used again in

this book.

1. Given a topological space 𝑋, define a polynomial 𝑝𝑋 whose positions are the

points in 𝑋 and whose directions at 𝑥 ∈ 𝑋 are the open neighborhoods of 𝑥. That

is,

𝑝𝑋 B
∑
𝑥∈𝑋

y{𝑈⊆𝑋|𝑥∈𝑈,𝑈 open}.

Given a continuous map 𝑓 : 𝑋 → 𝑌, define a lens 𝑝𝑋 → 𝑝𝑌 either by writing

down its formula or drawing it in polyboxes.

2. Show that the assignment above defines a functor Top→ Poly.
3. Is this functor full? Is it faithful? ♦

3.9 Polybox pictures of lens composition

Given lenses 𝑓 : 𝑝 → 𝑞 and 𝑔 : 𝑞 → 𝑟, we can piece their polyboxes together to form

polyboxes for their composite, 𝑓 # 𝑔 : 𝑝 → 𝑟:

𝑝 𝑞 𝑟
𝑓1

𝑓 ♯

𝑔1

𝑔♯

The position box for 𝑞, whichwould be blue as part of the polyboxes for 𝑔 : 𝑞 → 𝑟 alone,

is instead filled in via 𝑓1; similarly, the direction box for 𝑞, which would be blue as part

of the polyboxes for just 𝑓 : 𝑝 → 𝑞, is filled in via 𝑔♯
. This forms a spreadsheet-filling

protocol that acts as the polyboxes for 𝑓 # 𝑔.

As we follow the arrows from left to right and up and left again, take care to note

that the arrow 𝑔♯
depends not only on the direction box of 𝑟, but also the position box

of 𝑞 that came before it. Similarly, 𝑓 ♯ depends on both the position box of 𝑝 and the

direction box of 𝑞. On the other hand, the arrow 𝑔1 depends only on the position box

of 𝑞, and not the position box of 𝑝 that came before it: 𝑔1 is the on-positions function

for a lens 𝑞 → 𝑟 and therefore depends only on its domain 𝑞. (Of course, changing

the position box of 𝑝 may change the position box of 𝑞 via 𝑓1, thus indirectly affecting

what 𝑔1 enters in the position box for 𝑟; we mean that if the position box of 𝑝 changes

but the position box of 𝑞 does not, 𝑔1 will not change the position box of 𝑟.) Similarly,

𝑔♯
does not depend on the position box of 𝑝, and 𝑓 ♯ does not depend on either box of

𝑟. The key is to let each arrow depend on exactly the boxes that come before it in the

domain and codomain of the lens that the arrow is a part of.

If we have another lens ℎ : 𝑝 → 𝑟, we can interpret the equation 𝑓 # 𝑔 = ℎ by filling

3.9. POLYBOX PICTURES OF LENS COMPOSITION 63

in their polyboxes and comparing them:

𝑓
♯
𝑖
𝑔♯
𝑓1 𝑖
𝑐

𝑖

𝑝

𝑔♯
𝑓1 𝑖
𝑐

𝑓1 𝑖

𝑞

𝑐

𝑔1 𝑓1 𝑖

𝑟
𝑓1

𝑓 ♯

𝑔1

𝑔♯

ℎ
♯
𝑖
𝑐

𝑖

𝑝

𝑐

ℎ1 𝑖

𝑟
ℎ1

ℎ♯

=

Here we have filled the blue boxes on either side with the same entries. Then if we

match up the uncolored boxes in the domain and codomain on either side, we can read

off the equations

𝑔1 𝑓1𝑖 = ℎ1𝑖 and 𝑓
♯
𝑖
𝑔♯
𝑓1 𝑖
𝑐 = ℎ

♯
𝑖
𝑐

for every 𝑝-position 𝑖 and 𝑟[ℎ1𝑖]-direction 𝑐, which agrees with Exercise 3.49 and

Proposition 3.50. Throughout this book, we will often read off equalities of positions

and directions from polybox pictures of lens equations in this way.

Note that there is redundancy in the above polybox picture: we have filled in all the

boxes for clarity, but their entries are determined by the entries in the blue boxes and

the labels on the arrows. So we may omit the entries in the uncolored boxes without

losing information, leaving the reader to fill in the blanks:

𝑖

𝑝 𝑞

𝑐

𝑟
𝑓1

𝑓 ♯

𝑔1

𝑔♯

𝑖

𝑝

𝑐

𝑟
ℎ1

ℎ♯

=

Remark 3.54. The readermay be concerned that whenworkingwith polyboxes, we refer

to “spreadsheets” and “protocols” without being rigorous about what they are or what

it means to set them equal. We choose to elide this issue to highlight the graphical

intuition rather than grinding through the details. This is not to say our work with

polyboxes will lack rigor moving forward—if you are particularly worried, you should

think of polyboxes as an alternate way to present information about indexed families

of sets, dependent functions, and sum and product sets that can be systematically

translated—via elementary steps, though perhapswith some laborious bookkeeping—

into the more standard ∈ and ∑
and

∏
notation we have been using thus far.

For example, given lenses 𝑓 : 𝑝 → 𝑞 and 𝑔 : 𝑞 → 𝑟, the polyboxes on the left hand

side of the equation above should be interpreted as the element of the set∏
𝑖∈𝑝(1)

∑
𝑘∈𝑟(1)

𝑝[𝑖]𝑟[𝑘] � Poly(𝑝, 𝑟)

corresponding to the lens 𝑝 → 𝑟 whose on-positions function 𝑝(1) → 𝑟(1) is the

composite of the on-positions functions 𝑓1 and 𝑔1 and whose on-directions function

𝑟[𝑔1 𝑓1𝑖] → 𝑝[𝑖] at 𝑖 ∈ 𝑝(1) is equal to the composite of the on-directions functions 𝑔♯
𝑓1 𝑖

64 CHAPTER 3. THE CATEGORY OF POLYNOMIAL FUNCTORS

and 𝑓
♯
𝑖
. In other words, the polyboxes represent the composite lens 𝑓 # 𝑔. But the poly-

boxes show how lenses pass positions and directions back and forth far more legibly

than the last two sentences can. Throughout the rest of this book, we will see how this

polybox notation provides immediate, reader-friendly computations and justifications;

but all these results can be translated back into more groundedmathematical language

as desired.

Example 3.55 (Modeling with a composite lens in polyboxes). By composing the lens

𝑓 : 𝑝 → 𝑞 from Example 3.14 that models the exchange of money between Caroline

(modeled by 𝑞) and her parents (modeled by 𝑝) with the lens 𝛾 : 𝑞 → y from Exam-

ple 3.38 that models how Caroline spends her money, we obtain a lens 𝑓 # 𝛾 : 𝑝 → y

that models howCaroline’s parents spend their money through Caroline. The polybox

picture of the composite lens 𝑓 # 𝛾 is given by merging the polybox pictures of 𝑓 and 𝛾:

(
𝑖

𝑖 + 𝑗 ·
𝑖 + 𝑗

2

,
𝑗

𝑖 + 𝑗 ·
𝑖 + 𝑗

2

)
(𝑖 , 𝑗)
𝑝

𝑖 + 𝑗
2

𝑖 + 𝑗
𝑞

𝑓1

𝑓 ♯

𝛾
(𝑖/2, 𝑗/2)

(𝑖 , 𝑗)
𝑝

𝑓 # 𝛾
=

Here (𝑖 , 𝑗) ∈ 𝑝(1) = (0, 20] × (0, 20]. The right hand side summarizes what happens

to the parents: if the first parent gives away 𝑖 dollars and the second parent gives

away 𝑗 dollars, eventually the first parent will receive 𝑖/2 dollars and the second parent

will receive 𝑗/2 dollars. The factored left hand side describes how this happens: the

parents give 𝑖 and 𝑗 dollars respectively to Caroline, who takes the 𝑖 + 𝑗 dollars total
and spends half of it. She then returns the remaining half to her parents, splitting the

money proportionately according to the amount each parent contributed.

3.10 Symmetric monoidal products of polynomial functors

One of the reasons Poly is so versatile is that there is an abundance of monoidal

structures on it. Monoidal structures are the key ingredient to many applications of

categories to real-world settings, and Poly is no different in that regard. As a bonus, if

you know how to add and multiply polynomials from high school algebra, then you

already know how to compute two of the monoidal products on Poly.
We have already seen one of these monoidal structures on Poly: the cocartesian

monoidal structure, which gives Poly its finite coproducts. In fact, we know from

Proposition 3.3 that Poly has all coproducts: they are given by an operation that looks

just like addition. It turns out Poly has all products as well, giving it a cartesian

monoidal structure that looks just like multiplication.

3.10. SYMMETRIC MONOIDAL PRODUCTS OF POLYNOMIAL FUNCTORS 65

Proposition 3.56. The category Poly has arbitrary products, coinciding with products

in SetSet
given by the operation

∏
𝑖∈𝐼 .

Proof. Unsurprisingly, the proof is very similar to that of Proposition 3.3.

By Corollary 1.38, the category SetSet
has arbitrary products given by

∏
𝑖∈𝐼 . The full

subcategory inclusion Poly → SetSet
reflects these products. It remains to show that

Poly is closed under the operation

∏
𝑖∈𝐼 .

By Proposition 1.40, SetSet
is completely distributive. Hence, given polynomials

(𝑝𝑖)𝑖∈𝐼 , we can use (1.32) to write their product in SetSet
as∏

𝑖∈𝐼
𝑝𝑖 �

∏
𝑖∈𝐼

∑
𝑗∈𝑝𝑖(1)

y𝑝𝑖[𝑗] �
∑

𝑗∈∏𝑖∈𝐼 𝑝𝑖(1)

∏
𝑖∈𝐼

y𝑝𝑖[𝑗𝑖] �
∑

𝑗∈∏𝑖∈𝐼 𝑝𝑖(1)
y
∑
𝑖∈𝐼 𝑝𝑖[𝑗𝑖] , (3.57)

which, as a coproduct of representables, is in Poly. □

Corollary 3.58. The category Poly is completely distributive.

Proof. This is a direct consequence of the fact that Poly has arbitrary (co)products

coinciding with (co)products in SetSet
(Propositions 3.3 and 3.56) and the fact that

SetSet
itself is completely distributive (Proposition 1.40). □

The result above will allow us to apply (1.32), or sometimes specifically (1.34), to

push

∏
’s past

∑
’s of polynomials whenever we so desire.

Exercise 3.59 (Solution here). Use (3.7) to verify that

Poly

(
𝑞,

∏
𝑖∈𝐼

𝑝𝑖

)
�

∏
𝑖∈𝐼

Poly(𝑞, 𝑝𝑖)

for all polynomials (𝑝𝑖)𝑖∈𝐼 and 𝑞, as one would expect from the universal property of

products. ♦

Exercise 3.60 (Solution here). Let 𝑝1 B y+ 1, 𝑝2 B y+ 2, and 𝑝3 B y2
. What is

∏
𝑖∈3 𝑝𝑖

according to (3.57)? Is the answer what you would expect? ♦

It follows from (3.57) that the terminal object of Poly is 1, and that binary products

are given by

𝑝 × 𝑞 �
∑
𝑖∈𝑝(1)

∑
𝑗∈𝑞(1)

y𝑝[𝑖]+𝑞[𝑗]. (3.61)

We will sometimes write 𝑝𝑞 rather than 𝑝 × 𝑞:

𝑝𝑞 B 𝑝 × 𝑞.

66 CHAPTER 3. THE CATEGORY OF POLYNOMIAL FUNCTORS

Example 3.62. We can draw the product of two polynomials in terms of their associated

forests. Let 𝑝 B y3 + y and 𝑞 B y4 + y2 + 1.

•
1

•
2

𝑝

•
1

•
2

•
3

𝑞

Then 𝑝𝑞 � y7 + 2y5 + 2y3 + y. We take all pairs of positions, and for each pair we take

the disjoint union of the directions.

•
(1,1)

•
(1,2)

•
(1,3)

•
(2,1)

•
(2,2)

•
(2,3)

𝑝𝑞

In practice, we can multiply polynomial functors the same way we would multiply

two polynomials in high school algebra.

Exercise 3.63 (Solution here).
1. Show that for sets 𝐴1 , 𝐵1 , 𝐴2 , 𝐵2, we have

𝐵1y
𝐴1 × 𝐵2y

𝐴2 � 𝐵1𝐵2y
𝐴1+𝐴2 .

2. Show that for sets (𝐴𝑖)𝑖∈𝐼 , (𝐴 𝑗)𝑗∈𝐽 , (𝐵𝑖)𝑖∈𝐼 , and (𝐵 𝑗)𝑗∈𝐽 , we have(∑
𝑖∈𝐼

𝐵𝑖y
𝐴𝑖

)
× ©­«

∑
𝑗∈𝐽

𝐵 𝑗y
𝐴𝑗ª®¬ �

∑
𝑖∈𝐼

∑
𝑗∈𝐽

𝐵𝑖𝐵 𝑗y
𝐴𝑖+𝐴𝑗 .

♦

As lenses, the canonical projections 𝜋 : 𝑝𝑞 → 𝑝 and 𝜑 : 𝑝𝑞 → 𝑞 behave quite natu-

rally: onpositions, they are theprojections from (𝑝𝑞)(1) � 𝑝(1)×𝑞(1) to 𝑝(1) and 𝑞(1), re-
spectively; on directions, they are the inclusions 𝑝[𝑖] → 𝑝[𝑖]+𝑞[𝑗] and 𝑞[𝑗] → 𝑝[𝑖]+𝑞[𝑗]
for each position (𝑖 , 𝑗) of 𝑝𝑞.

Exercise 3.64 (Solution here). Verify that, for 𝑝, 𝑞 ∈ Poly, the polynomial 𝑝𝑞 given

by (3.61) along with the lenses 𝜋 : 𝑝𝑞 → 𝑝 and 𝜑 : 𝑝𝑞 → 𝑞 described above satisfy the

universal property of the product of 𝑝 and 𝑞. ♦

Much of Part II will focus on the remarkable features of another monoidal structure,

an asymmetric one, whose definition we will postpone—we will save its surprises for

when we can better savor them. But here we introduce a third symmetric monoidal

structure, given by an operation you were not allowed to do to polynomials back in

high school.

3.10. SYMMETRIC MONOIDAL PRODUCTS OF POLYNOMIAL FUNCTORS 67

Definition 3.65 (Parallel product of polynomials). Let 𝑝 and 𝑞 be polynomials. Their

parallel product (also called Dirichlet product), denoted 𝑝 ⊗ 𝑞, is given by the formula

𝑝 ⊗ 𝑞 B
∑
𝑖∈𝑝(1)

∑
𝑗∈𝑞(1)

y𝑝[𝑖]×𝑞[𝑗]. (3.66)

One should compare this with the formula for the product of polynomials shown

in (3.61). The difference is that the parallel product multiplies exponents where the

categorical product adds them.

Exercise 3.67 (Solution here).
1. Show that for sets 𝐴1 , 𝐵1 , 𝐴2 , 𝐵2, we have

𝐵1y
𝐴1 ⊗ 𝐵2y

𝐴2 � 𝐵1𝐵2y
𝐴1𝐴2 .

2. Show that for sets (𝐴𝑖)𝑖∈𝐼 , (𝐴 𝑗)𝑗∈𝐽 , (𝐵𝑖)𝑖∈𝐼 , and (𝐵 𝑗)𝑗∈𝐽 , we have(∑
𝑖∈𝐼

𝐵𝑖y
𝐴𝑖

)
⊗ ©­«

∑
𝑗∈𝐽

𝐵 𝑗y
𝐴𝑗ª®¬ �

∑
𝑖∈𝐼

∑
𝑗∈𝐽

𝐵𝑖𝐵 𝑗y
𝐴𝑖𝐴𝑗 .

♦

Exercise 3.68 (Solution here).
1. If 𝑝 B 𝐴 and 𝑞 B 𝐵 are constant polynomials, what is 𝑝 ⊗ 𝑞?
2. If 𝑝 B 𝐴y and 𝑞 B 𝐵y are linear polynomials, what is 𝑝 ⊗ 𝑞?
3. For arbitrary 𝑝, 𝑞 ∈ Poly, show that the sets (𝑝 ⊗ 𝑞)(1) and 𝑝(1) × 𝑞(1) are isomor-

phic. ♦

Exercise 3.69 (Solution here). Consider the polynomials 𝑝 B 2y2+3y and 𝑞 B y4+3y3
.

1. What is 𝑝 × 𝑞?
2. What is 𝑝 ⊗ 𝑞?
3. Expand the following expression in the variable 𝑦 according to the ordinary laws

of arithmetic.

(2 · 2𝑦 + 3 · 1𝑦) · (1 · 4𝑦 + 3 · 3𝑦)

The factors of the above product are called Dirichlet series.
4. Describe the connection between the last two parts. (This is why the parallel

product ⊗ is also known as the Dirichlet product.) ♦

68 CHAPTER 3. THE CATEGORY OF POLYNOMIAL FUNCTORS

Example 3.70. We can draw the parallel product of two polynomials in terms of their

associated forests. Let 𝑝 B y3 + y and 𝑞 B y4 + y2 + 1.

•
1

•
2

𝑝

•
1

•
2

•
3

𝑞

Then 𝑝 ⊗ 𝑞 � y12 + y6 + y4 + y2 + 2. We take all pairs of positions, and for each pair we

take the product of the directions.

•
(1,1)

•
(1,2)

•
(1,3)

•
(2,1)

•
(2,2)

•
(2,3)

𝑝 ⊗ 𝑞

Exercise 3.71 (Solution here). Let 𝑝 B y2 + y and 𝑞 B 2y4
.

1. Draw 𝑝 and 𝑞 as corolla forests.

2. Draw 𝑝𝑞 = 𝑝 × 𝑞 as a corolla forest.
3. Draw 𝑝 ⊗ 𝑞 as a corolla forest. ♦

Exercise 3.72 (Solution here). Let 𝑝, 𝑞, 𝑟 ∈ Poly be any polynomials.

1. Show that there is an isomorphism 𝑝 ⊗ y � 𝑝.

2. Show that there is an isomorphism (𝑝 ⊗ 𝑞) ⊗ 𝑟 � 𝑝 ⊗ (𝑞 ⊗ 𝑟).
3. Show that there is an isomorphism 𝑝 ⊗ 𝑞 � 𝑞 ⊗ 𝑝. ♦

In Exercise 3.72, we have gone most of the way to proving that (Poly, y,⊗) is a

symmetric monoidal category. We sketch the rest of the proof as follows.

Proposition 3.73. The category Poly has a symmetric monoidal structure (y,⊗)where

⊗ is the parallel product from Definition 3.65.

Sketch of proof. Given two lenses 𝑓 : 𝑝 → 𝑝′ and 𝑔 : 𝑞 → 𝑞′, we need to define a lens

(𝑓 ⊗ 𝑔) : (𝑝 ⊗ 𝑞) → (𝑝′ ⊗ 𝑞′). This is easiest to define using polyboxes, keeping in

mind that the positions and directions of a parallel product are pairs of positions and

directions of its constituent factors:

(𝑓 ♯
𝑖
𝑎, 𝑔♯

𝑗
𝑏)

(𝑖 , 𝑗)
𝑝 ⊗ 𝑞

(𝑎, 𝑏)

(𝑓1 𝑖 , 𝑔1 𝑗)
𝑝′ ⊗ 𝑞′

(𝑓 ⊗ 𝑔)1

(𝑓 ⊗ 𝑔)♯

Here 𝑖 ∈ 𝑝(1), 𝑗 ∈ 𝑞(1), 𝑎 ∈ 𝑝′[𝑓1𝑖], and 𝑏 ∈ 𝑞′[𝑔1 𝑗].

3.10. SYMMETRIC MONOIDAL PRODUCTS OF POLYNOMIAL FUNCTORS 69

ThenExercise 3.72 gives us the unitors, associator, and braiding. Wehave not proven

the functoriality of ⊗, the naturality of the isomorphisms from Exercise 3.72, or all the

coherences between these isomorphisms, but we ask the reader to take them on trust

or to check them for themselves. Alternatively, we may invoke the Day convolution to

obtain the monoidal structure (y,⊗) directly: see Proposition 3.79. □

Exercise 3.74 (Solution here).
1. What is (3y5 + 6y2) ⊗ 4? Hint: 4 = 4y0

.

2. Is the class of constant polynomials a ⊗-ideal; that is, is the parallel product of a

polynomial and a constant polynomial always a constant? ♦

Exercise 3.75 (Solution here). Which of the following special classes of polynomials

are closed under ⊗? Note also whether they contain y.

1. The class {𝐴y0 | 𝐴 ∈ Set} of constant polynomials.

2. The class {𝐴y | 𝐴 ∈ Set} of linear polynomials.

3. The class {𝐴y + 𝐵 | 𝐴, 𝐵 ∈ Set} of affine polynomials.

4. The class {𝐴y2 + 𝐵y + 𝐶 | 𝐴, 𝐵, 𝐶 ∈ Set} of quadratic polynomials.

5. The class {𝐴y𝐵 | 𝐴, 𝐵 ∈ Set} of monomials.

6. The class {𝑆y𝑆 | 𝑆 ∈ Set}.
7. The class {𝑝 ∈ Poly | 𝑝(1) is finite}. ♦

Exercise 3.76 (Solution here). What is the smallest class of polynomials that is closed

under ⊗ and contains y? ♦

Exercise 3.77 (Solution here). Show that for any 𝑝1 , 𝑝2 , 𝑞 ∈ Poly there is an isomorphism

(𝑝1 + 𝑝2) ⊗ 𝑞 � (𝑝1 ⊗ 𝑞) + (𝑝2 ⊗ 𝑞).

♦

Remark 3.78. Monoids in Poly with respect to the parallel product ⊗ are particularly

interesting—they have a kind of collective semantics, letting agents aggregate their

contributions and distribute returns on those contributions in a coherent way. We

leave discussion of them to future work, so as not to distract us from our main story.

There is a more general way to obtain monoidal structures on Poly like × and ⊗
using a construction known as the Day convolution, defined by a special kind of colimit

known as a coend. If you have not seen the Day convolution or coends before, do not

fret: we will not use them elsewhere in the book, and rest assured that the fact about

coends known as the co-Yoneda lemma employed in the following proof is a standard

and purely formal result.

70 CHAPTER 3. THE CATEGORY OF POLYNOMIAL FUNCTORS

Proposition 3.79. For any monoidal structure (𝐼 ,★) on Set, there is a corresponding

monoidal structure (y𝐼 ,⊙) on Poly, where ⊙ is the Day convolution. Moreover, ⊙
distributes over coproducts.

In the case of (0,+) and (1,×), this procedure returns the (1,×) and (y,⊗)monoidal

structures respectively.

Proof. Any monoidal structure (𝐼 ,★) on Set induces a monoidal structure on SetSet

with the Day convolution ⊙ as the tensor product and y𝐼 as the unit. To prove that this

monoidal structure restricts to Poly, it suffices to show that Poly is closed under the

Day convolution.

Given polynomials 𝑝 and 𝑞, their Day convolution in SetSet
is given by the coend

𝑝 ⊙ 𝑞 �
∫ (𝐴,𝐵)∈Set2

y𝐴★𝐵 × 𝑝(𝐴) × 𝑞(𝐵). (3.80)

We can rewrite the product 𝑝(𝐴) × 𝑞(𝐵) as

𝑝(𝐴) × 𝑞(𝐵) � ©­«
∑
𝑖∈𝑝(1)

𝐴𝑝[𝑖]
ª®¬ × ©­«

∑
𝑗∈𝑞(1)

𝐵𝑞[𝑖]
ª®¬ �

∑
(𝑖 , 𝑗)∈𝑝(1)×𝑞(1)

𝐴𝑝[𝑖] × 𝐵𝑞[𝑖]

So because products distribute over coproducts in SetSet
and coends always commute

with coproducts (as they are both colimits), we can rewrite (3.80) as

𝑝 ⊙ 𝑞 �
∑

(𝑖 , 𝑗)∈𝑝(1)×𝑞(1)

∫ (𝐴,𝐵)∈Set2

y𝐴★𝐵 × 𝐴𝑝[𝑖] × 𝐵𝑞[𝑖]

�
∑

(𝑖 , 𝑗)∈𝑝(1)×𝑞(1)

∫ (𝐴,𝐵)∈Set2

y𝐴★𝐵 × Set2((𝑝[𝑖], 𝑞[𝑗]), (𝐴, 𝐵))

which, by the co-Yoneda lemma, can be rewritten as

𝑝 ⊙ 𝑞 �
∑

(𝑖 , 𝑗)∈𝑝(1)×𝑞(1)
y𝑝[𝑖]★𝑞[𝑗] , (3.81)

which is in Poly. That the Day convolution distributes over coproducts also follows

from the fact that products distribute over coproducts in SetSet
and that coends com-

mute with coproducts; or, alternatively, directly from (3.81).

We observe that (3.81) gives (y𝐼 ,⊙) = (1,×)when (𝐼 ,★) B (0,+) and (y𝐼 ,⊙) = (y,⊗)
when (𝐼 ,★) B (1,×). □

Exercise 3.82 (Solution here). There is a monoidal structure on Set whose unit is 0 and

whose product is given by (𝐴, 𝐵) ↦→ 𝐴 + 𝐴𝐵 + 𝐵.
1. Verify that the operation (𝐴, 𝐵) ↦→ 𝐴 + 𝐴𝐵 + 𝐵 on Set is associative.
2. Verify that 0 is the unit for the above operation.

3. Let (1,⊙) denote the corresponding monoidal structure on Poly obtained via

3.11. SUMMARY AND FURTHER READING 71

Proposition 3.79. Compute the monoidal product (y3 + y) ⊙ (2y2 + 2). ♦

3.11 Summary and further reading

In this chapter, we introduced the categoryPoly, whose objects are polynomial functors

and whose morphisms are the natural transformations between them. We call these

natural transformations dependent lenses, or lenses for short. We also proved our first

categorical property of Poly: that it has all small coproducts.

The main result of this chapter was a concrete characterization of our dependent

lenses between polynomial functors. A dependent lens 𝑓 : 𝑝 → 𝑞 is characterized by

its

• on-positions function, a function 𝑓1 : 𝑝(1) → 𝑞(1) sending 𝑝-positions forward to

𝑞-positions; and its

• on-directions functions, one for each 𝑝-position 𝑖 denoted 𝑓 ♯
𝑖

: 𝑞[𝑓1𝑖] → 𝑝[𝑖] sending
𝑞[𝑓1𝑖]-directions backward to 𝑝[𝑖]-directions.

This forward-backward relationship is what makes dependent lenses so well-suited

for modeling interaction protocols. Given two agents with positions and directions, a

dependent lens between them defines an interaction protocol that describes how the

position of the first agent determines the position of the second agent and how the

direction of the second agent determines the direction of the first. This perspective is

exhibited by our corolla and polybox pictures for lenses. We studied examples of lenses

between special polynomials: in particular, lenses between monomials are known as

bimorphic lenses in functional programming literature.

We then unwound our interpretation of natural transformations between polyno-

mials as dependent lenses with on-positions and on-directions functions to describe

what happens to these functions when lenses compose. This gave us an accessible way

to interpret commutative diagrams in Poly that is particularly convenient to express

using polyboxes.

Finally, we considered various categorical structures on Poly, e.g. that it has all

products and coproducts, and that these distribute:

∏∑→ ∑∏
.∑

𝑎∈𝐴
𝑝𝑎 B

∑
(𝑎,𝑖)∈∑𝑎∈𝐴 𝑝𝑎(1)

y𝑝𝑎[𝑖]
∏
𝑎∈𝐴

𝑝𝑎 B
∑

𝑖∈∏𝑎∈𝐴 𝑝𝑎(1)
y
∑
𝑎∈𝐴 𝑝𝑎[𝑖𝑎]

𝑝1 + 𝑝2 B
∑

(𝑎,𝑖)∈{(1,𝑖1)|𝑖1∈𝑝1(1)}+{(2,𝑖2)|𝑖2∈𝑝2(1)}
y𝑝𝑎[𝑖] 𝑝1 × 𝑝2 B

∑
(𝑖1 ,𝑖2)∈𝑝1(1)×𝑝2(1)

y𝑝1[𝑖1]+𝑝2[𝑖2]

We also discussed how one can take any monoidal product ★ from Set and lift it to a

monoidal product · on Poly:

𝑝1 ⊙ 𝑝2 B
∑

𝑖1 ,𝑖2)∈𝑝1(1)×𝑝2(1)
y𝑝1[𝑖1]·𝑝2[𝑖2]

A special case of this is the product structure × on Poly, which emerges from the

coproduct structure + on Set. The other case of interest is the parallel (or Dirichlet)

72 CHAPTER 3. THE CATEGORY OF POLYNOMIAL FUNCTORS

product structure ⊗ on Poly, which emerges from the product structure × on Set:

𝑝1 ⊗ 𝑝2 B
∑

𝑖1 ,𝑖2)∈𝑝1(1)×𝑝2(1)
y𝑝1[𝑖1]×𝑝2[𝑖2]

Variants of lenses are studied in compositional game theory [Hed+16; Hed17;

Hed18a; Hed18b], in categorical database theory [JRW12], in functional programming

and programming language theory [BPV06; OCo11; Abo+16], and inmore generalized

categorical settings [GJ12; Spi19].

3.12 Exercise solutions
Solution to Exercise 3.2.

We know that Poly is the full subcategory of SetSet
spanned by polynomial functors, including y𝑆 and

𝑞. So Poly(y𝑆 , 𝑞) = SetSet(y𝑆 , 𝑞). Hence the natural isomorphism Poly(y𝑆 , 𝑞) � 𝑞(𝑆) follows directly

from the Yoneda lemma (Lemma 1.10) with 𝐹 B 𝑞.

Solution to Exercise 3.12.
1. Here are the corolla forests associated to 𝑝 B y3 + y + 1, 𝑞 B y2 + y2 + 2, and 𝑟 B y3

(with each

root labeled for convenience).

•
1

•
2

•
3

𝑝

•
1

•
2

•
3

•
4

𝑞

•
1

𝑟

2. Here is one possible lens 𝑝 → 𝑞 (you may have drawn others).

•
1

•
2

•
2

•
4

•
3

•
3

3. As depicted, our lens assigns to the first position of 𝑝 the second position of 𝑞, whose first and

seconddirections are passed back to the third andfirst directions, respectively, of the first position

of 𝑝. Then the second position of 𝑝 is assigned the fourth position of 𝑞, which has no directions;

effectively, the choice of direction of the second position of 𝑝 has been canceled. Finally, the third

position of 𝑝 is assigned the third position of 𝑞; here neither position has any directions.

4. There cannot be a lens 𝑝 → 𝑟 for the following reason: if we send the third position of 𝑝, which

has no directions, to the sole position of 𝑟, which has 3 directions, then there is no way to pass a

choice of one of those 3 directions back to any of the options on the third menu of 𝑝, as there are

no such options.

Solution to Exercise 3.16.
1. We let 𝑝 B y3 + 1 (you could have selected others) and draw both y2

and 𝑝 as corolla forests,

labeling each root for convenience.

•
1

y2

•
1

•
2

𝑝

2. When constructing a lens y2 → 𝑝, the unique position of y2
can be sent to either 𝑝-position. If

it is sent to the first 𝑝-position, then each of the 3 directions in 𝑝[1] must be sent to one of the 2

3.12. EXERCISE SOLUTIONS 73

directions of y2
, for a total of 2

3 = 8 lenses. Otherwise, the unique position of y2
is sent to the

second 𝑝-position, at which there are no directions; so there is exactly 1 lens like this. Hence

there are 8 + 1 = 9 lenses y2 → 𝑝.

3. The cardinality of 𝑝(2) is |23 + 1| = 9, which agrees with previous answer, as predicted by the

Yoneda lemma.

Solution to Exercise 3.17.
By (3.7), we have for all 𝑝, 𝑞 ∈ Poly that

|Poly(𝑝, 𝑞)| =
∏
𝑖∈𝑝(1)

|𝑞(𝑝[𝑖])|.

1. If 𝑝 B y3
and 𝑞 B y4

, then

|Poly(𝑝, 𝑞)| =
∏
𝑖∈1
|𝑝[𝑖]|4 = 3

4 = 81.

2. If 𝑝 B y3 + 1 and 𝑞 B y4
, then

|Poly(𝑝, 𝑞)| =
∏
𝑖∈2
|𝑝[𝑖]|4 = 3

4 · 04 = 0.

3. If 𝑝 B y3 + 1 and 𝑞 B y4 + 1, then

|Poly(𝑝, 𝑞)| =
∏
𝑖∈2

(
|𝑝[𝑖]|4 + 1

)
= (34 + 1)(04 + 1) = 82.

4. If 𝑝 B 4y3 + 3y2 + y and 𝑞 B y, then

|Poly(𝑝, 𝑞)| =
∏
𝑖∈8
|𝑝[𝑖]| = 3

4 · 23 · 1 = 648.

5. If 𝑝 B 4y3
and 𝑞 B 3y, then

|Poly(𝑝, 𝑞)| =
∏
𝑖∈4

3|𝑝[𝑖]| = (3 · 3)4 = 6561.

Solution to Exercise 3.18.
1. By (3.7), it suffices to show that for all 𝑖 ∈ 𝑝(1) and 𝑗 ∈ 𝑞(1), we have

𝑝[𝑖]𝑞[𝑗] �
∏
𝑏∈𝑞[𝑗]

∑
𝑎∈𝑝[𝑖]

1.

Indeed, by (1.30) and Exercise 1.17, we have∏
𝑏∈𝑞[𝑗]

∑
𝑎∈𝑝[𝑖]

1 �
∑

𝑎̄ : 𝑞[𝑗]→𝑝[𝑖]

∏
𝑏∈𝑞[𝑗]

1 (1.30)

�
∑

𝑎̄ : 𝑞[𝑗]→𝑝[𝑖]
1 (Exercise 1.17 #2)

� Set(𝑞[𝑗], 𝑝[𝑖]) (Exercise 1.17 #1)

� 𝑝[𝑖]𝑞[𝑗].

2. By (3.7) and (1.30), we have

Poly(𝑝, 𝑞) �
∏
𝑖∈𝑝(1)

∑
𝑗∈𝑞(1)

𝑝[𝑖]𝑞[𝑗] (3.7)

�
∑

𝑓1 : 𝑝(1)→𝑞(1)

∏
𝑖∈𝑝(1)

𝑝[𝑖]𝑞[𝑓1 𝑖] (1.30)

74 CHAPTER 3. THE CATEGORY OF POLYNOMIAL FUNCTORS

�
∑

𝑓1 : 𝑝(1)→𝑞(1)

∏
𝑗∈𝑞(1)

∏
𝑖∈𝑝(1),
𝑓1 𝑖=𝑗

𝑝[𝑖]𝑞[𝑗] (∗)

�
∑

𝑓1 : 𝑝(1)→𝑞(1)

∏
𝑗∈𝑞(1)

Set

(
𝑞[𝑗],

∏
𝑖∈𝑝(1),
𝑓1 𝑖=𝑗

𝑝[𝑖]
)

(Universal property of products)

where (∗) follows from the fact that for any function 𝑓1 : 𝑝(1) → 𝑞(1), its domain 𝑝(1) can be

written as the disjoint union of preimages 𝑓 −1

1 (𝑗) = {𝑖 ∈ 𝑝(1) | 𝑓1 𝑖 = 𝑗} for each 𝑗 ∈ 𝑞(1).
3. To explain how an element of the set

𝐷𝑝,𝑞 B
∑

𝑓1 : 𝑝(1)→𝑞(1)

∏
𝑗∈𝑞(1)

Set

(
𝑞[𝑗],

∏
𝑖∈𝑝(1),
𝑓1 𝑖=𝑗

𝑝[𝑖]
)

corresponds to a lens 𝑝 → 𝑞, we first give the instructions for choosing an element of 𝐷𝑝,𝑞 as a

nested list.

To choose an element of 𝐷𝑝,𝑞 :

1. choose a function 𝑓1 : 𝑝(1) → 𝑞(1);
2. for each element 𝑗 ∈ 𝑞(1):

1. for each element of 𝑞[𝑗]:
1. for each element 𝑖 ∈ 𝑝(1) satisfying 𝑓1 𝑖 = 𝑗:

1. choose an element of 𝑝[𝑖].
So 𝑓1 sends each 𝑝-position to a 𝑞-position, as an on-positions function should. Then for each

𝑞-position 𝑗, each 𝑞[𝑗]-direction 𝑏, and each 𝑝-position 𝑖 that 𝑓1 sends to 𝑗, we choose an element

of 𝑝[𝑖] that 𝑓 ♯
𝑖

: 𝑞[𝑗] → 𝑝[𝑖] assigns to 𝑏. As every 𝑝-position 𝑖 is sent to some 𝑞-position 𝑗 by 𝑓1,

this completely characterizes 𝑓
♯
𝑖
for every 𝑝-position 𝑖.

Solution to Exercise 3.21.
We have

Poly ©­«
∑

(𝑖 , 𝑗)∈∑𝑖∈𝐼 𝑝𝑖 (1)
y𝑝𝑖 [𝑗] , 𝑞ª®¬ �

∏
(𝑖 , 𝑗)∈∑𝑖∈𝐼 𝑝𝑖 (1)

𝑞(𝑝𝑖[𝑗]) (3.7)

�
∏
𝑖∈𝐼

∏
𝑗∈𝑝𝑖 (1)

𝑞(𝑝𝑖[𝑗])

�
∏
𝑖∈𝐼

Poly(𝑝𝑖 , 𝑞). (3.7)

Solution to Exercise 3.23.
1. We construct a lens ¤𝑝y→ 𝑝, or a lens∑

𝑖∈𝑝(1)

∑
𝑎∈𝑝[𝑖]

y𝑝[𝑖] →
∑
𝑖∈𝑝(1)

y𝑝[𝑖] ,

as follows. It sends each position (𝑖 , 𝑎) ∈ ∑
𝑖∈𝑝(1) 𝑝[𝑖] of ¤𝑝y to its first projection 𝑖 ∈ 𝑝(1), and it is

the identity on directions.

2. There is not always a lens 𝑝 → ¤𝑝: if 𝑝 B 1, then ¤𝑝 B 0, and there is no lens 1→ 0.
3. There is not always a lens ¤𝑝 → 𝑝: take 𝑝 B y, so ¤𝑝 B 1. A lens 1→ ymust have an on-directions

function 1→ 0, but there is no such function.

4. We show that even when there is a lens 𝑝 → 𝑞, there is not necessarily a lens ¤𝑝 → ¤𝑞. Take 𝑝 B y

and 𝑞 B 1. Then there is a lens 𝑝 → 𝑞 that sends the unique position of y to the unique position

of 1 and is the empty function on directions. But ¤𝑝 = 1 and ¤𝑞 = 0, and there is no lens 1→ 0.

3.12. EXERCISE SOLUTIONS 75

5. We construct a lens 𝑔 : [𝑝, y] ⊗ 𝑝 → ¤𝑝, where [𝑝, y] ⊗ 𝑝 is given by (3.24), as follows. The

on-positions function 𝑔1 takes 𝑓 ∈ ∏
𝑖∈𝑝(1) 𝑝[𝑖] and 𝑖 ∈ 𝑝(1) and sends the pair of them to

the ¤𝑝-position corresponding to 𝑖 ∈ 𝑝(1) and 𝑓 𝑖 ∈ 𝑝[𝑖]. Then ¤𝑝[(𝑖 , 𝑓 𝑖)] = 𝑝[𝑖] − { 𝑓 𝑖} and

([𝑝, y] ⊗ 𝑝)[(𝑓 , 𝑖)] � 𝑝(1) × 𝑝[𝑖], so the on-directions function 𝑔♯(𝑓 ,𝑖) can send each 𝑎 ∈ 𝑝[𝑖] − { 𝑓 𝑖}
to (𝑖 , 𝑎) ∈ 𝑝(1) × 𝑝[𝑖].

6. We describe a lens 𝑝y → 𝑞 in terms of “unassigned” directions. Observe that 𝑝y has the same

positions as 𝑝 but has one more direction than 𝑝 does at each position. Given a position 𝑖 ∈ 𝑝(1),
we denote this extra (𝑝y)[𝑖]-direction by ∗𝑖 , identifying (𝑝y)[𝑖]with 𝑝[𝑖]+{∗𝑖}. So a lens 𝑓 : 𝑝y→ 𝑞

sends each 𝑝-position 𝑖 to a 𝑞-position 𝑗, but every 𝑞[𝑗]-direction could be sent back to either an

original 𝑝[𝑖]-direction or the extra (𝑝y)[𝑖]-direction ∗𝑖 . So a lens 𝑝y → 𝑞 is like a lens 𝑝 → 𝑞,

except that some of the directions of 𝑞 may remain “unassigned” to any direction of 𝑝, which we

signify by assigning them to ∗𝑖 instead. In other words, a lens 𝑝y→ 𝑞 could be interpreted as a

lens 𝑝 → 𝑞 whose on-directions functions may only be partially defined.

Solution to Exercise 3.25.
We have

¤𝑝(1) �
∑
𝑖∈𝑝(1)

∑
𝑎∈𝑝[𝑖]

1𝑝[𝑖]−{𝑎} �
∑
𝑖∈𝑝(1)

𝑝[𝑖],

which is precisely the set of all directions of 𝑝.

Solution to Exercise 3.27.
1. Since 0 � 0y is a linear polynomial, Example 3.26 tells us that lenses 0→ 𝑝 can be identified with

functions 0→ 𝑝(1). There is exactly one function 0→ 𝑝(1), so there is exactly one lens 0→ 𝑝.

2. Since y � 1y is a linear polynomial, Example 3.26 tells us that lenses y → 𝑝 can be identified

with functions 1→ 𝑝(1), which in turn can be identified with elements of 𝑝(1).

Solution to Exercise 3.28.
A lens 𝑓 : 𝑝 → 𝐼y consists of an on-positions function 𝑓1 : 𝑝(1) → 𝐼 and, for each 𝑗 ∈ 𝑝(1), an on-

directions function 𝑓
♯
𝑗

: 1→ 𝑝[𝑗]. Equivalently, this is a function 𝑝(1) → 𝐼 and a choice of direction at

every position of 𝑝, i.e. a dependent function (𝑗 ∈ 𝑝(1)) → 𝑝[𝑗].

Solution to Exercise 3.30.
1. Since 1 is a constant, Example 3.29 tells us that lenses 𝑝 → 1 can be identified with functions

𝑝(1) → 1. There is exactly one function 𝑝(1) → 1, so there is exactly one lens 𝑝 → 1.
2. Since 0 is a constant, Example 3.29 tells us that lenses 𝑝 → 0 can be identified with functions

𝑝(1) → 0, which only exist when 𝑝(1) = 0. The only polynomial with an empty position-set is

0 itself, and there is a unique function from the set 0 to itself, so there is a unique lens from the

constant polynomial 0 to itself as well. If 𝑝 is not the constant 0, then there are no lenses 𝑝 → 0.

Solution to Exercise 3.31.
1. A lens 𝑓 : 𝐼 → 𝑝 consists of an on-positions function 𝑓1 : 𝐼 → 𝑝(1) and, for each 𝑖 ∈ 𝐼, an on-

directions function 𝑓
♯
𝑖

: 𝑝[𝑖] → 0. There is exactly one such on-directions function when 𝑝[𝑖] = 0
and no such on-directions function otherwise. It follows that a lens 𝑓 : 𝐼 → 𝑝 can be identified

with a function 𝑓1 : 𝐼 → 𝑝(1)whose image is contained in the set of 𝑝-positionswith no directions.

By Exercise 2.9, this set of 𝑝-positions can be identified with the set 𝑝(0) (the constant term of 𝑝);

so a lens 𝐼 → 𝑝 is equivalent to a function 𝐼 → 𝑝(0).
2. From the previous part, a lens 1 → 𝑝 may be identified with a function 1 → 𝑝(0) and thus an

element of 𝑝(0).

Solution to Exercise 3.40.
The functor Γ is defined as the hom-functor Poly(−, y) : Poly → Setop, which exhibits the universal

property of colimits by sending colimits in Poly to limits in Set. Hence Proposition 3.39 follows

76 CHAPTER 3. THE CATEGORY OF POLYNOMIAL FUNCTORS

from Proposition 3.3. More explicitly, Γ(0) = Poly(0, y) � 1 since 0 is initial in Poly, and Γ(𝑝 + 𝑞) =
Poly(𝑝 + 𝑞, y) � Poly(𝑝 + 𝑞, y) = Γ(𝑝) × Γ(𝑞) since + gives coproducts in Poly.

Solution to Exercise 3.48.
Fix 𝑖 ∈ 𝑝(1). Since the 𝑝[𝑖]-component (id𝑝)𝑝[𝑖] of id𝑝 is the identity function on 𝑝(𝑝[𝑖]), by Corol-

lary 3.47,

((id𝑝)1 𝑖 , (id𝑝)♯𝑖) = (id𝑝)𝑝[𝑖](𝑖 , id𝑝[𝑖]) = (𝑖 , id𝑝[𝑖]).

Hence the on-positions function (id𝑝)1 : 𝑝(1) → 𝑝(1) maps every 𝑖 ∈ 𝑝(1) to itself, so it is an identity

function; and each on-directions function (id𝑝)♯𝑖 : 𝑝[𝑖] → 𝑝[𝑖] is equal to id𝑝[𝑖].

Solution to Exercise 3.49.
Fix 𝑖 ∈ 𝑝(1). By Proposition 3.44 and Corollary 3.47,

(ℎ1 𝑖 , ℎ
♯
𝑖
) = ℎ𝑝[𝑖](𝑖 , id𝑝[𝑖]) (Corollary 3.47)

= 𝑔𝑝[𝑖](𝑓𝑝[𝑖](𝑖 , id𝑝[𝑖])) (ℎ = 𝑓 # 𝑔)

= 𝑔𝑝[𝑖](𝑓1 𝑖 , 𝑓
♯
𝑖
) (Corollary 3.47)

= (𝑔1 𝑓1 𝑖 , 𝑔
♯
𝑓1 𝑖

𝑓 ♯
𝑖
). (Proposition 3.44)

Solution to Exercise 3.51.
We provide lenses 𝜄 : 𝑝 → 𝑝 + 𝑞 and 𝜅 : 𝑞 → 𝑝 + 𝑞 as follows. On positions, they are the canonical

inclusions 𝜄1 : 𝑝(1) → 𝑝(1) + 𝑞(1) and 𝜅1 : 𝑞(1) → 𝑝(1) + 𝑞(1); on directions, they are identities. To

show that 𝑝 + 𝑞 equipped with 𝜄 and 𝜅 satisfies the universal property of the coproduct, we apply

Proposition 3.50. In order for (3.52) to commute, it must commute on positions—that is, the following

diagram of sets must commute:

𝑝(1) 𝑝(1) + 𝑞(1) 𝑞(1)

𝑟(1)

𝜄1

𝑓1
ℎ1

𝜅1

𝑔1
(3.83)

But since 𝑝(1) + 𝑞(1) along with the inclusions 𝜄1 and 𝜅1 form the coproduct of 𝑝(1) and 𝑞(1) in Set,
there exists a unique ℎ1 for which (3.83) commutes. Hence ℎ is uniquely characterized on positions.

In particular, it must send each (1, 𝑖) ∈ 𝑝(1) + 𝑞(1)with 𝑖 ∈ 𝑝(1) to 𝑓1 𝑖 and each (2, 𝑗) ∈ 𝑝(1) + 𝑞(1)with

𝑗 ∈ 𝑞(1) to 𝑔1 𝑗.

Moreover, if (3.52) is to commute on directions, then for every 𝑖 ∈ 𝑝(1) and 𝑗 ∈ 𝑞(1), the following

diagrams of sets must commute:

𝑝[𝑖] (𝑝 + 𝑞)[(1, 𝑖)] (𝑝 + 𝑞)[(2, 𝑗)] 𝑞[𝑗]

𝑟[𝑓1 𝑖] 𝑟[𝑔1 𝑗]

𝜄♯
𝑖

𝜅♯
𝑗

𝑓
♯
𝑖

ℎ
♯
(1,𝑖) ℎ

♯
(2, 𝑗)

𝑔♯
𝑗

(3.84)

But (𝑝+ 𝑞)[(1, 𝑖)] � 𝑝[𝑖] and 𝜄♯
𝑖
is the identity, so wemust have ℎ

♯
(1,𝑖) = 𝑓

♯
𝑖
. Similarly, (𝑝+ 𝑞)[(2, 𝑗)] � 𝑞[𝑗]

and 𝜅♯
𝑗
is the identity, so wemust have ℎ

♯
(2, 𝑗) = 𝑔♯

𝑗
. Hence ℎ is also uniquely characterized on directions,

so it is unique overall. Moreover, we have shown that we can define ℎ on positions so that (3.83)

commutes, and that we can define ℎ on directions such that the diagrams in (3.84) commute. As the

commutativity of the diagrams in (3.83) and (3.84) together imply the commutativity of (3.52), it follows

that there exists ℎ for which (3.52) commutes.

3.12. EXERCISE SOLUTIONS 77

Solution to Exercise 3.53.
1. Given a continuous map 𝑓 : 𝑋 → 𝑌, we define a lens 𝑝 𝑓 : 𝑝𝑋 → 𝑝𝑌 as follows. The on-positions

function is just 𝑓 ; then for each 𝑝𝑋 -position 𝑥 ∈ 𝑋, the on-directions function (𝑝 𝑓)
♯
𝑥 : 𝑝𝑌[𝑓 (𝑥)] →

𝑝𝑋 [𝑥] sends each open neighborhood𝑈 of 𝑓 (𝑥) to 𝑓 −1(𝑈), which we know is an open neighbor-

hood of 𝑥 because 𝑓 is continuous. The polybox picture for 𝑝 𝑓 is as follows:

𝑓 −1(𝑈)

𝑥

𝑝

𝑈

𝑓 (𝑥)
𝑞

𝑓

𝑓 −1

2. To show that 𝑝𝑋 is functorial in 𝑋, it suffices to show that sending continuous maps 𝑓 : 𝑋 → 𝑌

to their induced lenses 𝑝 𝑓 : 𝑝𝑋 → 𝑝𝑌 preserves identities and composition. First, we show for

𝑋 ∈ Top that the lens 𝑝
id𝑋

is an identity. By #1, the on-positions function of 𝑝
id𝑋

is id𝑋 , and for

each 𝑥 ∈ 𝑋 the on-directions function (𝑝 𝑓)
♯
𝑥 : 𝑝𝑋 [𝑥] → 𝑝𝑋 [𝑥] sends𝑈 ∈ 𝑝𝑋 [𝑥] to (id𝑋)−1(𝑈) = 𝑈 .

Hence 𝑝
id𝑋

is the identity on both positions and directions; it follows from Exercise 3.48 that 𝑝
id𝑋

is the identity lens.

Wenowshow for𝑋,𝑌, 𝑍 ∈ Top and continuousmaps 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 that 𝑝 𝑓 #𝑝𝑔 = 𝑝 𝑓 #𝑔 .

By #1 and Exercise 3.49, the on-positions functions of both 𝑝 𝑓 # 𝑝𝑔 and 𝑝 𝑓 #𝑔 are equal to 𝑓 # 𝑔, so
it suffices to show for each 𝑥 ∈ 𝑋 that

(𝑝 𝑓 #𝑔)
♯
𝑥 = (𝑝𝑔)♯𝑓 (𝑥) # (𝑝 𝑓)

♯
𝑥 .

By #1, the left hand side sends each 𝑈 ∈ 𝑝𝑍[𝑔(𝑓 (𝑥))] to (𝑓 # 𝑔)−1(𝑈), while the right hand side

sends𝑈 to 𝑓 −1(𝑔−1(𝑈)); by elementary set theory, these sets are equal.

3. The functor is not full. Consider the spaces 𝑋 B 2 with the indiscrete topology (i.e. the only

open sets are the empty set and 𝑋) and 𝑌 B 2 with the discrete topology (i.e. all subsets are

open). Then 𝑝𝑋 � 2y (each point in 𝑋 has exactly one open neighborhood: the entire space 𝑋)

and 𝑝𝑌 � 2y2
(each point in 𝑌 has exactly two open neighborhoods: a singleton set and 𝑌 itself),

so our functor induces a map from the set of continuous functions 𝑋 → 𝑌 to the set of lenses

2y→ 2y2
. We claim this map is not surjective: in particular, consider the lens ℎ : 2y→ 2y2

that

is the identity on positions (and uniquely defined on directions). Then a continuous function

𝑓 : 𝑋 → 𝑌 that our functor sends to ℎ must also be the identity on the underlying sets of 𝑋 and

𝑌. But such a function cannot be continuous: a singleton subset of 𝑌 is open, but its preimage

under 𝑓 is a singleton subset of 𝑋 and therefore not open. So our functor sends no continuous

function 𝑋 → 𝑌 to ℎ and therefore is not full. The functor is, however, faithful: given spaces

𝑋 and 𝑌 and continuous function 𝑓 : 𝑋 → 𝑌, we can uniquely recover 𝑓 from 𝑝 𝑓 by taking its

on-positions function (𝑝 𝑓)1 = 𝑓 .

Solution to Exercise 3.59.
Given 𝑞 ∈ Poly and 𝑝𝑖 ∈ Poly for each 𝑖 ∈ 𝐼 for some set 𝐼, we use (3.7) to verify that

Poly

(
𝑞,

∏
𝑖∈𝐼

𝑝𝑖

)
�

∏
𝑘∈𝑞(1)

(∏
𝑖∈𝐼

𝑝𝑖

)
(𝑞[𝑘]) (3.7)

�
∏
𝑘∈𝑞(1)

∏
𝑖∈𝐼

𝑝𝑖(𝑞[𝑘])

�
∏
𝑖∈𝐼

∏
𝑘∈𝑞(1)

𝑝𝑖(𝑞[𝑘])

�
∏
𝑖∈𝐼

Poly(𝑞, 𝑝𝑖). (3.7)

78 CHAPTER 3. THE CATEGORY OF POLYNOMIAL FUNCTORS

Solution to Exercise 3.60.
Given 𝑝

1
B y + 1, 𝑝

2
B y + 2, and 𝑝

3
B y2

, we compute

∏
𝑖∈3 𝑝𝑖 via (3.57) as follows:∏

𝑖∈3
𝑝𝑖 �

∑
𝑗∈∏𝑖∈3 𝑝𝑖 (1)

y
∑
𝑖∈3 𝑝𝑖 [𝑗(𝑖)]

(3.57)

�
∑

𝑗 : (𝑖∈3)→𝑝𝑖 (1)
y𝑝1[𝑗(1)]+𝑝2[𝑗(2)]+𝑝3[𝑗(3)]

� y𝑝1[1]+𝑝2[1]+𝑝3[1] + y𝑝1[1]+𝑝2[2]+𝑝3[1] + y𝑝1[1]+𝑝2[3]+𝑝3[1]

+ y𝑝1[2]+𝑝2[1]+𝑝3[1] + y𝑝1[2]+𝑝2[2]+𝑝3[1] + y𝑝1[2]+𝑝2[3]+𝑝3[1]

� y1+1+2 + y1+0+2 + y1+0+2

+ y0+1+2 + y0+0+2 + y0+0+2

� y4 + 3y3 + 2y2 ,

as we might expect from standard polynomial multiplication.

Solution to Exercise 3.63.
1. We compute the product using (3.61):

𝐵
1
y𝐴1 × 𝐵

2
y𝐴2 �

©­«
∑
𝑖∈𝐵1

y𝐴1
ª®¬ × ©­«

∑
𝑗∈𝐵2

y𝐴2
ª®¬

�
∑
𝑖∈𝐵1

∑
𝑗∈𝐵2

y𝐴1+𝐴2

� 𝐵
1
𝐵

2
y𝐴1+𝐴2 .

2. We expand the product by applying (1.28), with 𝐼
1
B 𝐼 and 𝐼

2
B 𝐽:(∑

𝑖∈𝐼
𝐵𝑖y

𝐴𝑖

)
× ©­«

∑
𝑗∈𝐽

𝐵𝑗y
𝐴𝑗ª®¬ �

∏
𝑘∈2

∑
𝑖∈𝐼𝑘

𝐵𝑖y
𝐴𝑖

�
∑

𝑖∈∏𝑘∈2 𝐼𝑘

∏
𝑘∈2

𝐵𝑖(𝑘)y
𝐴𝑖(𝑘)

�
∑
(𝑖 , 𝑗)∈𝐼𝐽

𝐵𝑖y
𝐴𝑖 × 𝐵𝑗y𝐴𝑗

�
∑
𝑖∈𝐼

∑
𝑗∈𝐽

𝐵𝑖𝐵𝑗y
𝐴𝑖+𝐴𝑗

where the last isomorphism follows from #1.

Solution to Exercise 3.64.
We wish to show that, for 𝑝, 𝑞 ∈ Poly, the polynomial 𝑝𝑞 along with the lenses 𝜋 : 𝑝𝑞 → 𝑝 and

𝜑 : 𝑝𝑞 → 𝑞 as described in the text satisfy the universal property of the product. That is, we must show

that for any 𝑟 ∈ Poly and lenses 𝑓 : 𝑟 → 𝑝 and 𝑔 : 𝑟 → 𝑞, there exists a unique lens ℎ : 𝑟 → 𝑝𝑞 for which

the following diagram commutes:

𝑟 𝑞

𝑝 𝑝𝑞.

𝑓

𝑔

ℎ

𝜋

𝜑 (3.85)

We apply Proposition 3.50. In order for (3.85) to commute, it must commute on positions—that is, the

following diagram of sets must commute:

𝑟(1) 𝑞(1)

𝑝(1) (𝑝𝑞)(1).

𝑓1

𝑔1

ℎ1

𝜋1

𝜑1 (3.86)

3.12. EXERCISE SOLUTIONS 79

But since (𝑝𝑞)(1) � 𝑝(1) × 𝑞(1) along with the projections 𝜋1 and 𝜑1 form the product of 𝑝(1) and
𝑞(1) in Set, there exists a unique ℎ1 for which (3.86) commutes. Hence ℎ is uniquely characterized on

positions. In particular, it must send each 𝑘 ∈ 𝑟(1) to the pair (𝑓1𝑘, 𝑔1𝑘) ∈ (𝑝𝑞)(1).
Moreover, if (3.52) is to commute on directions, then for every 𝑘 ∈ 𝑟(1), the following diagram of sets

must commute:

𝑟[𝑘] 𝑞[𝑔1𝑘]

𝑝[𝑓1𝑘] (𝑝𝑞)[(𝑓1𝑘, 𝑔1𝑘)].

𝑔♯
𝑘

𝜑♯
(𝑓1 𝑘,𝑔1 𝑘)

𝑓
♯
𝑘

𝜋♯
(𝑓1 𝑘,𝑔1 𝑘)

ℎ
♯
𝑘

(3.87)

As (𝑝𝑞)[(𝑓1𝑘, 𝑔1𝑘)] � 𝑝[𝑓1𝑘] + 𝑞[𝑔1𝑘] along with the inclusions 𝜋♯
(𝑓1𝑘,𝑔1𝑘) and 𝜑♯

(𝑓1𝑘,𝑔1𝑘) form the co-

product of 𝑝[𝑓1𝑘] and 𝑞[𝑔1𝑘] in Set, there exists a unique ℎ
♯
𝑘
for which (3.87) commutes. Hence ℎ is

also uniquely characterized on directions, so it is unique overall. Moreover, we have shown that we

can define ℎ on positions so that (3.86) commutes, and that we can define ℎ on directions such that

(3.87) commutes. As the commutativity of (3.86) and (3.87) together imply the commutativity of (3.85),

it follows that there exists ℎ for which (3.85) commutes.

Solution to Exercise 3.67.
1. We compute the parallel product using (3.66):

𝐵
1
y𝐴1 ⊗ 𝐵

2
y𝐴2 �

©­«
∑
𝑖∈𝐵1

y𝐴1
ª®¬ ⊗ ©­«

∑
𝑗∈𝐵2

y𝐴2
ª®¬

�
∑
𝑖∈𝐵1

∑
𝑗∈𝐵2

y𝐴1×𝐴2

� 𝐵
1
𝐵

2
y𝐴1𝐴2 .

2. We expand the parallel product as follows:(∑
𝑖∈𝐼

𝐵𝑖y
𝐴𝑖

)
⊗ ©­«

∑
𝑗∈𝐽

𝐵𝑗y
𝐴𝑗ª®¬ � ©­«

∑
𝑖∈𝐼

∑
𝑖′∈𝐵𝑖

y𝐴𝑖
ª®¬ ⊗ ©­«

∑
𝑗∈𝐽

∑
𝑗′∈𝐵𝑗

y𝐴𝑗
ª®¬

�
∑
𝑖∈𝐼

∑
𝑖′∈𝐵𝑖

∑
𝑗∈𝐽

∑
𝑗′∈𝐵𝑗

y𝐴𝑖×𝐴𝑗

�
∑
𝑖∈𝐼

∑
𝑗∈𝐽

∑
𝑖′∈𝐵𝑖

∑
𝑗′∈𝐵𝑗

y𝐴𝑖𝐴𝑗

�
∑
𝑖∈𝐼

∑
𝑗∈𝐽

𝐵𝑖𝐵𝑗y
𝐴𝑖𝐴𝑗 .

Solution to Exercise 3.68.
1. By Exercise 3.67 #1, we have 𝐴 ⊗ 𝐵 � 𝐴y0 ⊗ 𝐵y0 � 𝐴𝐵y0 � 𝐴𝐵.

2. By Exercise 3.67 #1, we have 𝐴y ⊗ 𝐵y � 𝐴y1 ⊗ 𝐵y1 � 𝐴𝐵y1 � 𝐴𝐵y.

3. By (3.66),

(𝑝 ⊗ 𝑞)(1) �
∑
𝑖∈𝑝(1)

∑
𝑗∈𝑞(1)

1𝑝[𝑖]×𝑞[𝑗] � 𝑝(1) × 𝑞(1).

Solution to Exercise 3.69.
1. We compute 𝑝 × 𝑞 using Exercise 3.63 #2:

𝑝 × 𝑞 � 2y2+4 + (2 × 3)y2+3 + 3y1+4 + (3 × 3)y1+3

� 2y6 + 6y5 + 3y5 + 9y4

� 2y6 + 9y5 + 9y4.

80 CHAPTER 3. THE CATEGORY OF POLYNOMIAL FUNCTORS

2. We compute 𝑝 ⊗ 𝑞 using Exercise 3.67 #2:

𝑝 ⊗ 𝑞 � 2y2×4 + (2 × 3)y2×3 + 3y4 + (3 × 3)y3

� 2y8 + 6y6 + 3y4 + 9y3.

3. We evaluate (2 · 2𝑦 + 3 · 1𝑦 + 1) · (1 · 4𝑦 + 3 · 3𝑦 + 2) using ordinary laws of arithmetic:

(2 · 2𝑦 + 3 · 1𝑦) · (1 · 4𝑦 + 3 · 3𝑦) = 2 · 1 · 2𝑦 · 4𝑦 + 2 · 3 · 2𝑦 · 3𝑦 + 3 · 1 · 1𝑦 · 4𝑦 + 3 · 3 · 1𝑦 · 3𝑦

= 2 · 8𝑦 + 6 · 6𝑦 + 3 · 4𝑦 + 9 · 3𝑦 .

4. We describe the connection between the last two parts as follows. Given a polynomial 𝑝, we let

𝑑(𝑝) denote the Dirichlet series

∑
𝑖∈𝑝(1) |𝑝[𝑖]|𝑦 . Then by (3.66),

𝑑(𝑝 ⊗ 𝑞) =
∑
𝑖∈𝑝(1)

∑
𝑗∈𝑞(1)

|𝑝[𝑖] × 𝑞[𝑗]|𝑦

=

∑
𝑖∈𝑝(1)

|𝑝[𝑖]|𝑦
∑
𝑗∈𝑞(1)

|𝑞[𝑗]|𝑦

= 𝑑(𝑝) · 𝑑(𝑞).

The last two parts are simply an example of this identity for a specific choice of 𝑝 and 𝑞.

Solution to Exercise 3.71.
1. Here are 𝑝 and 𝑞 drawn as corolla forests:

•
1

•
2

𝑝

•
1

•
2

𝑞

2. Here is 𝑝𝑞 drawn as a corolla forest:

•
(1,1)

•
(1,2)

•
(2,1)

•
(2,2)

𝑝𝑞

3. Here is 𝑝 ⊗ 𝑞 drawn as a corolla forest:

•
(1,1)

•
(1,2)

•
(2,1)

•
(2,2)

𝑝𝑞

Solution to Exercise 3.72.
1. We show that 𝑝 ⊗ y � 𝑝:

𝑝 ⊗ 𝑦 �
∑
𝑖∈𝑝(1)

∑
𝑗∈1

y𝑝[𝑖]×1
(3.66)

�
∑
𝑖∈𝑝(1)

y𝑝[𝑖] � 𝑝.

2. We show that (𝑝 ⊗ 𝑞) ⊗ 𝑟 � 𝑝 ⊗ (𝑞 ⊗ 𝑟):

(𝑝 ⊗ 𝑞) ⊗ 𝑟 � ©­«
∑
𝑖∈𝑝(1)

∑
𝑗∈𝑞(1)

y𝑝[𝑖]×𝑞[𝑗]ª®¬ ⊗ 𝑟 (3.66)

3.12. EXERCISE SOLUTIONS 81

�
∑
𝑖∈𝑝(1)

∑
𝑗∈𝑞(1)

©­«
∑
𝑘∈𝑟(1)

y(𝑝[𝑖]×𝑞[𝑗])×𝑟[𝑘]ª®¬ (3.66)

�
∑
𝑖∈𝑝(1)

©­«
∑
𝑗∈𝑞(1)

∑
𝑘∈𝑟(1)

y𝑝[𝑖]×(𝑞[𝑗]×𝑟[𝑘])ª®¬ (Associativity of

∑
and ×)

� 𝑝 ⊗ ©­«
∑
𝑗∈𝑞(1)

∑
𝑘∈𝑟(1)

y𝑞[𝑗]×𝑟[𝑘]ª®¬ (3.66)

� 𝑝 ⊗ (𝑞 ⊗ 𝑟). (3.66)

3. We show that (𝑝 ⊗ 𝑞) � (𝑞 ⊗ 𝑝):

𝑝 ⊗ 𝑞 �
∑
𝑖∈𝑝(1)

∑
𝑗∈𝑞(1)

y𝑝[𝑖]×𝑞[𝑗] (3.66)

�
∑
𝑗∈𝑞(1)

∑
𝑖∈𝑝(1)

y𝑞[𝑗]×𝑝[𝑖] (Commutativity of

∑
and ×)

� 𝑞 ⊗ 𝑝. (3.66)

Solution to Exercise 3.74.
1. We compute (3y5 + 6y2) ⊗ 4 using Exercise 3.67 #2 and the fact that 4 = 4y0

:

(3y5 + 6y2) ⊗ 4y0 � (3 × 4)y5×0 + (6 × 4)y2×0

� 12y0 + 24y0

� 36.

2. Given a polynomial 𝑝 and a set 𝐽 viewed as a constant polynomial, we have

𝑝 ⊗ 𝐽 � ©­«
∑
𝑖∈𝑝(1)

y𝑝[𝑖]ª®¬ ⊗ ©­«
∑
𝑗∈𝐽

y0ª®¬
�

∑
𝑖∈𝑝(1)

∑
𝑗∈𝐽

y𝑝[𝑖]×0

� 𝑝(1)𝐽y0

� 𝑝(1)𝐽 ,

itself a constant polynomial; so the class of constant polynomials is indeed a ⊗-ideal.

Solution to Exercise 3.75.
For each of the following classes of polynomials, we determine whether they are closed under ⊗ and

whether they contain y.

1. The set {𝐴y0 | 𝐴 ∈ Set} of constant polynomials is closed under⊗ by the solution to Exercise 3.68

#1. But the set does not contain y, as y is not a constant polynomial.

2. The set {𝐴y | 𝐴 ∈ Set} of linear polynomials is closed under ⊗ by the solution to Exercise 3.68 #2

and does contain y, as y � 1y.
3. The set {𝐴y + 𝐵 | 𝐴, 𝐵 ∈ Set} of affine polynomials is closed under ⊗, for Exercise 3.67 #2 yields

(𝐴y + 𝐵) ⊗ (𝐴′y + 𝐵′) � 𝐴𝐴′y + 𝐴𝐵′ + 𝐵𝐴′ + 𝐵𝐵′.

The set contains y, as y � 1y + 0.

82 CHAPTER 3. THE CATEGORY OF POLYNOMIAL FUNCTORS

4. The set {𝐴y2 + 𝐵y + 𝐶 | 𝐴, 𝐵, 𝐶 ∈ Set} of quadratic polynomials is not closed under ⊗, for even
though y2 � 1y2 + 0y + 0 is a quadratic polynomial, Exercise 3.67 #1 implies that

y2 ⊗ y2 � y4 ,

which is not quadratic. The set contains y, as y � 0y2 + 1y + 0.
5. The set {𝐴y𝐵 | 𝐴, 𝐵 ∈ Set} of monomials is closed under ⊗ by Exercise 3.67 #1 and does contain

y, as y � 1y1
.

6. The set {𝑆y𝑆 | 𝑆 ∈ Set} is closed under ⊗, for Exercise 3.67 #1 returns

𝑆y𝑆 ⊗ 𝑇y𝑇 � 𝑆𝑇y𝑆𝑇 .

The set contains y, as y � 1y1
.

7. The set {𝑝 ∈ Poly | 𝑝(1) is finite} is closed under ⊗ by the solution to Exercise 3.68 #3 and the fact

that the product of two finite sets is itself finite. The set contains y, as y(1) � 1 is finite.

Solution to Exercise 3.76.
The smallest class of polynomials that is closed under ⊗ and contains y is just {y}. This is because by
Exercise 3.67 #1, we have y ⊗ y � y.

Solution to Exercise 3.77.
We show that (𝑝

1
+ 𝑝

2
) ⊗ 𝑞 � (𝑝

1
⊗ 𝑞) + (𝑝

2
⊗ 𝑞) using (3.66):

(𝑝
1
+ 𝑝

2
) ⊗ 𝑞 �

∑
𝑘∈2

∑
𝑖∈𝑝𝑘 (1)

∑
𝑗∈𝑞(1)

y𝑝𝑘 [𝑖]×𝑞[𝑗]

�
∑

𝑖∈𝑝1(1)

∑
𝑗∈𝑞(1)

y𝑝1[𝑖]×𝑞[𝑗] +
∑

𝑖∈𝑝2(1)

∑
𝑗∈𝑞(1)

y𝑝2[𝑖]×𝑞[𝑗]

� (𝑝
1
⊗ 𝑞) + (𝑝

2
⊗ 𝑞).

Solution to Exercise 3.82.
1. To show that the operation (𝐴, 𝐵) ↦→ 𝐴 + 𝐴𝐵 + 𝐵 on Set is associative, observe that

(𝐴 + 𝐴𝐵 + 𝐵) + (𝐴 + 𝐴𝐵 + 𝐵)𝐶 + 𝐶 � 𝐴 + 𝐴𝐵 + 𝐵 + 𝐴𝐶 + 𝐴𝐵𝐶 + 𝐵𝐶 + 𝐶
� 𝐴 + 𝐴𝐵 + 𝐴𝐵𝐶 + 𝐴𝐶 + 𝐵 + 𝐵𝐶 + 𝐶
� 𝐴 + 𝐴(𝐵 + 𝐵𝐶 + 𝐶) + (𝐵 + 𝐵𝐶 + 𝐶).

2. To show that 0 is the unit for this operation, observe that

(𝐴, 0) ↦→ 𝐴 + 𝐴0 + 0 � 𝐴

and

(0, 𝐵) ↦→ 0 + 0𝐵 + 𝐵 � 𝐵.
3. Taking 𝐴★ 𝐵 B 𝐴 + 𝐴𝐵 + 𝐵 in Proposition 3.79 to obtain a monoidal product ⊙ on Poly, we can

use (3.81) to compute that

(y3 + y) ⊙ (2y2 + 2) � (y3 + y1) ⊙ (y2 + y2 + y0 + y0)
� y3★2 + y3★2 + y3★0 + y3★0 + y1★2 + y1★2 + y1★0 + y1★0

� 2y11 + 2y3 + 2y5 + 2y1.

Chapter 4

Dynamical systems as dependent
lenses

Oneof themaingoals of this book is tousedependent lenses inPoly tomodel dynamical

systems and automata. In this chapter, we will begin to see how to do this through an

array of examples.

4.1 Moore machines

We start with our simplest example of a dynamical system: a deterministic state

machine with a fixed range of states, inputs, and outputs. At any point in time,

this machine will inhabit one of its possible states and return output according to that

current state. It can also update its current state according to the input it receives.

Definition 4.1 (Moore machine). A Moore machine consists of the following data: three

sets,

• a set 𝑆, called the state-set, whose elements are states;
• a set 𝐼, called the position-set (or output-set), whose elements are positions (or

outputs);
• a set 𝐴, called the direction-set (or input-set), whose elements are directions (or

inputs);
and two functions,

• return: 𝑆→ 𝐼;

• update : 𝑆 × 𝐴→ 𝑆.

To emphasize the role that the three sets play, we can specify that this is an (𝐴, 𝐼)-Moore
machine with states 𝑆.

The input/output terminology is standard, while the position/direction terminol-

ogy is our own: we will soon see how the positions and directions of a Moore machine

relate to that of a polynomial.

83

84 CHAPTER 4. DYNAMICAL SYSTEMS AS DEPENDENT LENSES

We should interpret an (𝐴, 𝐼)-Moore machine as follows. At any time, the machine

inhabits one of the states in its state-set 𝑆. Say its current state is 𝑠 ∈ 𝑆. We can ask the

machine to perform one of the following two tasks.

• We can ask the machine to return its position: it should then produce the position

return(𝑠) ∈ 𝐼.
• We can feed the machine one of its directions 𝑎 ∈ 𝐴 and ask it to update its state:

it should then replace its current state with the new state update(𝑠, 𝑎) ∈ 𝑆. Note

that the new state depends not only on the direction the machine receives but

also on the state the machine inhabits when it receives that direction.

We may visualize a Moore machine with a transition diagram as follows.

Example 4.2 (A Moore machine’s transition diagram). Given 𝐴 B {orange, green} and
𝐼 B {0, 1}, we can draw a transition diagram for an (𝐴, 𝐼)-Moore machine with 𝑆 B 3
states as follows:

0 1

1

(4.3)

Each state is labeled by the position it returns according to the machine’s return func-

tion. Additionally, each state has two outgoing arrows, one orange and one green,

corresponding to the two possible directions. The targets of the arrows indicate the

updated state according to the machine’s update function.

Say the machine starts at the bottom state. By feeding it a sequence of directions—

say (orange, orange, green, orange, . . .)—we can send the machine through its states

via its update function and return the position at each state:

1. Starting at the bottom state, the machine returns the position 1.

2. Following the orange arrow from the bottom state, the machine updates its state

to the left state.

3. At the left state, the machine returns the position 0.

4. Following the orange arrow from the left state, the machine updates its state

to—once again—the left state.

5. At the left state, the machine returns the position 0.

6. Following the green arrow from the left state, the machine updates its state to the

right state.

7. At the right state, the machine returns the position 1.

8. Following the orange arrow from the right state, the machine updates its state to

the left state.

9. At the left state, the machine returns the position 0.

. . .

4.1. MOORE MACHINES 85

In summary, starting from the bottom state, this Moore machine sends the sequence

(orange, orange, green, orange, . . .) of directions in 𝐴 to the sequence (1, 0, 0, 1, 0, . . .)
of positions in 𝐼.

In general, given an initial state 𝑠0 ∈ 𝑆, an (𝐴, 𝐼)-Moore machine with states 𝑆 sends

every sequence (𝑎1 , 𝑎2 , 𝑎3 , . . .) of directions in 𝐴 to a sequence (𝑖0 , 𝑖1 , 𝑖2 , 𝑖3 , . . .) of posi-
tions in 𝐼, defined inductively as follows, via an intermediary sequence (𝑠0 , 𝑠1 , 𝑠2 , 𝑠3 , . . .)
of states in 𝑆:

𝑏𝑘 B return(𝑠𝑘) and 𝑠𝑘+1 B update(𝑠𝑘 , 𝑎𝑘+1)

for all 𝑘 ∈ N. We will see that Poly gives us a more concise way to express this in

Example 8.52.

Comparing Definition 4.1 with Example 3.41, we find that an (𝐴, 𝐼)-Moore machine

with states 𝑆 is precisely a lens between monomials 𝜑 : 𝑆y𝑆 → 𝐼y𝐴 with on-positions

function 𝜑1 B return: 𝑆 → 𝐼 and on-directions map 𝜑♯ B 𝑆 × 𝐴 → 𝑆. The positions

and directions of the Moore machine are the positions and directions of the codomain

of the corresponding lens, while the domain of the lens has the states of the Moore

machine as both its positions and its directions. So we can repackage Definition 4.1 as

follows.

Definition 4.4 (Moore machine, version 2). For 𝑆, 𝐼, 𝐴 ∈ Set, an (𝐴, 𝐼)-Moore machine
with states 𝑆 is a lens

𝜑 : 𝑆y𝑆 → 𝐼y𝐴

in Poly. We call

• the domain monomial 𝑆y𝑆 the machine’s state system: its position-set (equiva-

lently, its direction-set) is the machine’s state-set, and its positions (equivalently,

its directions) are the machine’s states;
• the codomainmonomial 𝐼y𝐴 themachine’s interface: its position-set anddirection-

set are the machine’s position-set and direction-set, and its positions and directions

are the machine’s positions and directions;
• the on-positions function 𝜑1 : 𝑆→ 𝐼 the machine’s return function;
• the on-directions map 𝜑♯

: 𝑆 × 𝐴→ 𝑆 the machine’s update function.

We call the codomain of a Moore machine its interface because it encodes how an

outsider interacts with the machine: an outsider observes the positions of the interface

that the machine returns and feeds the directions of the interface to the machine to

update it. Rather than directly observing and altering the machine’s states, an outsider

must interact with the machine via its interface.

Exercise 4.5 (Solution here). In this exercise, we will write the Moore machine from

Example 4.2 as a lens 𝜑 between monomials.

1. What is the machine’s state system, the domain of 𝜑?

86 CHAPTER 4. DYNAMICAL SYSTEMS AS DEPENDENT LENSES

2. What is the machine’s interface, the codomain of 𝜑?

Call the left state 𝐿, the right state 𝑅, and the bottom state 𝐵.

3. What is the machine’s return function, the on-positions function of 𝜑?

4. What is the machine’s update function, the on-directions map of 𝜑?

5. Draw the first two steps listed in Example 4.2 of the machine’s operation (starting

at the bottom state and receiving the direction orange) using polyboxes. ♦

Here are some more examples of Moore machines.

Example 4.6 (Counter). There is a (1,N)-Moore machine with states N that, with initial

state 0 ∈ N, returns the sequence of natural numbers (0, 1, 2, 3, . . .). The machine is

given by the lens NyN → Ny whose on-positions function is the identity N → N and

whose on-directions map N × 1 � N → N sends 𝑛 ↦→ 𝑛 + 1. Here it is in polyboxes

(recall that the shaded direction box indicates that the direction-set is a singleton, i.e.

there is no choice to be made in filling it in):

𝑛 + 1

𝑛N

N

𝑛 N

The picture tells us that if the current state (the left position box) is 𝑛 ∈ N, the next state

(the left direction box) is 𝑛 + 1 ∈ N. Since the machine just returns its current state as a

position, the sequence of positions returned will always be an increasing sequence of

consecutive natural numbers starting at the initial state.

Example 4.7 (Moving in the plane). Let us construct a Moore machine with positions

in R2
, which we may think of as locations in the coordinate plane, and directions

in [0,∞) × [0, 2𝜋), which we may think of as commands to move a certain distance

𝑟 ∈ [0,∞) at a certain angle 𝜃 ∈ [0, 2𝜋). We will let the machine’s state-set be R2
as

well, so the machine is a lens

R2yR
2 → R2y[0,1]×[0,2𝜋).

We can define such a lens using polyboxes:

(𝑥 + 𝑟 cos𝜃, 𝑦 + 𝑟 sin𝜃)

(𝑥, 𝑦)R2

R2 (𝑟, 𝜃)

(𝑥, 𝑦) R2

[0,∞) × [0, 2𝜋)

Exercise 4.8 (Solution here). Explain in words what theMoore machine in Example 4.7

does. ♦

4.1. MOORE MACHINES 87

Example 4.9 (Functions as memoryless Moore machines). Given a function 𝑓 : 𝐴 → 𝐼,

there is a corresponding (𝐴, 𝐼)-Moore machine with states 𝐼 that takes in an element of

𝐴 and returns the element of 𝐼 obtained by applying 𝑓 .

It is given by the lens 𝐼y𝐼 → 𝐼y𝐴 defined as follows:

𝑓 (𝑎)

𝑖𝐼

𝐼 𝑎

𝑖 𝐼

𝐴

That is, this lens is the identity on positions, returning the state directly as its position,

and on directions it is the function 𝐼 × 𝐴 𝜋2−→ 𝐴
𝑓
−→ 𝐼, which ignores the current state

and applies 𝑓 to the direction received to compute the new state.

If the machine starts in state 𝑖0 and is given a sequence of directions (𝑎1 , 𝑎2 , . . .) from
𝐴, the machine will return the positions (𝑖0 , 𝑓 (𝑎1), 𝑓 (𝑎2), . . .). We say this machine is

memoryless, because at no point does the state of the machine actually depend on any

previous states; instead, its state depends only on the last direction it received.

Exercise 4.10 (Solution here). Suppose we have a function 𝑓 : 𝐴 × 𝐼 → 𝐼.

1. Find a corresponding (𝐴, 𝐼)-Moore machine 𝐼y𝐼 → 𝐼y𝐴. You may draw it out in

polyboxes.

2. Would you say the machine is memoryless? ♦

Exercise 4.11 (Solution here). Find 𝐴, 𝐼 ∈ Set such that the following can be identified

with a lens 𝑆y𝑆 → 𝐼y𝐴, and explain in words what the corresponding (𝐴, 𝐼)-Moore

machine does (there may be multiple possible solutions):

1. a discrete dynamical system, i.e. a set of states 𝑆 and a transition function 𝑆 → 𝑆

that describes how to transfer from state to state.

2. a magma, i.e. a set 𝑆 and a function 𝑆 × 𝑆→ 𝑆.

3. a set 𝑆 and a subset 𝑆′ ⊆ 𝑆. ♦

Theprevious examples ofMooremachinesmostly had identities as return functions.

In the following exercises, wewill build examples ofMooremachines that do not return

their entire states as positions.

Exercise 4.12 (Robot with health; solution here). Think of the Moore machine in

Example 4.7 as a robot and modify it as follows.

Add to its state a “health meter,” which takes a real value between 0 and 1 repre-

senting the robot’s health. Have the robot lose half its health each time it moves to a

location whose 𝑥-coordinate is negative. Do not return the robot’s health; instead, use

its health ℎ as a multiplier, allowing it to move a distance of ℎ𝑟 given an input of 𝑟. ♦

88 CHAPTER 4. DYNAMICAL SYSTEMS AS DEPENDENT LENSES

Exercise 4.13 (Tape of a Turing machine; solution here). A Turing machine has a tape

consisting of a cell for each integer. Each cell bears a value 𝑣 ∈ 𝑉 B {0, 1,−}, and one

of the cells 𝑐 ∈ Z is distinguished as the “current” cell. So the set of states of the tape

is 𝑉Z × Z.
The Turing machine interacts with the tape by asking for the value of the current

cell, an element of 𝑉 ; and by changing the value of the current cell before moving left

(i.e. replacing the current cell 𝑐 ∈ Zwith the new cell 𝑐−1) or right (i.e. replacing 𝑐 with

𝑐 + 1). Hence the tape’s position-set is 𝑉 and its direction-set is 𝑉 × {left, right}.
1. If we model the tape as a Moore machine 𝑡 : 𝑆y𝑆 → 𝐼y𝐴, what are 𝑆, 𝐼, and 𝐴?

2. Write down the specific 𝑡 that makes it act like a tape as specified above. ♦

Exercise 4.14 (File-reader; solution here). Say that a file of length 𝑛 is a function

𝑓 : n→ ascii, where ascii B 256. We refer to elements of n = {1, . . . , 𝑛} as entries in the

file and, for each entry 𝑖 ∈ n, the value 𝑓 (𝑖) ∈ ascii as the character at entry 𝑖.
Given a file 𝑓 , design a file-reading Moore machine whose position-set is ascii +

{done} and whose direction-set is

{(𝑠, 𝑡) | 1 ≤ 𝑠 ≤ 𝑡 ≤ 𝑛} + {continue}.

Given a direction (𝑠, 𝑡), the file-reader should go to entry 𝑠 in the file and return the

character at that entry. If the given direction is instead continue, the file-reader should

move to the next entry (i.e. from 𝑠 to 𝑠 + 1) and read that character—unless the new

entry would be greater than 𝑡, in which case the file-reader should return done until it

receives another (𝑠, 𝑡) pair. ♦

While Exercise 4.14 gives us a functioning file-reader, it is rather awkward that we

are still able to give the direction continue evenwhen the position is done, or provide a

new range of entries before the file-reader has finished reading from the previous range.

In Section 4.2, we will introduce a generalization of Moore machines to handle cases

like these, where the array of directions themachine can receive changes depending on

its current position. In particular, we will be able to let the file-reader “close its port,”

so that it cannot receive signals while it is busy reading, but open its port once it is

done; see Example 4.28.

4.1.1 Deterministic state automata

The diagram in Example 4.2 may look familiar to those who have studied automata

theory; in fact, a deterministic state automaton can be expressed as a Moore machine

with a distinguished initial state.

4.1. MOORE MACHINES 89

Definition 4.15 (Deterministic state automaton, language). A deterministic state automa-
ton consists of

• a set 𝑆 of states;
• a set 𝐴 of symbols;
• an update function 𝑢 : 𝑆 × 𝐴→ 𝑆;

• an initial state 𝑠0 ∈ 𝑆;
• a subset 𝐹 ⊆ 𝑆 of accept states.

Let

List(𝐴) =
∑
𝑛∈N

𝐴n

denote the set of finite sequences (𝑎1 , . . . , 𝑎𝑛) of symbols in 𝐴; we call such a sequence

a word. We say that the automaton accepts the word (𝑎1 , . . . , 𝑎𝑛) if starting at the initial

state and following the symbols in the word leads us to an accept state—or, more

formally, if the sequence (𝑠0 , 𝑠1 , . . . , 𝑠𝑛) defined inductively by

𝑠𝑘+1 B 𝑢(𝑠𝑘 , 𝑎𝑘+1)

is such that 𝑠𝑛 is an accept state: 𝑠𝑛 ∈ 𝐹.
We call a subset of List(𝐴) a language, and we say that the set of all words in List(𝐴)

that the automaton accepts is the language recognized by the automaton.

Remark 4.16. When we study a deterministic state automaton, we are usually inter-

ested in which words the automaton accepts and, more generally, what language the

automaton recognizes. While intuitive, the condition we provided for when an au-

tomaton accepts a word can be cumbersome to work with. In Example 8.51, we will

give a more compact way of describing whether an automaton accepts a word and

specifying the language the automaton recognizes. Better yet, we will find that this

alternative formulation arises naturally from the theory of Poly.

Proposition 4.17. A deterministic state automaton with a set of states 𝑆 and a set of

symbols 𝐴 can be identified with a pair of lenses

y→ 𝑆y𝑆 → 2y𝐴.

Proof. By Exercise 3.27, a lens y → 𝑆y𝑆 can be identified with an initial state 𝑠0 ∈ 𝑆.
Then a lens 𝑆y𝑆 → 2y𝐴 consists of a return function 𝑓 : 𝑆→ 2, which can be identified

with a subset of accept states 𝐹 ⊆ 𝑆, togetherwith an update function 𝑢 : 𝑆×𝐴→ 𝑆. □

In other words, we can think of a deterministic state automaton as aMoore machine

with position set 2 along with a distinguished initial state; the Moore machine has the

same states and update function as the automaton and the automaton’s symbols as its

directions.

90 CHAPTER 4. DYNAMICAL SYSTEMS AS DEPENDENT LENSES

Now imagine if we wanted to construct a version of this automaton that stops

reading symbols (i.e. directions) whenever the machine enters an accept state (i.e.

returns one position instead of the other). To do this would require a machine whose

set of possible directions is dependent on its current position. Instead of an update

function 𝑢 : 𝑆 ×𝐴→ 𝑆, we would need an update function that takes a direction 𝑎 ∈ 𝐴
if the state 𝑠 ∈ 𝑆 is not an accept state (say, if 𝑓 (𝑠) = 1) but takes a direction in 0 (i.e. no

direction) if the state 𝑠 is an accept state (if 𝑓 (𝑠) = 2). So there would be one update

function 𝑢𝑠 : 𝐴 → 𝑆 if 𝑓 (𝑠) = 1 and a different update function 𝑢𝑠 : 0 → 𝑆 if 𝑓 (𝑠) = 2.

But these are exactly the on-directions functions of a lens 𝑆y𝑆 → y𝐴 + 1! Indeed,

replacing our interface monomial with a general polynomial is exactly how we will

obtain our generalized dependent Moore machines.

4.2 Dependent dynamical systems

Each of our Moore machines above has a monomial 𝐼y𝐴 as an interface. Every repre-

sentable summand of such an interface has the same representing set 𝐴, so the set of

directions that can be fed into the machine is always 𝐴. But by replacing 𝐼y𝐴 with an

arbitrary polynomial 𝑝, which may have a different direction-set at each position, we

can model a broader class of machines.

Definition 4.18 (Dependent dynamical system). A dependent dynamical system (or a

dependent Moore machine, or simply a dynamical system) is a lens

𝜑 : 𝑆y𝑆 → 𝑝

for some 𝑆 ∈ Set and 𝑝 ∈ Poly. We call

• the domain monomial 𝑆y𝑆 the machine’s state system—its position-set (equiva-

lently, its direction-set) is the machine’s state-set, and its positions (equivalently,

its directions) are the machine’s states;
• the codomainpolynomial 𝑝 themachine’s interface—itsposition-set anddirection-

sets are the machine’s position-set and direction-sets, and its positions and direc-

tions are the machine’s positions and directions;
• the on-positions function 𝜑1 : 𝑆→ 𝑝(1) the machine’s return function;
• the on-directions map 𝜑♯

: 𝑝[𝜑1(−)] → 𝑆 the machine’s update map, and the on-

directions function 𝜑♯
𝑠 : 𝑝[𝜑1𝑠] → 𝑆 at 𝑠 ∈ 𝑆 the machine’s update function at

𝑠.

Example 4.19 (Dynamical systems as polyboxes). We can express a dynamical system

4.2. DEPENDENT DYNAMICAL SYSTEMS 91

𝜑 : 𝑆y𝑆 → 𝑝 in polyboxes as

𝑡

𝑠𝑆

𝑆 𝑎

𝑖
𝑝

return

update

We can visualize 𝜑 as a channel between the internal state system on the left and the

external interface on the right. The state system enters its current state 𝑠 ∈ 𝑆 into the

left position box, and the return function converts this state to a position 𝑖 ∈ 𝑝(1) of the
interface. At 𝑖, the interface has a direction-set 𝑝[𝑖]; an interacting agent selects one of

these directions 𝑎 ∈ 𝑝[𝑖] to enter into the right direction box. Finally, the update map

uses the current state 𝑠 and the position 𝑖 to fill the left direction box with the new state

𝑡 ∈ 𝑆. Then the process repeats with 𝑡 in place of 𝑠.

Remark 4.20. It may seem limiting that the set of possible directions a dependent dy-

namical system can receive should depend on the current position rather than the

current state; but this makes sense philosophically if we accept that the system’s in-

terface should capture everything about how it interacts with the outside world. In

particular, the system’s position should capture everything an external observer could

possibly perceive about the system, while the direction-set should capture all the ways

inwhich an external agent can choose to interact with the system. But if the set of direc-

tions available to an external agent changes, the external agent should be able to detect

this fact—the system’s position must have changed as well! On the other hand, if the

internal state changes, but the external position remains the same, the agent wouldn’t

see any difference—they wouldn’t know to interact with the system any differently, so

the directions available to them would have to stay the same, too.

Here are some examples of dependent dynamical systems. We begin by finishing

the example at the end of the last section.

Example 4.21 (Halting deterministic state automata). Recall deterministic state au-

tomata from Definition 4.15. Say we want such an automaton to halt after reaching an

accept state and read no more symbols. Then rather than a lens 𝑆y𝑆 → 2y𝐴, we could

use a lens

𝜑 : 𝑆y𝑆 → y𝐴 + 1 � {reject}y𝐴 + {accept}.

Togive sucha lens,wefirst need toprovide a return function𝜑1 : 𝑆→ {reject, accept}.
We let 𝜑 send the accept states to accept and every other state to reject.

If we reach an accept state, we want the machine to halt. So at the position accept,

corresponding to the summand 1, there are no directions available. This makes the

update function 𝜑♯
𝑠 vacuous when 𝜑1𝑠 = accept.

On the other hand, when 𝜑1𝑠 = reject, the update functions 𝜑♯
𝑠 : 𝐴 → 𝑆 specify

how the machine updates its state for each direction in 𝐴 if the current state is 𝑠. This

corresponds to the automaton’s update function.

92 CHAPTER 4. DYNAMICAL SYSTEMS AS DEPENDENT LENSES

When equipped with an initial state 𝑠0 ∈ 𝑆 specified by a lens y → 𝑆y𝑆, we call

these dependent dynamical systems halting deterministic state automata. Given a word

(𝑎1 , . . . , 𝑎𝑛) ∈ List(𝐴), we say that the automaton accepts thisword if starting at the initial

state and following the elements in the sequence leads us to an accept state, without
reaching an accept state any earlier—or, more formally, if the sequence (𝑠0 , 𝑠1 , . . . , 𝑠𝑛)
defined inductively by

𝑠𝑘+1 B 𝜑♯
𝑠𝑘 𝑎𝑘+1

is such that 𝑠𝑛 is the sequence’s first accept state:

𝜑1𝑠𝑘 =

{
reject if 𝑘 < 𝑛

accept if 𝑘 = 𝑛

We call the set of all words accepted by the automaton the language recognized by the

automaton.

Remark 4.22. Again, the conditions for when such an automaton accepts a word are

rather awkward to formally state. We will see in Example 8.50 an alternative way of

saying whether a word is accepted by a halting deterministic state automaton.

Exercise 4.23 (Solution here). Consider the halting deterministic state automaton

shown below:

• •

•
(4.24)

Let the left state • be 1, the right state • be 2, and the bottom state • be 3. We designate

•, state 1, as the initial state. We can also call the orange arrows “orange” and the green

arrows “green.” Answer the following questions, in keeping with the notation from

Example 4.21.

1. What is 𝑆?

2. What is 𝐴?

3. Based on the labeled transition diagram, which states are accept states, andwhich

are not?

4. Specify the corresponding lens 𝑆y𝑆 → y𝐴 + 1.
5. Name a word that is accepted by this automaton.

6. Name a word that is not accepted by this automaton. Why not? Can you find

another word that is not accepted by this automaton for a different reason? ♦

For further examples, every graph gives rise to a dynamical system; but to ensure

that we are discussing the same concept, let us fix the definition of a graph.

4.2. DEPENDENT DYNAMICAL SYSTEMS 93

Definition 4.25 (Graph). A graph 𝐺 B (𝐸 ⇒ 𝑉) consists of
• a set 𝐸 of edges;
• a set 𝑉 of vertices;
• a source function 𝑠 : 𝐸→ 𝑉 that assigns each edge a source vertex;

• a target function 𝑡 : 𝐸→ 𝑉 that assigns each edge a target vertex.

So when we say “graph,” we mean a directed graph, and we allow multiple edges

between the same pair of vertices as well as self-loops.

Example 4.26 (Graphs as dynamical systems). Given a graph 𝐺 B (𝐸 ⇒ 𝑉)with source

and target functions 𝑠, 𝑡 : 𝐸→ 𝑉 , there is an associated polynomial

𝑔 B
∑
𝑣∈𝑉

y𝑠
−1(𝑣).

Its positions are the vertices of the graph, and its directions at 𝑣 ∈ 𝑉 are the edges

coming out of 𝑣. We call this the emanation polynomial of 𝐺.
The graph itself induces a dynamical system 𝜑 : 𝑉y𝑉 → 𝑔, where 𝜑1 = id𝑉 and

𝜑♯
𝑣𝑒 = 𝑡(𝑒). So its states as well as its positions are the vertices of the graph, and a

direction at a vertex 𝑣 ∈ 𝑉 is an edge 𝑒 ∈ 𝐸 coming out of 𝑣 that takes us from 𝑣 = 𝑠(𝑒)
along the edge 𝑒 to its target vertex 𝜑♯

𝑣𝑒 = 𝑡(𝑒).

Exercise 4.27 (Solution here). Pick your favorite graph 𝐺, and consider the associated

dynamical system as in Example 4.26. Draw its labeled transition diagram as in (4.3)

or (4.24). ♦

Example 4.28. In Exercise 4.14, we built a file-reader as a Moore machine, where a file

is a function 𝑓 : n→ ascii from entries to characters. Now we turn that file-reader into

a dependent dynamical system 𝜑 : 𝑆y𝑆 → 𝑝 with only one direction while reading.

We let 𝑆 B {(𝑠, 𝑡) | 1 ≤ 𝑠 ≤ 𝑡 ≤ 𝑛}, so that each state consists of a current entry 𝑠

and a terminal entry 𝑡. Meanwhile, our interface 𝑝 will have two labeled copies of ascii
as positions:

𝑝(1) B {ready, busy} × ascii.

So each 𝑝-position is a pair (𝑚, 𝑐), where 𝑐 ∈ ascii and 𝑚 is one of two modes: ready or

busy. Then we define the direction-sets of 𝑝 for each 𝑐 ∈ ascii as follows:

𝑝[(ready, 𝑐)] B 𝑆 and 𝑝[(busy, 𝑐)] B {advance} � 1.

That way, our file-reader can receive as its direction any pair of entries in 𝑆 when it is

ready but can only be told to advancewhen it is busy.

94 CHAPTER 4. DYNAMICAL SYSTEMS AS DEPENDENT LENSES

We want our file-reader to be ready if its current entry is the terminal entry; other-

wise, it will be busy. In either case, it will return the character at the current entry. So

we define the return function 𝜑1 such that, for all (𝑠, 𝑡) ∈ 𝑆,

𝜑1(𝑠, 𝑡) =
{
(ready, 𝑓 (𝑠)) if 𝑠 = 𝑡

(busy, 𝑓 (𝑠)) otherwise

While the file-reader is ready, we want to set its new current and terminal entries to

equal the givendirection. So for each (𝑠, 𝑠) ∈ 𝑆, define the update function𝜑♯
(𝑠,𝑠) : 𝑆→ 𝑆

to be the identity on 𝑆.

On the other hand, while the file-reader is busy, we want it to step forward through

the file each time it receives an input. So for each (𝑠, 𝑡) ∈ 𝑆 for which 𝑠 < 𝑡, we let the

update function 𝜑♯
(𝑠,𝑡) : 1→ 𝑆 specify the element (𝑠 + 1, 𝑡) ∈ 𝑆, thus shifting its current

entry up by 1.

Exercise 4.29 (Solution here). Say instead of a file-reader, we wanted a file-searcher,

which acts just like the file-reader fromExample 4.28 except that it only returns 𝑐 ∈ ascii
in its position when 𝑐 is a specific character; say 𝑐 = 100. Otherwise, it returns the

placeholder character _. Give the lens for this file-searcher by explicitly defining its

return (on-positions) and update (on-directions) functions. Hint: You should be able

to use the same state system. ♦

In the previous exercise, we manually constructed a file-searcher that acted very

much like a file-reader. In Exercise 4.40, we will see a simpler way to construct a

file-searcher by leveraging the file-reader we have already defined. Moreover, this

construction will highlight precisely how our file-searcher is related to our file-reader.

This will be possible using wrapper interfaces, which we will introduce in Section 4.3.3.

Example 4.30. Choose 𝑛 ∈ N, a grid size, and for each 𝑖 ∈ n, let 𝐷𝑖 be the set

𝐷𝑖 B


{0,+1} if 𝑖 = 1

{−1, 0,+1} if 1 < 𝑖 < 𝑛

{−1, 0} if 𝑖 = 𝑛

We can think of 𝐷𝑖 as the set of ways a robot could move from location 𝑖. If 1 < 𝑖 < 𝑛,

a robot may shift its location by −1 (move left/down), 0 (remain still), or +1 (move

right/up). But a robot already at 𝑖 = 1 cannot shift its location by −1; likewise, a robot

already at 𝑖 = 𝑛 cannot shift its location by +1.

Then we can model a robot told to move in an n × n grid as a dependent dynamical

4.2. DEPENDENT DYNAMICAL SYSTEMS 95

system

𝜑 : (n × n)yn×n →
∑

(𝑖 , 𝑗)∈n×n

y𝐷𝑖×𝐷𝑗 .

The robot’s state is a location (𝑖 , 𝑗) ∈ n × n in the grid. We let 𝜑1 B idn×n so that the

dynamical system returns its state as its position: the robot expresses its position by

moving to that location in the grid.

For each (𝑖 , 𝑗) ∈ n× n, we let 𝜑♯
(𝑖 , 𝑗) send each pair (𝑑, 𝑒) ∈ 𝐷𝑖 ×𝐷𝑗 to the grid location

(𝑖+ 𝑑, 𝑗+ 𝑒) ∈ (𝑛, 𝑛). Concretely, this says that if a robot located at (𝑖 , 𝑗) receives the pair
(𝑑, 𝑒) as its direction, its new position will be (𝑖 + 𝑑, 𝑗 + 𝑒). As polyboxes, the dynamical

system is given by

(𝑖 + 𝑑, 𝑗 + 𝑒)

(𝑖 , 𝑗)n × n

n × n (𝑑, 𝑒)

(𝑖 , 𝑗) n × n

𝐷𝑖 × 𝐷𝑗

Our definition of 𝐷𝑖 for each 𝑖 ∈ n guarantees that this position is still inside the

grid; with this setup, the robot has fewer ways to move on the sides or corners of the

grid than anywhere else:

In this picture, n B 7, and the 4 directions at position (1, 7) and 9 directions at position

(5, 4) are shown (recall that remaining still is an option in either case).

Note that in this example, the positions are literally the positions in the grid where

the robot could be, and the directions at each position are literally the directions in

which the robot can move!

Exercise 4.31 (Solution here). Modify the dynamical system from Example 4.30 as

follows.

1. Replace the interface with a new polynomial 𝑝 so that at each grid location, the

robot can receive not only the direction it should move in but also a “reward

value” 𝑟 ∈ R.
2. Replace the state-set with a new set 𝑆 so that an element 𝑠 ∈ 𝑆 may include both

the robot’s position and a list of all reward values so far.

3. With your new 𝑝 and 𝑆, define a new dynamical system 𝜑′ : 𝑆y𝑆 → 𝑝 that pre-

serves the behavior of the dynamical system from Example 4.30 while updating

the robot’s reward list without returning it externally. ♦

In the previous exercise, we added a reward system to the robot on the grid by

96 CHAPTER 4. DYNAMICAL SYSTEMS AS DEPENDENT LENSES

manually redefining the associated lens. But there is a simpler way to think about

the new system: it is the juxtaposition of two systems, a robot system and a reward

system, in parallel. We will see how to express this in terms of lenses in Exercise 4.37,

once we explain how to juxtapose systems like this in general in Section 4.3.2. In fact,

we will see in Exercise 4.38 that the robot-on-a-grid system itself can be viewed as the

juxtaposition of two systems, and this perspective will provide a structured way to

generalize Example 4.30 to more than two dimensions.

4.3 Constructing new dynamical systems from old

We have seen how dependent dynamical systems can be modeled as lenses in Poly of

the form 𝑆y𝑆 → 𝑝. But we have yet to take full advantage of the categorical structure

that Poly provides. In particular, based only on what we know of Poly so far from

Chapter 3, we have three rather different ways of obtaining new dynamical systems

from old ones:

1. Given dynamical systems 𝑆y𝑆 → 𝑝 and 𝑆y𝑆 → 𝑞, we can use the universal

property of the categorical product to obtain a dynamical system 𝑆y𝑆 → 𝑝 × 𝑞; see
Section 4.3.1.

2. Given dynamical systems 𝜑 : 𝑆y𝑆 → 𝑝 and𝜓 : 𝑇y𝑇 → 𝑞, we can take their parallel

product to obtain a dynamical system 𝜑 ⊗ 𝜓 : 𝑆𝑇y𝑆𝑇 → 𝑝 ⊗ 𝑞; see Section 4.3.2.

3. Given a dynamical system 𝜑 : 𝑆y𝑆 → 𝑝 and a lens 𝑓 : 𝑝 → 𝑞, we can compose

them to obtain a dynamical system 𝜑 # 𝑓 : 𝑆y𝑆 → 𝑞; see Section 4.3.3.

Each of these operations has a concrete interpretation in terms of the systems’ behavior.

In this section, we will review each of them in turn.

4.3.1 Categorical products: multiple interfaces operating on the same
states

Let 𝐼 be a set, and say that we have an 𝐼-indexed family of dependent dynamical

systems (𝜑𝑖 : 𝑆y𝑆 → 𝑝𝑖)𝑖∈𝐼 that all share the same state-set 𝑆. Then since Poly has all

small products, the universal property of products induces a lens

𝜑 : 𝑆y𝑆 →
∏
𝑖∈𝐼

𝑝𝑖 ,

which is itself a dynamical system with state-set 𝑆. By (3.57), the interface of 𝜑 (i.e. the

product that is its codomain) has position-set(∏
𝑖∈𝐼

𝑝𝑖

)
(1) �

∏
𝑖∈𝐼

(
𝑝𝑖(1)

)
and, at each position 𝑗 : (𝑖 ∈ 𝐼) → 𝑝𝑖(1), direction-set∑

𝑖∈𝐼
𝑝𝑖[𝑗𝑖].

4.3. CONSTRUCTING NEW DYNAMICAL SYSTEMS FROM OLD 97

We then characterize the dynamics of 𝜑 in terms of each 𝜑𝑖 by leveraging the universal

property of products in Poly, detailed in the binary case in the solution to Exercise 3.64,

as follows. The return function

𝜑1 : 𝑆→
∏
𝑖∈𝐼

(
𝑝𝑖(1)

)
sends each state 𝑠 ∈ 𝑆 to the dependent function (𝑖 ∈ 𝐼) → 𝑝𝑖(1) sending 𝑖 ∈ 𝐼 to the

position (𝜑𝑖)1𝑠 returned by the corresponding dynamical system 𝜑𝑖 at the state 𝑠. Then

the update function

𝜑♯
𝑠 :

∑
𝑖∈𝐼

𝑝𝑖[(𝜑𝑖)1𝑠] → 𝑆

at 𝑠 ∈ 𝑆 sends each pair (𝑖 , 𝑑) in its domain, with 𝑖 ∈ 𝐼 and 𝑑 ∈ 𝑝𝑖[(𝜑𝑖)1𝑠], to where the

update function of 𝜑𝑖 at 𝑠 sends the direction 𝑑: namely (𝜑𝑖)♯𝑠𝑑. We can write 𝜑 using

polyboxes as follows:

(𝜑𝑖)♯𝑠𝑑

𝑠𝑆

𝑆 (𝑖 , 𝑑)

𝑖 ↦→ (𝜑𝑖)1𝑠

∏
𝑖∈𝐼 𝑝𝑖

In other words, if there are multiple interfaces that drive the same set of states,

we may view them as a single product interface that drives those states. This single

dynamical system returns positions in all of the original systems at once; then it can

receive a direction from any one of the original systems’ direction-sets and update its

state accordingly. It is as though all of the dynamical systems can detect the current

state of the combined system, but only one of them can change the state at a time. So

products give us a universal way to combine multiple polynomial interfaces into one.

Exercise 4.32 (Solution here). Given a set 𝐼, supposewe have an (𝐴𝑖 , 𝐵𝑖)-Mooremachine

with state-set 𝑆 for each 𝑖 ∈ 𝐼. Show that there is an induced (∑𝑖∈𝐼 𝐴𝑖 ,
∏

𝑖∈𝐼 𝐵𝑖)-Moore

machine, again with state-set 𝑆. ♦

Example 4.33. Consider two four-state dependent dynamical systems 𝜑 : 4y4 → Ry{𝑟,𝑏}

and 𝜓 : 4y4 → Z≥0y
{𝑔 ,𝑝} + Z<0y

{𝑔}
, drawn below as labeled transition diagrams (we

think of 𝑟, 𝑏, 𝑔 , and 𝑝 as red, blue, green, and purple, respectively):

𝜋 0

−1.41 2.72

−2 4

−8 16

The universal property of products provides a unique way to put these systems

together to obtain a dynamical system 4y4 → RZ≥0y
{𝑟,𝑏,𝑔 ,𝑝} + RZ<0y

{𝑟,𝑏,𝑔}
that looks

98 CHAPTER 4. DYNAMICAL SYSTEMS AS DEPENDENT LENSES

like this:

(𝜋,−2) (0, 4)

(−1.41,−8) (2.72, 16)

Each state now returns two positions: one according to the return function of 𝜑, and

another according to the return function of 𝜓. As for the possible directions, we can

now choose either a direction of 𝜑 (either 𝑟 or 𝑏), in which case the dynamical system

will update its state according to the update map of 𝜑; or a direction of 𝜓 (either 𝑔 or

sometimes 𝑝), in which case the dynamical system will update its state according to

the update map of 𝜓.

Exercise 4.34 (Toward event-based systems; solution here). Let 𝜑 : 𝑆y𝑆 → 𝑝 be a

dynamical system. We can think of it as requiring a direction at each time step to

update its state.

Suppose we want to change 𝜑 into an event-based system: one that does not always

receive a direction and changes state onlywhen it does. That is, wewant every position

of 𝑝 to have an extra direction that, when selected, never changes the state. We want a

new system 𝜑′ : 𝑆y𝑆 → 𝑝′ that has this behavior; what should 𝑝′ and 𝜑′ be? ♦

4.3.2 Parallel products: juxtaposing dynamical systems

Another way to combine two polynomials—and indeed two lenses—is by taking their

parallel product, as in Definition 3.65. In particular, the parallel product of two state

systems is still a state system. So parallel products give us another way to create

new dynamical systems from old ones. The procedure is straightforward: take the

product of the state-sets as the new state-set, the product of the position-sets as the

new position-set, and the product of the direction-sets at each of position in a tuple of

positions as the new direction-set at that tuple.

For 𝑛 ∈ N, say that we have 𝑛 dynamical systems: a lens 𝜑𝑖 : 𝑆𝑖y𝑆𝑖 → 𝑝𝑖 for each

𝑖 ∈ n. Then we can take the parallel product of all of them to obtain a lens

𝜑 :

⊗
𝑖∈n

(
𝑆𝑖y

𝑆𝑖
)
→

⊗
𝑖∈n

𝑝𝑖 .

By inductively applying Exercise 3.67, we find that the domain of 𝜑 is⊗
𝑖∈n

(
𝑆𝑖y

𝑆𝑖
)
�

(∏
𝑖∈n

𝑆𝑖

)
y
∏

𝑖∈n 𝑆𝑖 ,

4.3. CONSTRUCTING NEW DYNAMICAL SYSTEMS FROM OLD 99

so 𝜑 is itself a dependent dynamical system with state-set

∏
𝑖∈n 𝑆𝑖 . Meanwhile, induc-

tively applying (3.66) yields (⊗
𝑖∈n

𝑝𝑖

)
(1) �

∏
𝑖∈n

(
𝑝𝑖(1)

)
as the position-set and, at each position (𝑗𝑖)𝑖∈n,∏

𝑖∈n
𝑝𝑖[𝑗𝑖]

as the direction-set of the interface of 𝜑.

We can characterize the dynamics of 𝜑 in terms of each constituent dynamical

system 𝜑𝑖 as follows. By our proof sketch of Proposition 3.73, the return function

𝜑1 :

∏
𝑖∈n

𝑆𝑖 →
∏
𝑖∈n

(
𝑝𝑖(1)

)
sends each 𝑛-tuple of states (𝑠𝑖)𝑖∈n in its domain, with each 𝑠𝑖 ∈ 𝑆𝑖 , to the 𝑛-tuple of

positions ((𝜑𝑖)1𝑠𝑖)𝑖∈n returned by each of the constituent dynamical systems at each

state. Then at the 𝑛-tuple of states (𝑠𝑖)𝑖∈n ∈
∏

𝑖∈n 𝑆𝑖 , the update function

𝜑♯
(𝑠𝑖)𝑖∈n

:

∏
𝑖∈n

𝑝𝑖[(𝜑𝑖)1𝑠𝑖] →
∏
𝑖∈n

𝑆𝑖

sends each 𝑛-tuple of directions (𝑑𝑖)𝑖∈n in its domain, with each 𝑑𝑖 ∈ 𝑝𝑖[(𝜑𝑖)1𝑠𝑖], to the

𝑛-tuple ((𝜑𝑖)♯𝑠𝑖𝑑𝑖)𝑖∈n consisting of states to which the update function of each 𝜑𝑖 at 𝑠𝑖
sends 𝑑𝑖 . We can write 𝜑 using polyboxes as follows:

((𝜑𝑖)♯𝑠𝑖 𝑑𝑖)𝑖∈n

(𝑠𝑖)𝑖∈n
∏
𝑖∈n 𝑆𝑖

∏
𝑖∈n 𝑆𝑖 (𝑑𝑖)𝑖∈n

((𝜑𝑖)1𝑠𝑖)𝑖∈n

⊗
𝑖∈n 𝑝𝑖

In other words, multiple dynamical systems running in parallel can be thought of as

a single dynamical system. This system stores the states of all the constituent systems

at once and returns positions from all of them together; then it can receive directions

from all of the constituent systems’ direction-sets at those positions at once and update

each constituent state accordingly. So parallel products give us a way to juxtapose

multiple dynamical systems in parallel to form a single system.

Exercise 4.35 (Solution here). Given 𝑛 ∈ N, supposewe have an (𝐴𝑖 , 𝐵𝑖)-Mooremachine

with state-set 𝑆𝑖 for every 𝑖 ∈ n. Show that there is an induced (∏𝑖∈n 𝐴𝑖 ,
∏

𝑖∈n 𝐵𝑖)-Moore

machine with state-set

∏
𝑖∈n 𝑆𝑖 . ♦

100 CHAPTER 4. DYNAMICAL SYSTEMS AS DEPENDENT LENSES

Example 4.36. Consider dependent dynamical systems 𝜑 : 2y2 → R<0y
{𝑏,𝑟} + R≥0y

{𝑏}

and𝜓 : 3y3 → Z<0y
{𝑟}+{0}y{𝑟,𝑦}+Z>0y

{𝑦}
, drawn below as labeled transition diagrams

(we think of 𝑏, 𝑟, and 𝑦 as blue, red, and yellow, respectively):

√
7

−𝑒

−5 0 8

Taking their parallel product, we obtain a dynamical system with state system 6y6
and

interface

R<0Z<0y
{(𝑏,𝑟),(𝑟,𝑟)} + R<0{0}y{(𝑏,𝑟),(𝑏,𝑦),(𝑟,𝑟),(𝑟,𝑦)} + R<0Z>0y

{(𝑏,𝑦),(𝑟,𝑦)}

+ R≥0Z<0y
{(𝑏,𝑟)} + R≥0{0}y{(𝑏,𝑟),(𝑏,𝑦)} + R≥0Z>0y

{(𝑏,𝑦)}

that looks like this (we use purple to indicate (𝑏, 𝑟), red to indicate (𝑟, 𝑟), green to

indicate (𝑏, 𝑦), and orange to indicate (𝑟, 𝑦)):

(
√

7,−5) (
√

7, 0) (
√

7, 8)

(−𝑒 ,−5) (−𝑒 , 0) (−𝑒 , 8)

Each state—actually a pair of states from the constituent state-sets—returns two posi-

tions, one according to the return function of 𝜑 and another according to the return

function of 𝜓. Then every direction must be a pair of directions from the constituent

interfaces at those positions, with the update function updating each state in the pair

according to each direction in the pair via the constituent update functions of 𝜑 and 𝜓.

Exercise 4.37 (Solution here). Explain how the dynamical system 𝜑′ : 𝑆′y𝑆
′ → 𝑝′ you

built in Exercise 4.31 can be expressed as the parallel product of the robot-on-a-grid

dynamical system 𝜑 : 𝑆y𝑆 → 𝑝 from Example 4.30 with another dynamical system,

𝜓 : 𝑇y𝑇 → 𝑞. Be sure to specify 𝑇, 𝑞, and 𝜓. ♦

Exercise 4.38 (Solution here).
1. Explain how the robot-on-a-grid dynamical system 𝜑 : 𝑆y𝑆 → 𝑝 from Exam-

ple 4.30 can be written as the parallel product of some dynamical system with

itself.

4.3. CONSTRUCTING NEW DYNAMICAL SYSTEMS FROM OLD 101

2. Use 𝑘-foldparallel products togeneralizeExample 4.30 to robots on 𝑘-dimensional

grids. ♦

Intuitively, the parallel product takes two dynamical systems and puts them in the

same room together so that they can be run at the same time. But it does not allow

for any interaction between the two systems. For that, we will need to use what we call

a wrapper interface. We will introduce wrapper interfaces in the next section before

describing how they can be used in conjunctionwith parallel products tomodel general

interaction in Section 4.4.

4.3.3 Composing lenses: wrapper interfaces

Given a dynamical system 𝜑 : 𝑆y𝑆 → 𝑝, say that we want to interact with its state

system using a new interface 𝑞 rather than 𝑝. We can do this whenever we have a

lens 𝑓 : 𝑝 → 𝑞, which we could compose with our original dynamical system to obtain

a new system 𝑆y𝑆
𝜑
−→ 𝑝

𝑓
−→ 𝑞. We call the lens 𝑓 the wrapper and its codomain 𝑞 the

wrapper interface, which we wrap around 𝜑 (or sometimes just 𝑝, if a dynamical system

𝜑 has yet to be specified) using 𝑓 .

How does this new composite system 𝜑 # 𝑓 relate to the original dynamical system

𝜑? The lens 𝑓 converts a position 𝑖 from 𝑝 to a position 𝑓1𝑖 from 𝑞; at the same time, it

allows the choice of direction from 𝑝[𝑖] to depend on a choice of direction from 𝑞[𝑓1𝑖],
converting directions of the wrapper interface 𝑞 to directions of the original interface 𝑝.

Precomposing 𝑓 with a dynamical system yields a new dynamical system that lets an

agent interact with the original system using only this new interface wrapped around

it.

Example 4.39. Consider a dependent dynamical system 𝜑 : 6y6 → 𝑝 with

𝑝 B {1}y{𝑏,𝑦,𝑟} + {2}y{𝑏,𝑟} + {3}y{𝑏} + {4}y{𝑟} ,

drawn below as a labeled transition diagram (we think of 𝑏, 𝑦, and 𝑟 as blue, yellow,

and red, respectively):

1 2 3

4 1 4

We will wrap the interface

𝑞 B {𝑎}y{𝑔 ,𝑝,𝑜} + {𝑏}y{𝑔 ,𝑝} + {𝑐}

102 CHAPTER 4. DYNAMICAL SYSTEMS AS DEPENDENT LENSES

around 𝜑 using the following lens 𝑓 : 𝑝 → 𝑞 (we think of 𝑔 , 𝑝, and 𝑜 as green, purple,

and orange, respectively):

•
1

•
𝑏

•
2

•
𝑐

•
3

•
𝑏

•
4

•
𝑎

Composing 𝜑 with 𝑓 , we obtain a dynamical system 6y6 𝜑
−→ 𝑝

𝑓
−→ 𝑞 that looks like this:

𝑏 𝑐 𝑏

𝑎 𝑏 𝑎

Each state returns a 𝑞-position 𝑗 according to where the on-positions function of 𝑓

sends the 𝑝-position 𝑖 that the state returns. Then each 𝑞[𝑗]-direction is sent to a 𝑝[𝑖]-
direction via the on-directions function of 𝑓 at 𝑖, and the update function of 𝜑 uses this

𝑝[𝑖]-direction to compute the new state. So 𝑓 allows us to operate 𝜑 with the wrapper

interface 𝑞 instead of the original interface 𝑝.

Exercise 4.40 (Solution here). In Exercise 4.29, we built a file-searcher 𝜓 : 𝑆y𝑆 → 𝑞

by taking the file-reader 𝜑 : 𝑆y𝑆 → 𝑝 from Example 4.28 and replacing its interface

𝑝 with a new interface 𝑞 while keeping its state system 𝑆y𝑆 the same. Express this

construction as wrapping 𝑞 around 𝜑 by giving a lens 𝑓 : 𝑝 → 𝑞 for which composing

𝜑 with 𝑓 yields 𝜓. ♦

Example 4.41 (Polybox pictures of wrapper interfaces). In polyboxes, composing a dy-

namical system 𝜑 : 𝑆y𝑆 → 𝑝 with a wrapper 𝑓 : 𝑝 → 𝑞 looks like this:

𝑡

𝑠
𝑆y𝑆

𝑖

𝑜

𝑝

𝑖′

𝑜′
𝑞

return

update

𝑓1

𝑓 ♯

The position 𝑜 displayed by the intermediary interface 𝑝 is instead exposed as a position

𝑓1(𝑜) = 𝑜′ of the wrapper interface 𝑞 in the rightmost position box. Moreover, the

direction box of 𝑝 is no longer blue: an agent who wishes to interact with the middle

interface 𝑝 can only do so via the rightmost interface 𝑞. The on-directions function of

4.3. CONSTRUCTING NEW DYNAMICAL SYSTEMS FROM OLD 103

the wrapper at 𝑜 converts a direction 𝑖′ ∈ 𝑞[𝑜′] from the rightmost direction box into a

direction 𝑖 ∈ 𝑝[𝑜].
Picture the agent standing to the right of all the polyboxes (i.e. “outside” of the

system) with their attention directed leftward (i.e. “inward”), receiving positions from

the white position box and feeding directions into the blue direction box. To an agent

who is unaware of its inner workings, the composite dynamical system 𝜑 # 𝑓 might as

well look like this:

𝑡

𝑠
𝑆y𝑆

𝑖′

𝑜′
𝑞

return
′

update
′

In the next section, we describe a special kind of wrapper.

4.3.4 Sections as wrappers

Say we wanted to model a dynamical system 𝜑 : 𝑆y𝑆 → 𝑝 within a closed system, for

which an external agent can perceive no change in position and effect no change in

direction. We can think of this as wrapping y, the interface with one position and

one direction, around 𝜑. To do so, we must specify a wrapper 𝛾 : 𝑝 → y. In the

language of Definition 3.36, this is precisely a section of 𝑝. As we noted then, this name

is appropriate, since 𝛾 a way of sectioning off the interface 𝑝 from the outside world.

Recall that a section 𝛾 : 𝑝 → y can be identified with a dependent function of the

form (𝑖 ∈ 𝑝(1)) → 𝑝[𝑖] that sends each 𝑝-position 𝑖 to a 𝑝[𝑖]-direction, fixing a direction

at every position of 𝑝. So a section for an interface dictates the direction it receives

given any position it inhabits; there is no need for any further outside interference.

Exercise 4.42 (Solution here). Let 𝜑 : 𝑆y𝑆 → 𝐵y𝐴 be an (𝐴, 𝐵)-Moore machine.

1. Is it true that a section 𝛾 : 𝐵y𝐴 → y can be identified with a function 𝐴→ 𝐵?

2. Describe how to interpret a section 𝛾 : 𝐵y𝐴 → y as a wrapper around an interface

𝐵y𝐴.

3. Given a section 𝛾, describe the dynamics of the composite Moore machine

𝑆y𝑆
𝜑
−→ 𝐵y𝐴

𝛾
−→ y

obtained by wrapping y around 𝜑 using 𝛾. ♦

Example 4.43 (The do-nothing section). There is something rather off-putting about the

way wemodel dynamical systems as lenses 𝜑 : 𝑆y𝑆 → 𝑝. We know that 𝜑 sends states-

as-positions to positions of the interface and, at each state-as-position, sends directions

of the interface to states-as-directions. But we rely only on the labels of elements in 𝑆

to tell us which positions and directions refer to the same states!

Nothing inherent in the language of Poly makes these associations between states-

104 CHAPTER 4. DYNAMICAL SYSTEMS AS DEPENDENT LENSES

as-positions and states-as-directions for us; we have to rely on the position-set and

direction-sets of the state system being the same set for the machine to work prop-

erly. Put another way, the monomials {4, 6}y{4,6} , {4, 6}y{4,8} , and {3, 5}y{6,7} are all

isomorphic in Poly, but the first can be a state system while the other two cannot!

To address this issue, we need a way to connect the positions of a polynomial to

its own directions in the language of Poly. This is where sections can help: a lens

𝑆y𝑆 → y is just a way of assigning to each position in 𝑆 a direction in 𝑆. So we can

define 𝜖 : 𝑆y𝑆 → y to be the section that sends each position 𝑠 ∈ 𝑆 to the direction 𝑠 at

𝑠 with the same name, corresponding to the same state. Note that 𝜖 can be identified

with the identity function on 𝑆 (see Exercise 4.42). Now Poly knows for each position

which direction is associated with the same state the position is.

In this way, we can generalize our notion of state systems to monomials 𝑆y𝑆
′

equippedwith a bĳection 𝑆→ 𝑆′, which we can then translate to a section 𝜖 : 𝑆y𝑆
′ → y.

But for convenience of notation, we will continue to identify the position-set of a state

system with each of its direction-sets.

More concretely, the section 𝜖 : 𝑆y𝑆 → y acts as a very special (if rather unexciting)

dynamical system: it is the do-nothing section, with only one possible position and one

possible direction that always keeps the current state the same. While the system

literally does nothing, we do know one key fact about it: given any state system,

regardless of the state-set, we can always define a do-nothing section on it.
a

Yet this is not the whole story. The do-nothing section knows, at each position, the

direction that keeps the systemat the same state; but it does not knowwhich of the other

directions at that position correspond to which of the other states of the system. We

are still relying on the labels of direction-sets being the same for that: for instance, the

polynomials {1′, 2′, 3′}y{1,2,3} and {1′}y{0,1,4}+{2′}y{2,5,6}+{3′}y{−8,−1,3}
are isomorphic,

but even though each has a do-nothing section matching 1
′ ↦→ 1, 2′ ↦→ 2, 3′ ↦→ 3 that

makes the first one into a state system, we do not have a way to tell Poly how to make

the second one a state system yet.

From another perspective, 𝜖 : 𝑆y𝑆 → y does nothing, while 𝜑 : 𝑆y𝑆 → 𝑝 does “one

thing”: it steps through the system once, producing the current state’s position with

the return function and taking in directions with the update function. It is ready to

take another step, but how does Poly know which state to visit next? Is there a lens

that does “two things,” “𝑛 things,” or “arbitrarily many things”? Can we actually run
a dynamical system in Poly? Wewill develop the machinery to answer these questions

over the course of Part II, starting in Section 6.1.4.

a
It may have bothered you that we call 𝑆y𝑆 , which is a single polynomial, a state system, when we

also use the word “system” to refer to dependent dynamical systems, which are lenses 𝑆y𝑆 → 𝑝. The

existence of the do-nothing section explains why our terminology does not clash: every polynomial 𝑆y𝑆

comes equipped with a dependent dynamical system 𝜖 : 𝑆y𝑆 → y, so it really is a state system.

4.3. CONSTRUCTING NEW DYNAMICAL SYSTEMS FROM OLD 105

Example 4.44 (Polybox pictures of sections as wrappers). In polyboxes, composing a

system 𝑆y𝑆 → 𝑝 with a section 𝛾 of 𝑝 can be depicted as

𝑆y𝑆

𝑝

y

return

update

!

𝛾♯

or, equivalently, as

𝑆y𝑆

𝑝
return

update

𝛾

Remember: in a polybox depiction of a dynamical system, the world outside the

system exists to the right of all the boxes. So the first picture represents y as a gray

wall, cutting off any interaction between the system to its left and the world to its right.

Meanwhile, the second picture illustrates how a sectioned-off system independently

selects directions of the intermediary interface 𝑝 via 𝛾 according to the 𝑝-positions that

the inner (leftward) system 𝑆y𝑆 → 𝑝 returns. While the second picture shows us why

the closed system neither seeks nor requires external directions, the first picture helps

remind us that any returned 𝑝-positions never reach the outside world either. The

composite system is therefore equivalent to the section drawn as follows:

𝑆y𝑆 𝛾′

In lens parlance, 𝛾′ : 𝑆y𝑆 → y is the original system 𝑆y𝑆 → 𝑝 composedwith 𝛾 : 𝑝 → y;

in the language of dependent functions, 𝛾′ : 𝑆→ 𝑆 is given by

𝛾′(𝑠) = update(𝑠, 𝛾(return(𝑠))) for all 𝑠 ∈ 𝑆,

where we interpret 𝛾 as a dependent function (𝑖 ∈ 𝑝(1)) → 𝑝[𝑖]. We can deduce this

equation by equating the previous two polybox pictures, knowing they represent the

same lens:

𝑡

𝑠
𝑆y𝑆

𝑜

𝑖

𝑝
return

update

𝛾 𝑡′

𝑠
𝑆y𝑆 𝛾′=

Equating the directions boxes of the domain on either side, we have that 𝑡 = 𝑡′, so

𝛾′(𝑠) = 𝑡′ = 𝑡 = update(𝑠, 𝑜) = update(𝑠, 𝛾(𝑖)) = update(𝑠, 𝛾(return(𝑠))).

106 CHAPTER 4. DYNAMICAL SYSTEMS AS DEPENDENT LENSES

Later onwewill readmore intricate equations off of polyboxes in thismanner, although

wewill not spell out the procedure in somuchdetail; we encourage you to trace through

the arrows on your own.

Example 4.45 (The do-nothing section in polyboxes). In Example 4.43, we saw that every

state system 𝑆y𝑆 can be equipped with a section 𝜖 : 𝑆y𝑆 → y called the do-nothing

section, which assigns each state-as-position to its corresponding state-as-direction,

thus leaving the state unchanged. That is, it is the section whose polyboxes can be

drawn as follows:

𝑠

𝑠
𝑆y𝑆 𝜖

4.4 General interaction

We are now ready to use Poly to model interactions between dependent dynamical

systems that can change their interfaces and interaction patterns.

4.4.1 Wrapping juxtaposed dynamical systems together

When wrapper interfaces are used in conjunction with parallel products, they may

encode multiple interacting dynamical systems as a single system. Explicitly, given

𝑛 ∈ N and a dynamical system 𝜑𝑖 : 𝑆𝑖y𝑆𝑖 → 𝑝𝑖 for each 𝑖 ∈ n, we can first juxtapose

them to form a single dynamical system 𝜑 # 𝑓 :

𝜑 :

(∏
𝑖∈n

𝑆𝑖

)
y
∏

𝑖∈n 𝑆𝑖 →
⊗
𝑖∈n

𝑝𝑖

by taking their parallel product. Then we can wrap an interface 𝑞 around 𝜑 using a

wrapper 𝑓 :

⊗
𝑖∈n 𝑝𝑖 → 𝑞, yielding a new composite dynamical system(∏

𝑖∈n
𝑆𝑖

)
y
∏

𝑖∈n 𝑆𝑖
𝜑
−→

⊗
𝑖∈n

𝑝𝑖
𝑓
−→ 𝑞.

On positions, 𝑓 gives a way of combining all the positions of the constituent interfaces

into a single position of the wrapper interface. On directions, 𝑓 takes into account the

current positions of each constituent interface along with a direction for the wrapper

interface to specify a direction for each of the constituent interfaces. In particular, a

judiciously chosen on-directions function could feed positions of some interfaces as

directions to others. When 𝑓 is a wrapper around a parallel product of interfaces, we

call 𝑓 the interaction pattern between those interfaces.

4.4. GENERAL INTERACTION 107

Example 4.46 (Repeater). Suppose we have a dynamical system 𝜑 : 𝑆y𝑆 → 𝐴y + y that

takes unchanging directions and sometimes returns elements of 𝐴 while other times

returning only silence (the position associated with the right hand summand y). What

if we wanted to construct a system 𝜓 that operates just like 𝜑, but always returns

elements of 𝐴 as output? Where 𝜑 would have returned silence, we want 𝜓 to instead

repeat the last element of 𝐴 that was returned. (We allow 𝜓 to repeat an arbitrary

element of 𝐴 if 𝜑 returns silence before it has returned any elements of 𝐴 yet.)

What we need is a way to store an element of 𝐴 and retrieve it as needed. So

whenever 𝜑 returns an element of 𝐴, we store it; then when 𝜑 returns silence, we

retrieve the last element of 𝐴 we stored and return that instead.

What should this storage-retrieval dynamical system look like? It needs to take

elements of 𝐴 as directions, return elements of 𝐴 as positions, and store elements of

𝐴 as states. In fact, the identity lens 𝜄 : 𝐴y𝐴 → 𝐴y𝐴 works perfectly: it returns the

element of 𝐴 currently stored as its position and updates its state to the direction it

receives.

Now we can juxtapose our original system 𝜑 with the storage-retrieval system 𝜄 by

taking their parallel product, yielding a dynamical system

𝜑 ⊗ 𝜄 : 𝑆y𝑆 ⊗ 𝐴y𝐴 � 𝑆𝐴y𝑆𝐴 → (𝐴y + y) ⊗ 𝐴y𝐴

that runs both systems in parallel: simultaneously and independently. But what we

want is for 𝜑 and 𝜄 to interact with each other, and for the resulting system to only

return elements of 𝐴. To do so, we need to wrap an interface 𝐴y around 𝜑 ⊗ 𝜄 by

composing it with some lens

𝑓 : (𝐴y + y) ⊗ 𝐴y𝐴 → 𝐴y,

the interaction pattern between the interfaces 𝐴y + y and 𝐴y𝐴 that we must define.

Then we will be able to define 𝜓 B (𝜑 ⊗ 𝜄) # 𝑓 .
Since ⊗ distributes over +, by the universal property of the coproduct, it suffices to

give lenses

𝑔 : 𝐴y ⊗ 𝐴y𝐴 � (𝐴 × 𝐴)y𝐴 → 𝐴y and ℎ : y ⊗ 𝐴y𝐴 � 𝐴y𝐴 → 𝐴y.

The former corresponds to the case where 𝜑 returns an element of 𝐴, while the latter

corresponds to the case where 𝜑 is silent.

When 𝜑 returns an element of 𝐴, we want the composite system 𝜓 to return that

same element, but we also want to give that position as a direction to 𝜄 so that it can be

stored. We do not need to do anything with the position returned by 𝜄; we can simply

discard it. So 𝑔 shouldmap (𝑎, 𝑎′) ↦→ 𝑎 onpositions, yielding the position returned by𝜑

and discarding the position returned by 𝜄; and the on-directions function 𝑔♯
(𝑎,𝑎′) : 1→ 𝐴

108 CHAPTER 4. DYNAMICAL SYSTEMS AS DEPENDENT LENSES

should pick out the direction 𝑎 ∈ 𝐴, feeding the position returned by 𝜑 as a direction

for 𝜄.

On the other hand, when 𝜑 returns silence, we want 𝜓 to return the position of

𝜄 instead. We also need to feed this position back to 𝜄 as a direction so that it can

continue to be stored. So ℎ should be the identity on positions as well as the identity

on directions.

Example 4.47 (Paddling). Say we wanted to build a Moore machine with interface Ny;

we will interpret the natural number position it returns as describing the machine’s

current location. Suppose we want to be very strict about what how far the machine

can move and what can make it move.

To model this, we introduce two intermediary systems, which we call the paddler
and the tracker:a

paddler : 𝑆y𝑆 → 2y and tracker : 𝑇y𝑇 → Ny2

The paddler has interface 2y because it is blind (i.e. takes no directions) and can

only move its paddle (i.e. return a position) left or right: its position-set is 2 �
{left, right}. The tracker has interface Ny2

because it will return the location of the

machine (as an element 𝑛 ∈ N) as its position and take in the position of the paddler

(as an element of 2) as its direction. We can wrap an interface Ny around them both

using an interaction pattern

2y ⊗ Ny2 � 2Ny2 → Ny

whose on-positions function is the canonical projection 2N→ N, returning the location

returned by the tracker, andwhose on-directionsmap is the projection 2N→ 2, passing
the position of the paddler as a direction to the tracker.

Let us leave the paddler’s dynamics alone—how you the paddler may behave is

arbitrary—and instead focus on the dynamics of the tracker. We want it to watch for

when the paddle switches from left to right or from right to left; at that moment it

should push the machine forward one unit. Thus the states of the tracker are given by

𝑇 B 2N, storing what side the paddler is on and the machine’s current location. The

on-positions function of the tracker is the canonical projection 2N → N that returns

the current location; then at each (𝑑, 𝑖) ∈ 2N, the on-directions function of the tracker

2→ 2N sends

𝑑′ ↦→
{
(𝑑′, 𝑖) if 𝑑 = 𝑑′

(𝑑′, 𝑖 + 1) if 𝑑 ≠ 𝑑′,

4.4. GENERAL INTERACTION 109

storing the new position of the paddler as well as moving the machine forward one

unit if the paddle switches while keeping the machine still if the paddle stays still.

a
Perhaps one could refer to the tracker as the demiurge; it is responsible for maintaining the material

universe.

Exercise 4.48 (Solution here). Change the dynamics and state system of the tracker in

Example 4.47 so that it exhibits the following behavior.

When the paddle switches once and stops, the tracker increases the location by one

unit and stops, as before in Example 4.47. But when the paddle switches twice in a row,

the tracker increases the location by two units on the second switch! So if the paddler

is stable for a while, then switches three times in a row, the tracker will increase the

location by one, then two, then two again. ♦

Example 4.49. Suppose you have two systems with the same interface 𝑝 B 𝑞 B

R2yR
2−{(0,0)}

.

�
�

�
�

The ordered pair comprising the position of each interface indicates the location of

the corresponding system, while the range of possible directions indicate the locations

that the system could observe, relative to the location of the system itself. Taking all

pairs of reals except (0, 0) corresponds to the fact that the eye cannot see anything at

the same location as the eye itself.

Let us have the two systems approach each other accelerating at a rate equal to the

reciprocal of the squared distance between them, modeled with discrete time units. If

they finally collide, let us have both systems halt. To do this, we want the wrapper

interface to be {go}y + {stop}, so that if the system returns go, it can still advance to

the next state; but if it returns stop, it halts. The wrapperR2yR
2−{(0,0)}⊗R2yR

2−{(0,0)} →
{go}y + {stop} is given on positions by

(
(𝑥1 , 𝑦1), (𝑥2 , 𝑦2)

)
↦→

{
stop if 𝑥1 = 𝑥2 and 𝑦1 = 𝑦2

go otherwise.

On directions, we use the function(
(𝑥1 , 𝑦1), (𝑥2 , 𝑦2)

)
↦→

(
(𝑥2 − 𝑥1 , 𝑦2 − 𝑦1), (𝑥1 − 𝑥2 , 𝑦1 − 𝑦2)

)
,

so that each system is able to see the location of the other system relative to its own, i.e.

the vector pointing from itself to the other system (unless that vector is zero, in which

case the system should have returned the stop position and halted).

110 CHAPTER 4. DYNAMICAL SYSTEMS AS DEPENDENT LENSES

We can use these vectors to define the internal dynamics of each system so that they

move the way we want them to. Each system will hold as its internal state its current

location and velocity as vectors, i.e. 𝑆 B R2×R2
. To define a lens 𝑆y𝑆 → R2yR

2−{(0,0)}
we

simply return the current location, update the current location by adding the current

velocity vector, and update the current velocity vector by adding an acceleration vector

with appropriate magnitude pointing to the other system:

R2 × R2 return−−−−→ R2(
(𝑥, 𝑦), (𝑣𝑥 , 𝑣𝑦)

) return↦−−−−→ (𝑥, 𝑦)

R2 × R2 × (R2 − {(0, 0)})
update

−−−−−→ R2 × R2(
(𝑥, 𝑦), (𝑣𝑥 , 𝑣𝑦), (𝑎, 𝑏)

) update

↦−−−−−→
(
𝑥 + 𝑣𝑥 , 𝑦 + 𝑣𝑦 , 𝑣𝑥 +

𝑎

(𝑎2 + 𝑏2)3/2
, 𝑣𝑦 +

𝑏

(𝑎2 + 𝑏2)3/2

)

(
𝑥 + 𝑣𝑥 , 𝑦 + 𝑣𝑦 , 𝑣𝑥 + 𝑎

(𝑎2+𝑏2)3/2 , 𝑣𝑦 +
𝑏

(𝑎2+𝑏2)3/2
)

((𝑥, 𝑦), (𝑣𝑥 , 𝑣𝑦))R2 × R2

R2 × R2 (𝑎, 𝑏)

(𝑥, 𝑦) R2 − {(0, 0)}

R2

return

update

Exercise 4.50 (Solution here). Suppose (𝑋, 𝑑) is a metric space, i.e. 𝑋 is a set of points
and 𝑑 : 𝑋 × 𝑋 → R≥0 is a function called the distance function for which 𝑑(𝑥, 𝑦) =
𝑑(𝑦, 𝑥), 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦, and 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) ≥ 𝑑(𝑥, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Let us have robots interact in this space.

Let 𝐴, 𝐴′ be sets, each thought of as a set of signals, and let 𝑎0 ∈ 𝐴 and 𝑎′
0
∈ 𝐴′ be

elements, each thought of as a default value. Let 𝑝 B 𝐴𝑋y𝐴
′𝑋

and 𝑝′ B 𝐴′𝑋y𝐴𝑋 , and

imagine there are two robots, one with interface 𝑝, returning a signal as an element of

𝐴 and its location as a point in 𝑋, and one with interface 𝑝′, returning a signal as an

element of 𝐴′ and also its location as a point in 𝑋.

1. Write down an interaction pattern 𝑝 ⊗ 𝑝′ → y such that each robot receives the

other’s location but only receives the other’s signal when their locations 𝑥, 𝑥′ are

sufficiently close, namely when 𝑑(𝑥, 𝑥′) < 1. Otherwise, it receives the default

signal.

2. Modify the previous interaction pattern to specify a new interaction pattern

𝑝 ⊗ 𝑝′ → y[0,5] where the value 𝑠 ∈ [0, 5] is a scalar that changes the distance

threshold for the signal to 𝑠.

3. Suppose that each robot has a set 𝑆, 𝑆′ of possible private states in addition to

their locations. What functions are involved in providing a dynamical system

𝜑 : 𝑆𝑋y𝑆𝑋 → 𝐴𝑋y𝐴
′𝑋
, if the location state 𝑥 ∈ 𝑋 is directly returned without

modification?

4.4. GENERAL INTERACTION 111

4. Change the setup in any way so that each robot only extends a port to hear the

other’s signal when the distance between them is less than 𝑠. Otherwise, they can

only detect the position (element of 𝑋) that the other currently inhabits. (Don’t

worry too much about timing—one missed signal when the robots first get close

or one extra signal when the robots first get far is okay.) ♦

4.4.2 Sectioning juxtaposed dynamical systems off together

We saw in Section 4.3.4 that a section (i.e. lens to y) for the interface of a dynamical

system sections that dynamical system off as a closed system. So it should not come as

a surprise that a section for a parallel product of interfaces yields an interaction pattern

between the interfaces that only allows the interfaces to interact with each other, cutting

off any other interaction with the outside world.

Example 4.51 (Picking up the chalk). Imagine that you see some chalk and you pinch

it between your thumb and forefinger. An amazing thing about reality is that you

will then have the chalk, in the sense that you can move it around. How might we

model this in Poly? We will construct a closed dynamical system—one with interface

y—consisting of only you and the chalk. To do so, we will provide an interface for you,

and interface for the chalk, and a section for your juxtaposition.

Say that your hand can be at one of two heights, down or up, and that your fingers can

either be pressed (with pressure between your thumb and forefinger) or unpressed.

Say too that you take in information about the chalk’s height, which can be down or up

as well. Here are the two sets we will be using:

𝐻 B {down, up} and 𝑃 B {pressed, unpressed}.

Your interface is 𝐻𝑃y𝐻 : your position is your own height and pressure, and your

possible directions are the chalk’s possible heights. As for the chalk, it is either in your

possession or out of it as well as either down or up. The direction the chalk receives

includes whether it is pressed or unpressed. When it’s out of your possession, that

is the entire direction, but when it is in your possession, its direction also comprises

your hand’s height. In summary, here are the two interfaces:

You B 𝐻𝑃y𝐻 and Chalk B {out}𝐻y𝑃 + {in}𝐻y𝐻𝑃 .

Now we want to give the interaction pattern between you and the chalk. As we

said before, you see the chalk’s height. If your hand is not at the height of the chalk,

the chalk remains unpressed. Otherwise, your hand is at the height of the chalk, so

the chalk receives your pressure (or lack thereof). Furthermore, if the chalk is in your

possession, it also receives your hand’s height.

112 CHAPTER 4. DYNAMICAL SYSTEMS AS DEPENDENT LENSES

To provide a lens 𝛾 : You ⊗ Chalk → y, we use the fact that Chalk is a coproduct

and that ⊗ distributes over coproduct to write You ⊗ Chalk as a coproduct itself:

You ⊗ Chalk � 𝐻𝑃y𝐻 ⊗ {out}𝐻y𝑃 + 𝐻𝑃y𝐻 ⊗ {in}𝐻y𝐻𝑃 .

Then by the universal property of coproducts, to define 𝛾, it suffices to define two

lenses

𝛼 : 𝐻𝑃y𝐻 ⊗ {out}𝐻y𝑃 → y and 𝛽 : 𝐻𝑃y𝐻 ⊗ {in}𝐻y𝐻𝑃 → y

The lens 𝛽, corresponding to when the chalk is in your possession, is easy to describe:

it can be identified with a function 𝐻𝑃𝐻 → 𝐻𝐻𝑃, and we take it to be the obvious

function sending your height and pressure to the chalk and the chalk’s height to you;

see Exercise 4.53. But 𝛼, corresponding to when the chalk is out of your possession, is

more semantically interesting: it can be identified with a function 𝐻𝑃𝐻 → 𝐻𝑃 given

by

(ℎYou , 𝑝You , ℎChalk) ↦→
{
(ℎChalk , unpressed) if ℎYou ≠ ℎChalk

(ℎChalk , 𝑝You) if ℎYou = ℎChalk.

In words, this says that if you and the chalk are at different heights, then regardless of

your pressure, the chalk remains unpressed; but if you are at the same height as the

chalk, the chalk receives your pressure.

Now that you and the chalk are sectioned off together by 𝛾, we are ready to add

some dynamics. Your dynamics can be whatever you want, so let us focus on giving

dynamics to the chalk (you will be able to give yourself dynamics in Exercise 4.53).

The chalk’s state is comprised of its height and whether or not it is in your possession,

so we give a dynamical system with state-set 𝐶 B {out, in} × 𝐻 and interface Chalk:

that is, a lens

{out, in} × 𝐻y{out, in}×𝐻 → {out}𝐻y𝑃 + {in}𝐻y𝐻𝑃 . (4.52)

On positions, the chalk returns its height and whether it is in your possession directly:

in other words, the on-positions function is the identity. On directions, we have two

cases. If the chalk is out of your possession, it falls down unless you catch it, making

it pressed so that it becomes in your possession and retains its current height. So we

can express the on-directions function of (4.52) at (out, ℎChalk) as

unpressed ↦→ (out, down)
pressed ↦→ (‘in’, ℎChalk)

On the other hand, if the chalk is in your possession, it takeswhatever height it receives

from you, remaining in your possession if pressed but coming out of your possession

4.4. GENERAL INTERACTION 113

if unpressed. So the on-directions function of (4.52) at (in, ℎChalk) is given by

(ℎYou , unpressed) ↦→ (out, ℎYou)
(ℎYou , pressed) ↦→ (in, ℎYou).

We have thus defined an interaction pattern that allows one system to engage with

or disengage from another system and control the behavior of the other system only

when the two are engaged.

Exercise 4.53 (Solution here).
1. In Example 4.51, we said that 𝛽 : 𝐻𝑃y𝐻 ⊗ {in}𝐻y𝐻𝑃 → y was easy to describe

and given by a function 𝐻𝑃𝐻 → 𝐻𝐻𝑃. Explain what is being said, and provide

the function.

2. Provide dynamics to the You interface (i.e. specify a dynamical system with

interface You = 𝐻𝑃y𝐻) so that you repeatedly reach down and grab the chalk,

lift it with your hand, and drop it. ♦

Given 𝑛 ∈ N and polynomials 𝑝1 , . . . , 𝑝𝑛 as interfaces, a section 𝑝1⊗· · ·⊗𝑝𝑛 → y sec-

tions off these 𝑛 interfaces together. The following proposition provides an alternative

perspective on such sections.

Proposition 4.54. Given polynomials 𝑝, 𝑞 ∈ Poly, there is a bĳection

Γ(𝑝 ⊗ 𝑞) � Set
(
𝑞(1), Γ(𝑝)

)
× Set

(
𝑝(1), Γ(𝑞)

)
. (4.55)

The idea is that specifying a section for the interfaces 𝑝 and 𝑞 together is equivalent to

specifying a section for 𝑝 for every output 𝑞 might return and specifying a section for

𝑞 for every output 𝑝 might return.

Proof of Proposition 4.54. This is a direct calculation:

Γ(𝑝 ⊗ 𝑞) �
∏
𝑖∈𝑝(1)

∏
𝑗∈𝑞(1)
(𝑝[𝑖] × 𝑞[𝑗])

�
©­«
∏
𝑗∈𝑞(1)

∏
𝑖∈𝑝(1)

𝑝[𝑖]ª®¬ × ©­«
∏
𝑖∈𝑝(1)

∏
𝑗∈𝑞(1)

𝑞[𝑗]ª®¬
� Set(𝑞(1), Γ(𝑝)) × Set(𝑝(1), Γ(𝑞)).

□

Example 4.56. A section 𝑓 : 𝐼y𝐴 ⊗ 𝐼′y𝐴′ → y corresponds to a function 𝐼 × 𝐼′→ 𝐴 × 𝐴′.
In other words, for every pair of positions (𝑖 , 𝑖′) ∈ 𝐼 × 𝐼′, the section 𝑓 specifies a pair of

directions (𝑎, 𝑎′) ∈ 𝐴 × 𝐴′.

114 CHAPTER 4. DYNAMICAL SYSTEMS AS DEPENDENT LENSES

Let us think of the positions in 𝐼 and 𝐼′ as locations that two machines may occupy.

𝑖

𝑖′

�

�

𝑖

𝑖′

�

�

Then given a pair of locations (𝑖 , 𝑖′) ∈ 𝐼 × 𝐼′, the interaction pattern 𝑓 as a function

𝐼 × 𝐼′ → 𝐴 × 𝐴′ tells us the directions the machines observe, i.e. the ordered pair

(𝑎, 𝑎′) ∈ 𝐴 × 𝐴′ comprised of what each machine receives. Equivalently, (4.55) says

that the interaction pattern tells us what direction the first machine observes at each

location when the second machine’s location is fixed at 𝑖′, along with the direction the

second machine observes at each location when the first machine’s location is fixed at

𝑖.

Here we see that (4.55) provides two ways to interpret the interaction pattern be-

tween two interfaces in a closed system: either as a section around each interface

parametrized by the other’s position, or as a single section around them both.

Exercise 4.57 (Solution here). Let 𝑝 B 𝑞 B NyN. We wish to specify a section around

their juxtaposition.

1. Say we wanted to feed the position of 𝑞 as a direction for 𝑝. What function

𝑓 : 𝑞(1) → Γ(𝑝) captures this behavior?
2. Say we wanted to feed the sum of the positions of 𝑝 and 𝑞 as a direction for 𝑞.

What function 𝑔 : 𝑝(1) → Γ(𝑞) captures this behavior?
3. What section 𝛾 : 𝑝 ⊗ 𝑞 → y does the pair of functions (𝑓 , 𝑔) correspond to via

(4.55)?

4. Let dynamical systems 𝜑 : NyN → 𝑝 and 𝜓 : NyN → 𝑞 both be the identity on

NyN. Suppose 𝜑 starts in the state 0 ∈ N and 𝜓 starts in the state 1 ∈ N. Describe

the behavior of the system obtained by sectioning 𝜑 and 𝜓 off together with 𝛾,

i.e. the system (𝜑 ⊗ 𝜓) # 𝛾. ♦

Exercise 4.58 (Solution here). We will use (4.55) to consider the interaction pattern 𝛾

between You and Chalk from Example 4.51 as a pair of functions You(1) → Γ(Chalk)
and Chalk(1) → Γ(You).

1. How does the chalk’s position specify a section for you? That is, describe the

function Chalk(1) → Γ(You).
2. How does your position specify a section for the chalk? That is, describe the

function You(1) → Γ(Chalk). ♦

4.4. GENERAL INTERACTION 115

Exercise 4.59 (Solution here).
1. State and prove a generalization of (4.55) from Proposition 4.54 for 𝑛-many poly-

nomials 𝑝1 , . . . , 𝑝𝑛 ∈ Poly.
2. Generalize the “idea” statement between Proposition 4.54 and its proof. ♦

4.4.3 Wiring diagrams as interaction patterns

A wiring diagram is a graphical depiction of interactions between systems. Wiring

diagramsdepict systems as boxes, showinghow they send signals to each other through

the wires between them, as well as howmultiple systems can combine to form a larger

system whenever smaller boxes are nested within a larger box.

Formally, and more precisely, we can think of each box in a wiring diagram as an

interface given by some monomial. The box itself is not a dynamical system, but it

becomes a dynamical system once we equip it with a lens from a state system to the

interface the box represents. Then the entire wiring diagram—specifying how these

boxes nestwithin a larger box—is just an interaction pattern between the corresponding

interfaces, with the larger box playing the role of the wrapper interface. Once every

nested box is equipped with a lens from a state system, we obtain a dynamical system

whose interface is the larger box.

In the examples to come, we follow the convention that the signals emitted by a

box, i.e. positions returned by the corresponding interface, travel along wires out of

the right side of that box; while the signals received, i.e. directions observed by the

corresponding interface, by a box travel along wires into the left side of that box. A

wire may optionally be labeled by the name of the set of elements that may travel as

signals along that wire.

Example 4.60. Here is a simple wiring diagram.

Plant

Controller

𝐴

𝐵

𝐶

System

(4.61)

The Plant is receiving information from the world outside the System along the wire

labeled 𝐴 as well as from the Controller along the wire labeled 𝐵. It is also produc-

ing information for the outside world along the wire labeled 𝐶 which is also being

monitored by the Controller.

116 CHAPTER 4. DYNAMICAL SYSTEMS AS DEPENDENT LENSES

There are three boxes shown in (4.61): the Controller, the Plant, and the System.

Each has a fixed set of positions corresponding to the wire(s) connected to its right and

a fixed set of directions corresponding to the wire(s) connected to its left, so we can

consider each box as a monomial interface, as follows:

Controller B 𝐵y𝐶 Plant B 𝐶y𝐴𝐵 System B 𝐶y𝐴. (4.62)

Note that in the case of the Plant, two wires labeled 𝐴 and 𝐵 enter the box from the

left, so we take their cartesian product to be the direction-set of the Plant.

The wiring diagram itself is a wrapper

𝑤 : Controller ⊗ Plant→ System,

specifying an interaction pattern between the Controller and the Plant with the

System as thewrapper interface. Concretely,𝑤 is a lens 𝐵𝐶y𝐶𝐴𝐵 → 𝐶y𝐴 that prescribes

how wires feed positions to directions. As a lens between monomials, 𝑤 consists of an

on-positions function 𝐵𝐶 → 𝐶 and an on-directions map 𝐵𝐶𝐴→ 𝐶𝐴𝐵.

The wiring diagram is a picture that tells us what the on-positions function and

on-directions map to use. In particular, the on-positions function sends positions of

the inner interfaces to positions of the outer interface, so it is depicted by how the wires

coming from the right sides of the inner boxes connect to the right side of the outer

box. Given inner boxes that return positions in 𝐵 and 𝐶, the outer box must return a

position in 𝐶. Here the wire labeled 𝐵 is not connected to the outer box, but the wire

labeled 𝐶 is, so the on-positions function 𝐵𝐶 → 𝐶 sends (𝑏, 𝑐) ↦→ 𝑐.

Meanwhile, the on-directions function sends positions of the inner interfaces and

directions of the outer interface to directions of the inner interfaces, so it is depicted

by how the wires coming from both the right sides of the inner boxes and the left side

of the outer box connect to the left sides of the inner boxes. Given inner boxes that

return positions in 𝐵 and 𝐶 and an outer box that receives directions in 𝐴, the inner

boxes must receive directions in 𝐶 and 𝐵. Again, we can read the on-directions map

𝐵𝐶𝐴→ 𝐶𝐴𝐵 off the wiring diagram: it sends (𝑏, 𝑐, 𝑎) ↦→ (𝑐, 𝑎, 𝑏).
Note that neither the wiring diagram nor any of the boxes within it represent

dynamical systems on their own. Rather, each box is a monomial that could be the

interface of a dynamical system. When we assign to a box a dynamical system having

that box as its interface, we say that we give dynamics to the box. So the entire wiring

diagram is a wrapper that tells us how, once we give dynamics for each inner box,

𝜑 : 𝑆y𝑆 → Controller and 𝜓 : 𝑇y𝑇 → Plant,

we have given dynamics for the entire outer box:

𝑆𝑇y𝑆𝑇
𝜑 ⊗ 𝜓
−−−−→ Controller ⊗ Plant 𝑤−→ System.

4.4. GENERAL INTERACTION 117

Exercise 4.63 (Solution here).
1. Make a new wiring diagram like (4.61) except where the controller also receives

information from the outside world as an element of a set 𝐴′.

2. What are the monomials represented by the boxes in your diagram (replacing

(4.62))?

3. What is the interaction pattern represented by this wiring diagram? Give the

corresponding lens, including its on-positions and on-directions functions. ♦

Exercise 4.64 (Solution here). Consider the following wiring diagram.

Alice

Bob

Carl

Team

•

𝐴

𝐵

𝐷

𝐸

𝐹

𝐺

𝐻

1. Write out the monomials for Alice, Bob, and Carl.

2. Write out the monomial for the outer box, Team.

3. Thewiringdiagramconstitutes a lens 𝑓 inPoly; what is its domain and codomain?

4. What lens is 𝑓 ?

5. Suppose we have dynamical systems 𝛼 : 𝐴y𝐴 → Alice, 𝛽 : 𝐵y𝐵 → Bob, and

𝛾 : 𝐶y𝐶 → Carl. What is the induced dynamical system with interface Team? ♦

Exercise 4.65 (Long division; solution here).
1. Let divmod: N × N≥1 → N × N send (𝑎, 𝑏) ↦→ (𝑎 div 𝑏, 𝑎 mod 𝑏); for example,

it sends (10, 7) ↦→ (1, 3) and (30, 7) ↦→ (4, 2). Use Example 4.9 to turn it into a

dynamical system.

2. In the following wiring diagram, we have already given dynamics to each box,

as follows.

divmod
7 ∗

10

The dynamical system corresponding to the box divmod, with the box as its

interface, is the dynamical system from the previous part (the upper wires cor-

respond to the left hand factors of the domain and codomain of the divmod

function, while the lower wires correspond to the right hand factors). Similarly,

the box labeled ∗ corresponds to the to the dynamical system arising from the

multiplication functionN×N→ N sending (𝑚, 𝑛) ↦→ 𝑚𝑛 following Example 4.9.

Meanwhile the boxes labeled 7 and 10 correspond to dynamical systems with

118 CHAPTER 4. DYNAMICAL SYSTEMS AS DEPENDENT LENSES

1 state each that always return 7 ∈ N≥1 and 10 ∈ N, respecively. Describe the

behavior of the dynamical system corresponding to the entire outer box.

3. Using the outer box from the wiring diagram above as the inner box of the

wiring diagram below, pick an initial state so that the resulting dynamical system

alternates between returning 0’s and the base-10 digits of 1/7 after the decimal

point, like so:

0, 1, 0, 4, 0, 2, 0, 8, 0, 5, 0, 7, 0, 1, 0, 4, 0, 2, 0, 8, 0, 5, 0, 7, 0, 1, 0, 4, 0, 2, 0, 8, 0, 5, 0, 7, . . .

We will see in Section 7.1.5 how to make a dynamical system run twice as fast,

then apply this to the above system in Example 7.13 so that it skips the 0’s. ♦

Example 4.66 (Graphs as wiring diagrams and cellular automata). Suppose we have a

graph 𝐺 = (𝐸 ⇒ 𝑉) as in Definition 4.25 and a set 𝜏(𝑣) associated with each vertex

𝑣 ∈ 𝑉 :

𝐸 𝑉 Set
𝑠

𝑡

𝜏

We can think of 𝐺 as an alternative representation of a specific kind of wiring diagram,

one in which each inner box has exactly one position wire coming out and the outer

box is closed (i.e. no wires in or out, representing the interface ywith exactly 1 position

and 1 direction). The vertices 𝑣 ∈ 𝑉 are the inner boxes, the set 𝜏(𝑣) is the position-set
associated with the wire coming out of 𝑣, and each edge 𝑒 is a wire connecting the

position wire of its target 𝑡(𝑒) to a direction wire of its source 𝑠(𝑒). An edge from

a vertex 𝑣0 to a vertex 𝑣1 indicates that the directions received by 𝑣0 depend on the

positions returned by 𝑣1.
a

In other words, we can associate each vertex 𝑣 ∈ 𝑉 with the monomial

𝑝𝑣 B 𝜏(𝑣)y
∏

𝑒∈𝐸𝑣 𝜏(𝑡(𝑒))

specifying its positions and directions, where 𝐸𝑣 B 𝑠−1(𝑣) ⊆ 𝐸 denotes the set of edges

emanating from 𝑣. The graph then determines a section

𝛾 :

⊗
𝑣∈𝑉

𝑝𝑣 → y

given by a function ∏
𝑣∈𝑉

𝜏(𝑣) −→
∏
𝑒∈𝐸

𝜏(𝑡(𝑒))

that sends each dependent function 𝑖 : (𝑣 ∈ 𝑉) → 𝜏(𝑣) to the dependent function

(𝑒 ∈ 𝐸) → 𝜏(𝑡(𝑒)) sending 𝑒 ↦→ 𝑖(𝑡(𝑒)). In other words, given the 𝑝𝑣-position 𝑖(𝑣) ∈ 𝜏(𝑣)

4.4. GENERAL INTERACTION 119

returned by each vertex 𝑣 ∈ 𝑉 , we know for each edge 𝑒 ∈ 𝐸 that the direction that its

source vertex 𝑠(𝑒) receives is the position 𝑖(𝑡(𝑒)) returned by its target vertex 𝑡(𝑒).
So once we give dynamics to each 𝑝𝑣 , namely by specifying a dynamical system

𝑆𝑣y
𝑆𝑣 → 𝑝𝑣withpositions in 𝜏(𝑣) anddirections in

∏
𝑒∈𝐸𝑣 𝜏(𝑡(𝑒)), wewill obtain a closed

dynamical system that updates the state of each vertex according to the information

that they observe from each other along their edges.

Effectively, by interpreting a graph as a wiring diagram and giving each vertex

dynamics, we have createdwhat is known as a cellular automaton—anetwork of vertices

(or cells), each with an internal state, in which each vertex 𝑣 ∈ 𝑉 broadcasts a signal

(i.e. returns a position) according to its current state, then updates its state according to

the signals broadcasted by its neighbors in 𝑡(𝐸𝑣) (i.e. positions returned by its neighbors

it receives as directions).

For example, many cellular automata have their cells on a 2-dimensional integer

lattice. The corresponding graph has vertices 𝑉 B Z × Z and edges given by

𝐸 B ({−1, 0, 1} × {−1, 0, 1} − {(0, 0)}) ×𝑉,

with 𝑠((𝑖 , 𝑗), (𝑚, 𝑛)) = (𝑚, 𝑛) and 𝑡((𝑖 , 𝑗), (𝑚, 𝑛)) = (𝑚 + 𝑖 , 𝑛 + 𝑗), so that the neighbors

of each vertex are the eight vertices that surround it.

a
We could swap the roles of the sources and the targets, so that edges point in the direction of data

flow rather than in the direction of data dependencies; this is an arbitrary choice.

Exercise 4.67 (Conway’s Game of Life; solution here). Conway’s Game of Life is a

cellular automaton taking place on a 2-dimensional integer lattice as follows. Each

lattice point is either live or dead, and each point observes its eight neighbors to which

it is horizontally, vertically, or diagonally adjacent. The following occurs at every time

step:

• Any live point with 2 or 3 live neighbors remains live.

• Any dead point with 3 live neighbors becomes live.

• All other points either become or remain dead.

We can use Example 4.66 to model Conway’s Game of Life as a closed dynamical

system.

1. What is the appropriate graph 𝐸 ⇒ 𝑉?

2. What is the appropriate assignment of sets 𝜏 : 𝑉 → Set?
3. What are the monomials 𝑝𝑣 from Example 4.66?

4. What is the appropriate state-set 𝑆𝑣 for each interface 𝑝𝑣?

5. What is the appropriate dynamical system lens 𝑆𝑣y
𝑆𝑣 → 𝑝𝑣? ♦

120 CHAPTER 4. DYNAMICAL SYSTEMS AS DEPENDENT LENSES

4.4.4 More examples of general interaction

While wiring diagrams are a handy visualization tool for certain simple interaction

patterns, there are more general interaction patterns that cannot be captured by such

a static diagram. For example, here we generalize our previous cellular automata

example.

Example 4.68 (Generalized cellular automata: voting onwhoyour neighbors are). Recall
from Example 4.66 how we constructed a cellular automaton on a graph 𝐺 = (𝐸 ⇒ 𝑉).
For each 𝑣 ∈ 𝑉 , the graph specifies the set 𝑁(𝑣) B 𝑡(𝐸𝑣) of target vertices of edges

emanating from 𝑣. These vertices are the neighbors of 𝑣, or the vertices that 𝑣 can

“observe.” We call the function 𝑁 : 𝑉 → 2𝑉 from each vertex to the set of its neighbors

the neighbor function. For simplicitly, we let each vertex store and return one of two

states, so 𝑆𝑣 B 𝜏(𝑣) B 2.
Now consider only the vertices of our graph and forget the edges. Suppose we are

then given a function 𝑛 : 𝑉 → N that we can think of as specifying the number 𝑛(𝑣)
of neighbors each 𝑣 ∈ 𝑉 could potentially have. Let n(𝑣) B {1, 2, . . . , 𝑛(𝑣)}. Then the

monomial each vertex represents is

𝑝𝑣 � 2y2n(𝑣)
,

with its own possible states as positions and its potential neighbors’ possible states as

directions.

Say that a neighbor function 𝑁 : 𝑉 → 2𝑉 respects 𝑛 if we have an isomorphism

𝑁(𝑣) � n(𝑣) for each 𝑣 ∈ 𝑉 . Now suppose we have a function 𝑁 ′− : 2𝑉 → (2𝑉)𝑉 that

sends each set of vertices 𝑆 ∈ 2𝑉 to a neighbor function 𝑁 ′
𝑆

: 𝑉 → 2𝑉 that respects 𝑛.

In other words, each possible state configuration 𝑆 of all the vertices in 𝑉 determines

a neighbor function 𝑁 ′
𝑆
. In the case of Example 4.66, when we had a graph, it told us

what the neighbor function should always be. Now we could imagine all the vertices

returning their states to vote, via 𝑁 ′, on what neighbor function to use to determine

which vertices are observing which others.

We can put this all together by providing a section for all the vertices,⊗
𝑣∈𝑉

𝑝𝑣 � 2𝑉y2
∑
𝑣∈𝑉 n(𝑣) −→ y. (4.69)

Such a section is equivalent to a function 𝑔 : 2𝑉 → 2
∑
𝑣∈𝑉 n(𝑣)

that sends each possible

state configuration 𝑆 ∈ 2𝑉 of all the vertices in 𝑉 to a function 𝑔(𝑆) : ∑
𝑣∈𝑉 n(𝑣) → 2

specifying the states every vertex observes. But we already have a neighbor function

assigned to 𝑆 that respects n, namely 𝑁 ′
𝑆
: we have 𝑁 ′

𝑆
(𝑣) � n(𝑣) for all 𝑣 ∈ 𝑉 . So we can

think of 𝑔(𝑆) equivalently as a function 𝑔(𝑆) : ∑
𝑣∈𝑉 𝑁

′
𝑆
(𝑣) → 2 that says for each 𝑣 ∈ 𝑉

what signal in 2 it should receive from its neighbor 𝑤 ∈ 𝑁 ′
𝑆
(𝑣). We will let it receive

4.4. GENERAL INTERACTION 121

the current state of that neighbor, as given by 𝑆:

𝑔(𝑆)(𝑣, 𝑤) B 𝑆(𝑤).

We have accomplished our goal: the vertices “vote” on how they should be con-

nected in that their states together determine the neighbor function. We do notmean to

imply that this vote needs to be democratic or fair in anyway: it is an arbitrary function

𝑁 ′− : 2𝑉 → (2𝑉)𝑉 . For instance, the state of a given vertex 𝑣0 ∈ 𝑉 may completely

determine the neighbor function 𝑉 → 2𝑉 ; this would be expressed by saying that 𝑁 ′−
factors as 2𝑉 → 2{𝑣0} � 2 → (2𝑉)𝑉 , where the left function is the evaluation map at

𝑣0 ∈ 𝑉 .

Here are some more examples of dependent dynamical systems with interaction

patterns in which the way the constituent components are wired together may change.

Example 4.70. In the picture below, forces are applied to the connected boxes on the

left; we would like to model how too much force could cause the connection between

the boxes to sever, as depicted on the right.

𝜑1 𝜑2Force Force 𝜑1 𝜑2Force ForceSnap!

Wewill imagine the dependent dynamical systems 𝜑1 : 𝑆y𝑆 → 𝑝1 and 𝜑2 : 𝑆y𝑆 → 𝑝2 as

initially connected in space. They experience forces from the outside world, and—for

as long as they are connected—they experience forces from each other. More precisely,

their interfaces are given by

𝑝1 B 𝑝2 B 𝐹y𝐹×𝐹 + {snapped}y𝐹 ,

where 𝐹 is our set of forces. We need to be able to add and compare forces, so we need

𝐹 to be an ordered monoid; let us say 𝐹 B N for simplicity. Here each interface has

two kinds of positions it can return: either a force 𝑓 ∈ 𝐹 that will be applied to the

other interface (i.e. sent to the other interface as a direction) or snapped, indicating

that the interfaces are no longer connected. The interface always receives a force from

the outside world as part of its direction, but when the position of the interface is not

snapped, it receives a force from the other interface as part of its direction as well. So

its direction set is 𝐹 × 𝐹 at positions in 𝐹, when the two interfaces are connected; and

just 𝐹 at the position snapped, when the two interfaces are not. We define the wrapper

interface to be

𝑝 B y𝐹×𝐹;

122 CHAPTER 4. DYNAMICAL SYSTEMS AS DEPENDENT LENSES

it can return only 1 position, while its directions are ordered pairs of forces (𝑓𝐿 , 𝑓𝑅)
indicating the two external forces acting on the composite system.

Though the systems 𝜑1 and 𝜑2 may be initially connected, if the forces on either

one surpass a threshold, that system stops communicating with the other system. The

connection is broken and neither system ever receives forces from the other again. To

implement this explicitly, we need to define an interaction pattern 𝜅 : 𝑝1 ⊗ 𝑝2 → 𝑝 that

wraps 𝑝 around 𝜑1 and 𝜑2. That is, we need to give a lens

𝜅 : (𝐹y𝐹×𝐹 + {snapped}y𝐹) ⊗ (𝐹y𝐹×𝐹 + {snapped}y𝐹) → y𝐹×𝐹 .

Distributing and leveraging coproducts as usual, we find that it suffices to give four

lenses:

𝜅11 : 𝐹 × 𝐹y(𝐹×𝐹)(𝐹×𝐹) → y𝐹×𝐹

𝜅12 : 𝐹{snapped}y(𝐹×𝐹)𝐹 → y𝐹×𝐹

𝜅21 : {snapped}𝐹y𝐹(𝐹×𝐹) → y𝐹×𝐹

𝜅22 : {snapped}{snapped}y𝐹×𝐹 → y𝐹×𝐹

(4.71)

The lenses 𝜅12 and 𝜅21 will not actually occur in our dynamics (when one interface

returns snapped, both should), so we take them to be arbitrary. We take the lens 𝜅22 to

be the obvious isomorphism, passing the external forces to the two internal interfaces.

Finally, the lens 𝜅11 is equivalent to a function (𝐹 × 𝐹)(𝐹 × 𝐹) → (𝐹 × 𝐹)(𝐹 × 𝐹) which,

taking care to remember what each 𝐹 refers to, we find should send ((𝑓1 , 𝑓2), (𝑓𝐿 , 𝑓𝑅)) ↦→
((𝑓𝐿 , 𝑓2), (𝑓1 , 𝑓𝑅)). While the multiple 𝐹’s may be a little hard to keep track of, what this

map says is that if 𝜑1 returns the force 𝑓1 on 𝜑2 as output and 𝜑2 returns the force 𝑓2 on

𝜑1 as output, then 𝜑1 receives the force 𝑓2 from the right as input and 𝜑2 receives the

force 𝑓1 from the left as input; and in the meantime the left external force 𝑓𝐿 is given to

𝜑1 on the left, while the right external force is given to 𝜑2 on the right.

Now that we have the interfaces wrapped together, it remains to specify each

dynamical system. The state-sets for the two systems will be the same, namely

𝑆 B 𝐹 + {snapped}: each system is either applying a force to the other system or

not. The dynamical systems themselves will be the same as well, up to a symmetry

swapping left and right; we will define only the left system. It is given by a lens

𝜑1 : (𝐹 + {snapped})y𝐹+{snapped} → 𝐹y𝐹×𝐹 + {snapped}y𝐹

which we write as the sum of two lenses

𝐹y𝐹+{snapped} → 𝐹y𝐹×𝐹 and {snapped}y𝐹+{snapped} → {snapped}y𝐹 .

Both lenses are identities on positions, directly returning their current states. The

second lens corresponds to when the connection is broken, after which the connection

should remain broken: so its on-directions function is constant, sending any direction

to snapped. Meanwhile, the first lens corresponds to the case where the systems are

4.4. GENERAL INTERACTION 123

still connected; in this state, the system can receive a pair of forces as its direction and

must update its state—either the force it applies or snapped—accordingly. We let the

on-directions function 𝐹(𝐹 × 𝐹) → 𝐹 + {‘snapped’} send

(𝑓1 , (𝑓𝐿 , 𝑓2)) ↦→
{
snapped if 𝑓1 + 𝑓2 ≥ 100

𝑓𝐿 otherwise

Thus, when the sum of forces is above a certain threshold (arbitrarily chosen here to be

100), the internal state is updated to the snapped state; otherwise, the internal state is

set to the external force applied to the system, which it is now ready to transfer to the

other system.

Example 4.72. Consider the case of a company that may change its supplier based on its

internal state. The company returns two possible positions, corresponding to whether

it wants to receive gizmos in 𝐺 from the first supplier or widgets in𝑊 from the second:

Supplier 1

Supplier 2

Company

𝐺

•

Supplier 1

Supplier 2 Company

𝑊

•
Change

supplier!

So the company has interface {1}y𝐺+{2}y𝑊 , the first supplier has interface𝐺y, and the

second supplier has interface𝑊y. Then a section for the company and the suppliers is

a lens (
{1}y𝐺 + {2}y𝑊

)
⊗ 𝐺y ⊗𝑊y→ y,

corresponding to a pair of functions {1}×𝐺𝑊 � 𝐺𝑊 → 𝐺 and {2}×𝐺𝑊 � 𝐺𝑊 →𝑊

given by canonical projections. In other words, the company’s position determines its

supplier and what it receives.

Example 4.73. When someone assembles a machine, their own positions dictate the

interaction pattern of the machine’s components.

unit A unit B unit A unit B

Attach!

Define 𝑆 B {attach, separate}. We say that unit A has interface

({attached} × 𝑋 + {separated}) y𝑆 .

124 CHAPTER 4. DYNAMICAL SYSTEMS AS DEPENDENT LENSES

It can always receive either the direction to attach or to separate from 𝑆, while its

position is either simply separated or both attached and returning some element of

a fixed set 𝑋. Meanwhile, unit B has interface

{attached}y𝑋×𝑆 + {separated}y𝑆 .

It can also always receive either direction from 𝑆, but when it is attached it can further

receive an element of 𝑋. Finally, the role of the person is simply to return whether the

units should attach or separate, so we give it the interface 𝑆y.

Then a section for the person and the units is a lens

({attached} × 𝑋 + {separated}) y𝑆 ⊗
(
{attached}y𝑋×𝑆 + {separated}y𝑆

)
⊗ 𝑆y→ y.

Such a lens corresponds to four functions, two of which can be arbitrary because

our dynamics should never return them (either both units are attached or both are

separated). The other two functions consist of one function

{(attached, attached)} × 𝑋 × 𝑆 � 𝑋 × 𝑆→ 𝑆 × 𝑋 × 𝑆

that sends (𝑥, 𝑠) ↦→ (𝑠, 𝑥, 𝑠) and another function

{(separated, separated)} × 𝑆 � 𝑆→ 𝑆 × 𝑆

that sends 𝑠 ↦→ (𝑠, 𝑠).
In words: the person’s position tells the units whether they should attach or

separate. If, and only if, the units are attached, one unit sends elements of 𝑋 to the

other.

We can easily generalize Example 4.73. Indeed, we will see in the next section that

there is an interface [𝑞1⊗· · ·⊗ 𝑞𝑘 , 𝑟] that represents all the interaction patterns between

𝑞1 , . . . , 𝑞𝑘 with wrapper interface 𝑟, and that wrapping it around 𝑝 can be interpreted

as a larger interaction pattern with wrapper interface 𝑟:

Poly(𝑝, [𝑞1 ⊗ · · · ⊗ 𝑞𝑘 , 𝑟]) � Poly(𝑝 ⊗ 𝑞1 ⊗ · · · ⊗ 𝑞𝑘 , 𝑟).

In other words, if the positions 𝑝 returns is deciding the interaction pattern between

𝑞1 , . . . , 𝑞𝑘 withwrapper interface 𝑟, and the directions 𝑝 receives is from the subsequent

behavior of that interactionpattern itself, then this is equivalent to an interactionpattern

with wrapper interface 𝑟 that 𝑝 is part of alongside 𝑞1 , . . . , 𝑞𝑘 .

What it also means is that a dynamical system with interface [𝑞1 ⊗ · · · ⊗ 𝑞𝑘 , 𝑟] is
simply selecting interaction patterns 𝑞1 ⊗ · · · ⊗ 𝑞𝑘 → 𝑟. Let us see how this works.

4.5 Closure of ⊗
The parallel monoidal product is closed—we have a closed monoidal structure on

Poly—meaning that there is a closure operation, which we denote [−,−] : Polyop ×

4.5. CLOSURE OF ⊗ 125

Poly→ Poly, such that there is an isomorphism

Poly(𝑝 ⊗ 𝑞, 𝑟) � Poly(𝑝, [𝑞, 𝑟]) (4.74)

natural in 𝑝, 𝑞, 𝑟. The closure operation is defined on 𝑞, 𝑟 as follows:

[𝑞, 𝑟] B
∏
𝑗∈𝑞(1)

𝑟 ◦ (𝑞[𝑗]y) (4.75)

Here ◦ denotes standard functor composition; informally, 𝑟 ◦ (𝑞[𝑗]y) is the polynomial

obtained by replacing each appearance of y in 𝑟 by 𝑞[𝑗]y. Composition, together with

the unit y, is in fact yet another monoidal structure, as we will cover in greater depth

in Part II.

Before we prove that the isomorphism (4.74) holds naturally, let us investigate the

properties of the closure operation, starting with some simple examples.

Exercise 4.76 (Solution here). Calculate [𝑞, 𝑟] for 𝑞, 𝑟 ∈ Poly given as follows.

1. 𝑞 B 0 and 𝑟 arbitrary.

2. 𝑞 B 1 and 𝑟 arbitrary.

3. 𝑞 B y and 𝑟 arbitrary.

4. 𝑞 B 𝐴 for 𝐴 ∈ Set (constant) and 𝑟 arbitrary.
5. 𝑞 B 𝐴y for 𝐴 ∈ Set (linear) and 𝑟 arbitrary.
6. 𝑞 B y2 + 2y and 𝑟 B 2y3 + 3. ♦

Exercise 4.77 (Solution here). Show that for any polynomials 𝑝1 , 𝑝2 , 𝑞, we have an

isomorphism

[𝑝1 + 𝑝2 , 𝑞] � [𝑝1 , 𝑞] × [𝑝2 , 𝑞].

♦

Exercise 4.78 (Solution here). Show that there is an isomorphism

[𝑞, 𝑟] �
∑
𝑓 : 𝑞→𝑟

y
∑
𝑗∈𝑞(1) 𝑟[𝑓1 𝑗]

(4.79)

where the sum is indexed over 𝑓 ∈ Poly(𝑞, 𝑟). ♦

Exercise 4.80 (Solution here). Verify that (3.24) holds. ♦

126 CHAPTER 4. DYNAMICAL SYSTEMS AS DEPENDENT LENSES

Example 4.81. For any 𝐴 ∈ Set we have

[y𝐴 , y] � 𝐴y and [𝐴y, y] � y𝐴.

More generally, for any polynomial 𝑝 ∈ Poly we have

[𝑝, y] � Γ(𝑝)y𝑝(1). (4.82)

All these facts follow directly from (4.75).

Exercise 4.83 (Solution here). Verify the three facts above. ♦

Exercise 4.84 (Solution here). Show that for any 𝑝 ∈ Poly, if there is an isomorphism

[[𝑝, y], y] � 𝑝, then 𝑝 is either linear 𝐴y or representable y𝐴 for some 𝐴. Hint: first

show that 𝑝 must be a monomial. ♦

Proposition 4.85. With [−,−] as defined in (4.75), there is a natural isomorphism

Poly(𝑝 ⊗ 𝑞, 𝑟) � Poly(𝑝, [𝑞, 𝑟]). (4.86)

Proof. We have the following chain of natural isomorphisms:

Poly(𝑝 ⊗ 𝑞, 𝑟) � Poly
(∑
𝑖∈𝑝(1)

∑
𝑗∈𝑞(1)

y𝑝[𝑖]𝑞[𝑗] , 𝑟
)

�
∏
𝑖∈𝑝(1)

∏
𝑗∈𝑞(1)

Poly(y𝑝[𝑖]𝑞[𝑗] , 𝑟) (Universal property of coproducts)

�
∏
𝑖∈𝑝(1)

∏
𝑗∈𝑞(1)

𝑟(𝑝[𝑖]𝑞[𝑗]) (Yoneda lemma)

�
∏
𝑖∈𝑝(1)

∏
𝑗∈𝑞(1)

Poly(y𝑝[𝑖] , 𝑟 ◦ (𝑞[𝑗]y)) (Yoneda lemma)

� Poly
(∑
𝑖∈𝑝(1)

y𝑝[𝑖] ,
∏
𝑗∈𝑞(1)

𝑟 ◦ (𝑞[𝑗]y)
)

(Universal property of (co)products)

� Poly(𝑝, [𝑞, 𝑟]).

□

Exercise 4.87 (Solution here). Show that for any 𝑝, 𝑞 we have an isomorphism of sets

Poly(𝑝, 𝑞) � [𝑝, 𝑞](1).

4.5. CLOSURE OF ⊗ 127

Hint: you can either use the formula (4.75), or just use (4.86) with the Yoneda lemma

and the fact that y ⊗ 𝑝 � 𝑝. ♦

The closure of ⊗ implies that for any 𝑞, 𝑟 ∈ Poly, there is a canonical evaluation lens

eval : [𝑞, 𝑟] ⊗ 𝑞 → 𝑟 (4.88)

given by sending the identity lens on [𝑞, 𝑟] leftward through the natural isomorphism

Poly([𝑞, 𝑟] ⊗ 𝑞, 𝑟) � Poly([𝑞, 𝑟], [𝑞, 𝑟])

As in any closedmonoidal category, such an evaluation lens has the universal property

that for any 𝑝 ∈ Poly and lens 𝑓 : 𝑝 ⊗ 𝑞 → 𝑟, there is a unique lens 𝑓 ′ : 𝑝 → [𝑞, 𝑟] such
that the following diagram commutes:

𝑝 ⊗ 𝑞 [𝑞, 𝑟] ⊗ 𝑞 𝑟
𝑓 ′ ⊗ 𝑞

𝑓

eval

Exercise 4.89 (Solution here). Obtain the evaluation lens eval : [𝑝, 𝑞] ⊗ 𝑝 −→ 𝑞 from

(4.88). ♦

Exercise 4.90 (Solution here).
1. For any set 𝑆, obtain the do-nothing section 𝑆y𝑆 → y from Example 4.43 whose

on-directions is the identity on 𝑆 using eval and Example 4.81.

2. Show that four lenses in (4.71) from Example 4.70, written equivalently as

𝜅11 : 𝐹y𝐹𝐹 ⊗ 𝐹y𝐹𝐹 → y𝐹 ⊗ y𝐹

𝜅12 : 𝐹y𝐹𝐹 ⊗ y𝐹 → y𝐹 ⊗ y𝐹

𝜅21 : y𝐹 ⊗ 𝐹y𝐹𝐹 → y𝐹 ⊗ y𝐹

𝜅22 : y𝐹 ⊗ y𝐹 → y𝐹 ⊗ y𝐹 ,

(4.91)

can be obtained by taking the parallel product of identity lenses and evaluation

lenses. ♦

Example 4.92 (Modeling your environment without knowing what it is). Imagine a

robot whose interface is an arbitrary polynomial 𝑞 that is part of an interaction pattern

𝑓 : 𝑝 ⊗ 𝑞 → 𝑟 alongside its environment with interface 𝑝. Then 𝑓 induces a lens

𝑓 ′ : 𝑝 → [𝑞, 𝑟] such that the following diagram commutes:

𝑝 ⊗ 𝑞 [𝑞, 𝑟] ⊗ 𝑞 𝑟
𝑓 ′ ⊗ 𝑞

𝑓

eval

128 CHAPTER 4. DYNAMICAL SYSTEMS AS DEPENDENT LENSES

In other words, [𝑞, 𝑟] holds within it all of the possible ways 𝑞 can interact with

other systems when they are wrapped in 𝑟 together. For example, in the case of 𝑟 B y,

note that [𝑞, y] � ∏
𝑖∈𝑞(1) 𝑞[𝑖]y. That is, a position of [𝑞, y] sends each 𝑞-position to a

direction at that position, which is exactly what we need to specify to put 𝑞 in a closed

system.

Now suppose we were to give dynamics to 𝑞 by specifying a lens 𝑆y𝑆 → 𝑞. One

could aim to choose a set 𝑆 alongwith an interestingmap 𝑔 : 𝑆→ Poly(𝑞, 𝑟). Then each

state 𝑠 would include a guess 𝑔(𝑠) about the state of its environment. This is not the

real environment 𝑝, but just the environment as it affects 𝑞, namely [𝑞, 𝑟]. The robot’s

states model its environmental conditions.

Example 4.93 (Chu &). Suppose we have polynomials 𝑝1 , 𝑝2 , 𝑞1 , 𝑞2 , 𝑟 ∈ Poly and lenses

𝜑1 : 𝑝1 ⊗ 𝑞1 → 𝑟 and 𝜑2 : 𝑝2 ⊗ 𝑞2 → 𝑟.

One might call these “𝑟-Chu spaces.” One operation you can do with these as Chu

spaces is to return something denoted 𝜑1&𝜑2, or “𝜑1 with 𝜑2,” of the following type:

𝜑1&𝜑2 : (𝑝1 × 𝑝2) ⊗ (𝑞1 + 𝑞2) → 𝑟

Suppose we are given a position in 𝑝1 and a position in 𝑝2. Then given a position in

either 𝑞1 or 𝑞2, one evaluates either 𝜑1 or 𝜑2 respectively to get a position in 𝑟; given

a direction there, one returns the corresponding direction in 𝑞1 or 𝑞2 respectively, as

well as a direction in 𝑝1 × 𝑝2 which is either a direction in 𝑝1 or in 𝑝2.

This sounds complicated, but it can be constructed formally via the monoidal clo-

sure. We use the closure to rewrite 𝜑1 and 𝜑2:

𝜓1 : 𝑝1 → [𝑞1 , 𝑟] and 𝜓2 : 𝑝2 → [𝑞2 , 𝑟]

Nowwe take their categorical product to obtain𝜓1×𝜓2 : 𝑝1×𝑝2 → [𝑞1 , 𝑟]×[𝑞2 , 𝑟]. Then
we apply Exercise 4.77 to find that [𝑞1 , 𝑟] × [𝑞2 , 𝑟] � [𝑞1 + 𝑞2 , 𝑟], and finally leverage the

monoidal closure again to obtain (𝑝1 × 𝑝2) ⊗ (𝑞1 + 𝑞2) → 𝑟 as desired.

4.6 Summary and further reading

In this chapter we explained how discrete dynamical systems can be expressed as

certain lenses between polynomial functors. For example, a Moore machine has an

input set 𝐴, an output set 𝐵, a set of states 𝑆, a return function 𝑆 → 𝐵, and an update

function 𝐴 × 𝑆→ 𝑆. All this is captured in a depedent lens

𝑆y𝑆 → 𝐵y𝐴.

4.7. EXERCISE SOLUTIONS 129

We discussed a generalization 𝑆y𝑆 → 𝑝, where the output is an arbitrary polynomial

𝑝 ∈ Poly. We also talked about how to wire machines in parallel by using the parallel

product ⊗ and how to add wrapper interfaces by composing with lenses 𝑝 → 𝑞.

Throughout the chapter we gave quite a few different examples. For example, we

discussed how every function 𝐴 → 𝐵 counts as a memoryless dynamical system. In

fact, it was shown in [BPS19] that every dynamical system can be obtained by wiring

togethermemoryless ones. We discussed examples such as file-readers, moving robots,

colliding particles, companies that change their suppliers, materials that break when

too much force is applied, etc.

For further reading on the mathematics of Moore machines, see [Con12]. For more

on mode-dependent interaction, see [ST17]. For a similar and complementary cate-

gorical approach to dynamical systems, we recommend David Jaz Myers’ Categorical
Systems Theory book, currently in draft form here: http://davidjaz.com/Papers/

DynamicalBook.pdf.

4.7 Exercise solutions
Solution to Exercise 4.5.

1. As 𝑆 = 3, the state system is 𝑆y𝑆 = 3y3
.

2. As 𝐼 = {0, 1} and 𝐴 = {orange, green}, the interface is 𝐼y𝐴 = {0, 1}y{orange, green}.
3. The return function 𝑆→ 𝐼 sends 𝐿 ↦→ 0, 𝑅 ↦→ 1, and 𝐵 ↦→ 1.

4. The update function 𝑆 × 𝐴→ 𝑆 sends

(𝐿, orange) ↦→ 𝐿, (𝐿, green) ↦→ 𝑅,

(𝑅, orange) ↦→ 𝐿, (𝑅, green) ↦→ 𝐵,

(𝐵, orange) ↦→ 𝐿, (𝐵, green) ↦→ 𝐵.

5. In the first two steps, the machine sends its bottom state 𝐵 to its position 1 via its return function,

then sends its bottom state 𝐵 and its direction orange to its left state 𝐿 via its update function.

We can interpret this in terms of the lens 𝜑 and depict the steps in polyboxes as

𝐿

𝐵𝑆

𝑆 orange

1 𝐼

𝐴

𝑓

𝑓 −1

Solution to Exercise 4.8.
At any time, the Moore machine in Example 4.7 is located at a point on the coordinate plane, say

(𝑥, 𝑦) ∈ R2
. This location is its current state. When we ask the machine to return its position, it will tell

us those coordinates, since the return function is the identity. Then if we give the machine a direction

(𝑟, 𝜃) for some distance 𝑟 ∈ [0, 1] and angle 𝜃 ∈ [0, 2𝜋), the machine will move by that distance, at that

angle counterclockwise from the positive 𝑥-axis, from (𝑥, 𝑦) to

(𝑥 + 𝑟 cos𝜃, 𝑦 + 𝑟 sin𝜃) = (𝑥, 𝑦) + 𝑟(cos𝜃, sin𝜃)

(here we treat R2
as a vector space, so that 𝑟(cos𝜃, sin𝜃) is a vector of length 𝑟 at the angle 𝜃).

Solution to Exercise 4.10.
1. We seek an (𝐴, 𝐼)-Moore machine 𝐼y𝐼 → 𝐼y𝐴 corresponding to the function 𝑓 : 𝐴 × 𝐼 → 𝐼. We

know that an (𝐴, 𝐼)-Moore machine 𝐼y𝐼 → 𝐼y𝐴 consists of a return function 𝐼 → 𝐼 and an update

http://davidjaz.com/Papers/DynamicalBook.pdf
http://davidjaz.com/Papers/DynamicalBook.pdf

130 CHAPTER 4. DYNAMICAL SYSTEMS AS DEPENDENT LENSES

function 𝐼 × 𝐴→ 𝐼. So we can simply let the return function be the identity on 𝐼 and the update

function be 𝐼 × 𝐴 � 𝐴 × 𝐼
𝑓
−→ 𝐵, i.e. the function 𝑓 with its inputs swapped. In polyboxes, the

machine looks like

𝑓 (𝑎, 𝑖)

𝑖𝐼

𝐼 𝑎

𝑖 𝐼

𝐴

2. Generally, such a machine is not memoryless. Unlike in Example 4.9, the update function

𝐼 × 𝐴 � 𝐴 × 𝐼
𝑓
−→ 𝐼 does appear to depend on its first input, namely the previous state, which 𝑓

takes as its second input. We can see this from out polybox picture above: the left direction box,

which contains the new state 𝑓 (𝑎, 𝑖), depends on the current state 𝑖 ∈ 𝐼 in the left position box.

However, if 𝑓 factors through the projection 𝜋
1

: 𝐴× 𝐼 → 𝐴, i.e. if 𝑓 can be written as a composite

𝐴 × 𝐼 𝜋1−−→ 𝐴
𝑓 ′
−→ 𝐵 for some 𝑓 ′ : 𝐴 → 𝐵, then the resulting machine is memoryless: it is the

memoryless Moore machine from Example 4.9 corresponding to 𝑓 ′.

Solution to Exercise 4.11.
For each of the following constructs, we find 𝐴, 𝐼 ∈ Set such that the construct can be identified with a

lens 𝜑 : 𝑆y𝑆 → 𝐼y𝐴, i.e. a return function 𝜑1 : 𝑆→ 𝐵 and an update function 𝜑♯
: 𝑆 × 𝐴→ 𝑆.

1. Given a discrete dynamical system with states 𝑆 and transition funtion 𝑛 : 𝑆 → 𝑆, we can set

𝐴 B 𝐼 B 1. Then 𝜑1 : 𝑆 → 1 is unique, while 𝜑♯
: 𝑆 × 1 → 𝑆 is given by 𝑆 × 1 � 𝑆

𝑛−→ 𝑆. The

corresponding Moore machine can only be fed one direction (you could think of that direction

as a button that simply says “advance to the next state”) and can only return one position (which

tells us no information). So it is just a set of states and a deterministic way to move from state to

state.

We could have also set 𝐴 B 0 and 𝐼 B 𝑆, so that 𝜑1 B 𝑛 and 𝜑♯
: 𝑆 × 0→ 𝑆 is unique, but this

formulation is somewhat less satisfying: this is a Moore machine that never moves between its

states, effectively functioning as a lookup table between whatever state the machine happens to

be in and its position, which also happens to refer to some state.

2. Given a magma consisting of a set 𝑆 and a function 𝑚 : 𝑆 × 𝑆→ 𝑆, we can set 𝐴 B 𝑆 and 𝐼 B 1.
Then 𝜑1 : 𝑆→ 1 is unique, while 𝜑♯

: 𝑆×𝑆→ 𝑆 is equal to𝑚. The correspondingMooremachine

always returns the same position. It uses the binary operation 𝑚 to combine the current state

with a given direction—which also refers to a state—to obtain the new state.

Alternatively, we could have set the update function to be 𝑚 with its inputs swapped. The

difference here is that the new state is given by applying 𝑚 with the direction on the left and the

current state on the right, rather than the other way around. If 𝑚 is noncommutative, this would

yield a different Moore machine.

We could have also set 𝐴 B 0 and 𝐼 B 𝑆𝑆 , so that 𝜑♯
: 𝑆 × 0 → 𝑆 is unique, while currying 𝑚

gives 𝜑1, so that 𝜑1𝑠 is the function 𝑆 → 𝑆 given by 𝑠′ ↦→ 𝑚(𝑠, 𝑠′). Alternatively, 𝜑1𝑠 could be

the function 𝑠′ ↦→ 𝑚(𝑠′, 𝑠). Either way, this is again a Moore machine that never moves between

its states, functioning as a lookup table between the machine’s current state and the function 𝑚

partially applied to that state on one side or the other.

3. Given a set 𝑆 and a subset 𝑆′ ⊆ 𝑆, we can set 𝐴 B 0 and 𝐼 B 2. Then 𝜑♯
: 𝑆 × 0→ 𝑆 is unique,

while we define 𝜑1 : 𝑆→ 2 by

𝜑1𝑠 =

{
1 if 𝑠 ∈ 𝑆′

2 if 𝑠 ∉ 𝑆′

so that 𝑆′ can be recovered from 𝜑1 as its fiber over 1. The corresponing Moore machine never

moves between its states, but returns one of two positions indicating whether or not the current

state is in the subset 𝑆′.

4.7. EXERCISE SOLUTIONS 131

Solution to Exercise 4.12.
The original Moore machine had states R2

, so to add a health meter that takes values in [0, 1], we take

the cartesian product to obtain a new set of states R2 × [0, 1]. The position-set and direction-set are

unchanged, so the Moore machine is a lens

R2 × [0, 1]yR2×[0,1] → R2y[0,∞)×[0,2𝜋).

Its return function R2 × [0, 1] → R2
is the canonical projection, as the machine returns only its location

in R2
and not its health; while its update function

R2 × [0, 1] × [0,∞) × [0, 2𝜋) → R2 × [0, 1]

sends (𝑥, 𝑦, ℎ, 𝑟, 𝜃) to
(𝑥 + ℎ𝑟 cos𝜃, 𝑦 + ℎ𝑟 sin𝜃, ℎ′),

where ℎ′ = ℎ/2 if the machine’s new 𝑥-coordinate 𝑥+ ℎ𝑟 cos𝜃 < 0 and ℎ′ = ℎ otherwise. As polyboxes,

the lens is

(𝑥 + ℎ𝑟 cos𝜃, 𝑦 + ℎ𝑟 sin𝜃, ℎ′)

(𝑥, 𝑦, ℎ)R2 × [0, 1]

R2 × [0, 1] (𝑟, 𝜃)

(𝑥, 𝑦) R2

[0,∞) × [0, 2𝜋)

Solution to Exercise 4.13.
1. The tape has states 𝑆 B 𝑉Z × Z, positions 𝐼 B 𝑉 , and directions 𝐴 B 𝑉 × {left, right}; as a

Moore machine, it is a lens

𝑡 : (𝑉Z × Z)y𝑉Z×Z → 𝑉y𝑉×{left, right}.

2. The return function of 𝑡 should give the value in the current cell of the tape. So 𝑡1 : 𝑉Z × Z→ 𝑉

is the evaluation map: it sends (𝑓 , 𝑐) with 𝑓 : Z → 𝑉 and 𝑐 ∈ Z to 𝑓 (𝑐) ∈ 𝑉 . Then on a given

direction (𝑣, 𝑑) ∈ 𝑉 × {left, right}, the update function of 𝑡 writes 𝑣 in the tape’s current cell

before shifting the current cell number up or down by one according to whether 𝑑 is right or

left. More precisely,

𝑡♯ : (𝑉Z × Z) × (𝑉 × {left, right}) → 𝑉Z × Z

sends current tape 𝑓 : Z→ 𝑉 , current cell number 𝑐 ∈ Z, new value 𝑣 ∈ 𝑉 , and 𝑑 ∈ {left, right}
to the new tape 𝑓 ′ : Z→ 𝑉 defined by

𝑓 ′(𝑛) B
{
𝑣 if 𝑛 = 𝑐

𝑓 (𝑛) if 𝑛 ≠ 𝑐

and the new cell number 𝑐 − 1 if 𝑑 = left and 𝑐 + 1 if 𝑑 = right.

Solution to Exercise 4.14.
There are many options for the machine’s state-set; we choose to use pairs of entries (𝑖 , 𝑡) ∈ n2

, where

𝑖 is the entry where the file-reader is currently located and 𝑡 is the entry where the file-reader should

stop. We will also include a stopped state for when the file-reader has already stopped. So our Moore

machine is a lens

(n2 + {stopped})yn2+{stopped} → (ascii + {done})y{(𝑠,𝑡)|1≤𝑠≤𝑡≤𝑛}+{continue}.

If the file-reader’s current state is stopped, then the file-reader should return the position “done.”

Otherwise, the file-reader should return the character at the entry where the file-reader is currently

located. So its return function n2 +{stopped} → ascii+{done} sends (𝑖 , 𝑡) to 𝑓 (𝑖) and stopped to done.
Meanwhile, the update function

(n2 + {stopped}) × ({(𝑠, 𝑡) | 1 ≤ 𝑠 ≤ 𝑡 ≤ 𝑛} + {continue}) → n2 + {stopped}

132 CHAPTER 4. DYNAMICAL SYSTEMS AS DEPENDENT LENSES

behaves as follows on the current state and given direction: regardless of the current state, if the given

direction is a pair (𝑠, 𝑡), the new state will also be (𝑠, 𝑡). On the other hand, if the given direction is

continue and the current state is a pair (𝑖 , 𝑡), the new state should be the pair (𝑖 + 1, 𝑡) if 𝑖 + 1 ≤ 𝑡 and
done otherwise. Finally, if the given direction is continue and the current state is stopped, the new

state should still be stopped.

Solution to Exercise 4.23.
1. The set of states is 𝑆 B {1, 2, 3} = 3 (or equivalently 𝑆 B {•, •, •} � 3).
2. The set of input symbols is 𝐴 B {orange, green}.
3. The automaton should halt at the accept states, so the accept states are exactly the states that have

no arrows coming out of them—in this case, only state 3. States 1 and 2 are not accept states.

4. Let the corresponding lens be 𝜑 : 𝑆y𝑆 → y𝐴 + 1, or 𝜑 : 3y3 → y{orange, green} + 1. According to

the previous part, 𝜑 has a return function 𝜑1 : 𝑆→ 2 sending states 1 and 2, as non-accept states,

to 1; and sending state 3, as an accept state, to 2. Then 𝜑♯
3
is vacuous, while the other two update

functions are given by the the targets of the arrows in (4.24) as follows:

𝜑♯
1
(orange) B 2, 𝜑♯

1
(green) B 1;

𝜑♯
2
(orange) B 3, 𝜑♯

2
(green) B 1,

5. Some examples ofwords accepted by this automaton include theword (orange, orange), theword

(orange, green, orange, orange), and theword (green, orange, green, green, green, orange, orange).
6. Some words are not accepted by the automaton because they lead you to a non-accept state

(1 or 2); others are not accepted by the automaton because they lead you to an accept state

(3) too early. Some examples of the former possibility include the words (green, green) and
(orange, green, orange, green), while some examples of the latter possibility include the words

(green, orange, orange, green) and (orange, orange, orange, orange, orange, orange, orange).

Solution to Exercise 4.27.
No matter what graph you chose, Example 4.26 tells us that if you were to draw the labeled transition

diagram of its associated dynamical system, you would just end up with a picture of your graph! The

vertices of your graph are the states, and the edges of your graph are the possible transitions between

them.

Solution to Exercise 4.29.
We give a file-searcher 𝜓 : 𝑆y𝑆 → 𝑞 according to the specification as follows. Its possible positions

should form the set

𝑞(1) B {ready, busy} × {100, _}.
The direction-sets of 𝑞 can be defined in the same way we defined the direction-sets of 𝑝: for each

𝑐 ∈ {100, _}, we have

𝑞[(ready, 𝑐)] B 𝑆 and 𝑞[(busy, 𝑐)] B 1.

Then we set the return function 𝜓1 to behave like 𝜑1, but with characters not equal to 100 replaced

with _: so for all (𝑠, 𝑡) ∈ 𝑆,

𝜓1(𝑠, 𝑡) =


(ready, 100) if 𝑠 = 𝑡 and 𝑓 (𝑠) = 100

(ready, _) if 𝑠 = 𝑡 and 𝑓 (𝑠) ≠ 100

(busy, 100) if 𝑠 ≠ 𝑡 and 𝑓 (𝑠) = 100

(busy, _) otherwise

Then the update functions of 𝜓 behave just like those of 𝜑. For each (𝑠, 𝑡) ∈ 𝑆 for which 𝑠 = 𝑡, we define

the update function 𝜓♯
(𝑠,𝑡) : 𝑆 → 𝑆 to be the identity on 𝑆. On the other hand, for each (𝑠, 𝑡) ∈ 𝑆 for

which 𝑠 ≠ 𝑡, we let the update function 𝜓♯
(𝑠,𝑡) : 1→ 𝑆 specify the element (𝑠 + 1, 𝑡) ∈ 𝑆, thus shifting its

current entry up by 1.

4.7. EXERCISE SOLUTIONS 133

Solution to Exercise 4.31.
We modify the dynamical system from Example 4.30.

1. Previously, the direction-set at position (𝑖 , 𝑗) ∈ n×n of our interface was𝐷𝑖 ×𝐷𝑗 . But nowwe also

want to give the robot a “reward value” 𝑟 ∈ R. So our new direction-set should be 𝐷𝑖 × 𝐷𝑗 × R:

𝑝 B
∑

(𝑖 , 𝑗)∈n×n
y𝐷𝑖×𝐷𝑗×R.

2. Previously, a state was just a location in the grid: an element of n × n. But now we want to be

able to record a list of reward values as well. Since each reward value is a real number, we define

the state-set to be 𝑆 B n × n × List(R).
3. The former return function 𝜑1 was the identity on n× n. The new return function 𝜑′1 should still

just return the robot’s current grid position; but since it is now a function from 𝑆 = n×n×List(R),
it should instead be the canonical projection 𝜑′1 : n × n × List(R) → n × n.

For each former state (𝑖 , 𝑗) ∈ n × n, the former update function 𝜑♯
(𝑖 , 𝑗) : 𝐷𝑖 × 𝐷𝑗 → n × n sent

(𝑑, 𝑒) ↦→ (𝑖 + 𝑑, 𝑗 + 𝑒). With an extra component (𝑟
1
, . . . , 𝑟𝑘) ∈ List(R) of the state, the new update

function (𝜑′)♯(𝑖 , 𝑗 ,(𝑟1 ,...,𝑟𝑘)) : 𝐷𝑖 ×𝐷𝑗 ×R→ n×n×List(R) sends (𝑑, 𝑒 , 𝑟) ↦→ (𝑖+𝑑, 𝑗+ 𝑒 , (𝑟
1
, . . . , 𝑟𝑘 , 𝑟)),

also updating the list of rewards. As polyboxes, the new dynamical system is given by

(𝑖 + 𝑑, 𝑗 + 𝑒 , (𝑟
1
, . . . , 𝑟𝑘 , 𝑟))

(𝑖 , 𝑗 , (𝑟
1
, . . . , 𝑟𝑘))n × n × List(R)

n × n × List(R) (𝑑, 𝑒 , 𝑟)

(𝑖 , 𝑗) n × n

𝐷𝑖 × 𝐷𝑗 × R

Solution to Exercise 4.32.
We are given a lens 𝑆y𝑆 → 𝐵𝑖y

𝐴𝑖
for each 𝑖 ∈ 𝐼. The universal property of products in Poly then

induces a lens

𝑆y𝑆 →
∏
𝑖∈𝐼

𝐵𝑖y
𝐴𝑖 .

By (3.57), its codomain is the product of monomials∏
𝑖∈𝐼

𝐵𝑖y
𝐴𝑖 �

(∏
𝑖∈𝐼

𝐵𝑖

)
y
∑
𝑖∈𝐼 𝐴𝑖 ,

which, in particular, is still a monomial. Hence the induced lens is a (∑𝑖∈𝐼 𝐴𝑖 ,
∏
𝑖∈𝐼 𝐵𝑖)-Moore machine

with state-set 𝑆.

Solution to Exercise 4.34.
Given a dynamical system 𝜑 : 𝑆y𝑆 → 𝑝, we seek a new dynamical system 𝜑′ : 𝑆y𝑆 → 𝑝′ with an

additional direction that does not change the state. We can think of this as having two different

interfaces acting on the same system: the original interface 𝑝 of 𝜑 and a new interface with only one

possible direction that does not change the state. This latter interface also need not distinguish between

its positions; it should have a single position that provides no additional information. So the second

interface we want acting on 𝑆y𝑆 is y.

If y were the only interface acting on the state system, we would have a Moore machine 𝜖 : 𝑆y𝑆 → y

whose return function is the unique function 𝑆→ 1 and whose update function should be the identity

function on 𝑆, since the direction never changes the state. Then 𝑝′ is the product of the two interfaces

𝑝 and y, while 𝜑′ : 𝑆y𝑆 → 𝑝′ is the unique lens induced by 𝜑 : 𝑆y𝑆 → 𝑝 and 𝜖 : 𝑆y𝑆 → y. In particular,

𝑝′ � 𝑝y �
∑
𝑖∈𝑝(1) y𝑝[𝑖]+1

, and if we let ∗ denote the additional direction not in 𝑝 at each position of 𝑝y,

we can write 𝜑′ in polyboxes as

𝜑♯
𝑠 𝑎

𝑠𝑆

𝑆 𝑎

𝜑1𝑠
𝑝y

134 CHAPTER 4. DYNAMICAL SYSTEMS AS DEPENDENT LENSES

when the chosen direction is from the original 𝑝 (i.e. 𝑎 ∈ 𝑝[𝜑1𝑠] above), coinciding with the behavior

of the original system 𝜑; or as

𝑠

𝑠𝑆

𝑆 ∗
𝜑1𝑠

𝑝y

when the chosen direction is the additional direction ∗ that does not change the state. It turns out this
construction is universal; it is known as copointing.

Solution to Exercise 4.35.
We are given a lens 𝑆𝑖y

𝑆𝑖 → 𝐵𝑖y
𝐴𝑖

for each 𝑖 ∈ n. By inductively applying Exercise 3.67, we find that

their parallel product in Poly is a lens(∏
𝑖∈n

𝑆𝑖

)
y
∏

𝑖∈n 𝑆𝑖 �
⊗
𝑖∈n

𝑆𝑖y
𝑆𝑖 →

⊗
𝑖∈n

𝐵𝑖y
𝐴𝑖 �

(∏
𝑖∈n

𝐵𝑖

)
y
∏

𝑖∈n 𝐴𝑖 ,

which is a (∏𝑖∈n 𝐴𝑖 ,
∏
𝑖∈n 𝐵𝑖)-Moore machine with state-set

∏
𝑖∈n 𝑆𝑖 . This works because the parallel

product of monomials is still a monomial.

Solution to Exercise 4.37.
We will show that taking the parallel product of the robot-on-a-grid dynamical system 𝜑 : 𝑆y𝑆 → 𝑝

from Example 4.30 and a reward-tracking dynamical system 𝜓 : 𝑇y𝑇 → 𝑞 we will define shortly yields

the dynamical system 𝜑′ : 𝑆′y𝑆
′ → 𝑝′ from Exercise 4.31.

The reward-tracking dynamical system should have states in List(R) to record a list of reward values,

unchanging position, and directions inR to give new reward values. So it is the lens List(R)yList(R) → yR

that has a uniquely defined return function, while its update map sends each state (𝑟
1
, . . . , 𝑟𝑘) ∈ List(R)

and each direction 𝑟 ∈ R to the new state (𝑟
1
, . . . , 𝑟𝑘 , 𝑟).

Then the dynamical system from Exercise 4.31 is the parallel product of the robot-on-a-grid dynamical

system from Example 4.30 with the reward-tracking dynamical system List(R)yList(R) → yR, as can be

seen in the solution to Exercise 4.31.

Solution to Exercise 4.38.
1. The robot-on-a-grid dynamical system from Example 4.30 can be written as the parallel product

of two robot-on-a-line dynamical systems of the form 𝜆 : nyn → ∑
𝑖∈n y

𝐷𝑖
, where 𝜆1 B idn and

𝜆♯
𝑖
for each 𝑖 ∈ n sends each direction 𝑑 ∈ 𝐷𝑖 to the position on the line given by 𝑖 + 𝑑. This yields

a robot that can move along a single axis, and the parallel product of this robot with itself yields

a robot that can move along two different axes at once, which is precisely our robot-on-a-grid

dynamical system.

2. To create a dynamical system consisting of a robot moving in a 𝑘-dimensional grid of size

𝑛 along every dimension, we just take the 𝑘-fold parallel product of the dynamical system

𝜆 : nyn → ∑
𝑖∈n y

𝐷𝑖
we just defined to obtain a dynamical system

𝜆⊗𝑘 : nkynk →
∑

(𝑖1 ,...,𝑖𝑘)∈nk

y

∏
𝑗∈k 𝐷𝑖 𝑗 .

In fact, we could have used a different 𝑛 𝑗 for each 𝑗 ∈ k instead of 𝑛 to obtain a robot moving in

an arbitrary 𝑘-dimensional grid of size 𝑛
1
× · · · × 𝑛𝑘 as a 𝑘-fold parallel product.

Solution to Exercise 4.40.
We give a lens 𝑓 : 𝑝 → 𝑞 for which composing the file-reader 𝜑 : 𝑆y𝑆 → 𝑝 from Example 4.28 with 𝑓

yields the file-searcher 𝜓 : 𝑆y𝑆 → 𝑞 from Exercise 4.29. The file-searcher returns the same position as

the file-reader when the second coordinate of that position is 100, but replaces the second coordinate

with a blank _ otherwise. So the on-positions function of 𝑓 should send each (𝑚, 𝑐) ∈ 𝑝(1) to

𝑓1(𝑚, 𝑐) B
{
(𝑚, 𝑐) if 𝑐 = 100

(𝑚, _) otherwise.

4.7. EXERCISE SOLUTIONS 135

Then the file-searcher acts just like the file-reader does on inputs, so every on-directions function of 𝑓

should be an identity function.

Solution to Exercise 4.42.
1. No, it represents a function 𝐵→ 𝐴! A section sends each position 𝑏 ∈ 𝐵 to a direction 𝑎 ∈ 𝐴.
2. As awrapper around an interface 𝐵y𝐴, a section 𝛾 : 𝐵y𝐴 → y corresponds to a function 𝑔 : 𝐵→ 𝐴

that feeds the direction 𝑔(𝑏) ∈ 𝐴 into the system whenever it returns the position 𝑏 ∈ 𝐵.
3. Composing our original Moore machine 𝑆y𝑆 → 𝐵y𝐴 with a section 𝛾 yields a Moore machine

𝑆y𝑆
𝜑
−→ 𝐵y𝐴

𝛾
−→ y that returns unchanging output and receives unchanging input. If we identify

the Moore machine with its return function 𝑆 → 𝐵 and its update function 𝑆 × 𝐴 → 𝑆, and

if we identify the section 𝛾 with a function 𝑔 : 𝐵 → 𝐴, then the composite Moore machine

𝑆y𝑆
𝜑
−→ 𝐵y𝐴

𝛾
−→ y can be identified with a function 𝑆→ 𝑆, equal to the composite

𝑆
Δ−→ 𝑆 × 𝑆 id𝑆×return−−−−−−−−−→ 𝑆 × 𝐵

id𝑆×𝑔−−−−−→ 𝑆 × 𝐴
update

−−−−−→ 𝑆,

where Δ is the diagonal map 𝑠 ↦→ (𝑠, 𝑠). This composite map 𝑆 → 𝑆 sends every state to the

next according to the position the original state returns, the direction that the section gives in

response to that position, and the update function that sends the original state and the selected

direction to the new state.

Solution to Exercise 4.48.
We define a new tracker 𝑇′y𝑇

′ → Ny2
based on the one from Example 4.47 to watch for when the

paddle switches sides once, at which point the tracker should increase its location by one, and watch

forwhen the paddle switches sides twice in a row, atwhich point the tracker should increase its location

by two. To do this, we need the tracker to remember not just the current side the paddle is on, but the

previous side the paddle was on as well. The tracker should still remember the current location. Thus

the states of the tracker are given by 𝑇 B 2 × 2 × N, storing the previous side the paddler was on, the

current side the paddler is on, and the current location. The on-positions function of the tracker is the

canonical projection 2 × 2 ×N→ N that returns the current location; then at each (𝑑, 𝑑′, 𝑖) ∈ 2 × 2 ×N,

the on-directions function of the tracker 2→ 2 × 2 ×N sends

𝑑′′ ↦→


(𝑑′, 𝑑′′, 𝑖) if 𝑑′ = 𝑑′′

(𝑑′, 𝑑′′, 𝑖 + 1) if 𝑑′ ≠ 𝑑′′ and 𝑑 = 𝑑′

(𝑑′, 𝑑′′, 𝑖 + 2) if 𝑑′ ≠ 𝑑′′ and 𝑑 ≠ 𝑑′

storing both the last side the paddle was on and the new side the paddle is on as well as moving

the machine forward one unit if the paddle switches after not switching and two units if the paddle

switches after just switching.

Solution to Exercise 4.50.
1. An interaction pattern 𝑝⊗ 𝑝′ = 𝐴𝑋y𝐴

′𝑋 ⊗𝐴′𝑋y𝐴𝑋 → y consists of a trivial on-positions function

𝐴𝑋 × 𝐴′𝑋 → 1 and an on-directions map 𝐴𝑋 × 𝐴′𝑋 → 𝐴′𝑋 × 𝐴𝑋 indicating what directions

the robots should receive according to the positions they return. To model the robots receiving

each others’ locations but only receiving each others’ signals when the distance between their

locations is less than 1, this on-directions function should send

((𝑎, 𝑥), (𝑎′, 𝑥′)) ↦→
{
((𝑎′, 𝑥′), (𝑎, 𝑥)) if 𝑑(𝑥, 𝑥′) < 1

((𝑎′
0
, 𝑥′), (𝑎

0
, 𝑥)) otherwise.

2. An interactionpattern 𝑝⊗𝑝′→ y[0,5] that changes thedistance threshold for the signal to 𝑠 ∈ [0, 5]
consists of a still trivial on-positions function and an on-directions map 𝐴𝑋 × 𝐴′𝑋 × [0, 5] →
𝐴′𝑋×𝐴𝑋 indicatingwhat directions the robots should receive according to the external direction

𝑠 ∈ [0, 5] and the positions they return. To model the fact that the robots receive each others’

136 CHAPTER 4. DYNAMICAL SYSTEMS AS DEPENDENT LENSES

locations, but only receive each others’ signals when the distance between their locations is less

than 𝑠, this on-directions function should send

((𝑎, 𝑥), (𝑎′, 𝑥′), 𝑠) ↦→
{
((𝑎′, 𝑥′), (𝑎, 𝑥)) if 𝑑(𝑥, 𝑥′) < 𝑠

((𝑎′
0
, 𝑥′), (𝑎

0
, 𝑥)) otherwise.

3. To provide a dynamical system 𝜑 : 𝑆𝑋y𝑆𝑋 → 𝐴𝑋y𝐴
′𝑋

under the condition that the on-positions

function preserves the second coordinate 𝑥 ∈ 𝑋, we must provide the first projection 𝑆𝑋 → 𝐴 of

an on-positions function that turns the robot’s private state and current location into the signal

it returns, as well as an on-directions function 𝑆𝑋 ×𝐴′𝑋 → 𝑆𝑋 that provides a new private state

and location for the robot given its old private state, old location, and the signal and location it

receives from the other robot.

4. To have the robots listen for each others’ signals only when they are sufficiently close, we must

move away from monomial interfaces and Moore machines to leverage dependency. There are

several ways of doing this; we give just one method below. With 𝐷 B {‘close’, ‘far’}, let the
robots’ new interfaces be

𝑝 B {‘close’}𝐴𝑋y𝐷𝐴
′𝑋 + {‘far’}𝐴𝑋y𝐷𝑋 and 𝑝′ B {‘close’}𝐴′𝑋y𝐷𝐴𝑋 + {‘far’}𝐴′𝑋y𝐷𝑋 ,

so that they may receive input telling them whether they are close or far, but cannot receive

signals in 𝐴 or 𝐴′ when they are ‘far.’

Then by the distributivity of ⊗ over +, their new interaction pattern 𝑝 ⊗ 𝑝′ → y[0,5] can be

specified by four lenses, all trivial on positions: the lens

{‘close’}𝐴𝑋y𝐷𝐴
′𝑋 ⊗ {‘close’}𝐴′𝑋y𝐷𝐴𝑋 → y[0,5] ,

given by the on-directions function

((‘close’, 𝑎, 𝑥), (‘close’, 𝑎′, 𝑥′), 𝑠) ↦→
{
((‘close’, 𝑎′, 𝑥′), (‘close’, 𝑎, 𝑥)) if 𝑑(𝑥, 𝑥′) < 𝑠

((‘far’, 𝑎′
0
, 𝑥′), (‘far’, 𝑎

0
, 𝑥)) otherwise;

the lens

{‘far’}𝐴𝑋y𝑋 ⊗ {‘far’}𝐴′𝑋y𝑋 → y[0,5] ,

given by the on-directions function

((‘far’, 𝑎, 𝑥), (‘far’, 𝑎′, 𝑥′), 𝑠) ↦→
{
((‘close’, 𝑥′), (‘close’, 𝑥)) if 𝑑(𝑥, 𝑥′) < 𝑠

((‘far’, 𝑥′), (‘far’, 𝑥)) otherwise;

and two other lenses that can be defined arbitrarily, as they should never come up in practice.

Finally, in order for each robot to properly remember whether the other is close or far, we record

an element of 𝐷 in its state that is returned and updated: one robot is a lens

𝜑 : 𝐷𝑆𝑋y𝐷𝑆𝑋 → {‘close’}𝐴𝑋y𝐷𝐴
′𝑋 + {‘far’}𝐴𝑋y𝐷𝑋

whose on-positions function preserves not just the third coordinate 𝑥 ∈ 𝑋 but also the first

coordinate 𝑑 ∈ 𝐷, while the on-directions function also preserves the first coordinate 𝑑 ∈ 𝐷; and

the other robot is constructed similarly.

Solution to Exercise 4.53.
1. A lens 𝐻𝑃y𝐻 ⊗ {in}𝐻y𝐻𝑃 → y is a section of 𝐻𝑃y𝐻 ⊗ {in}𝐻y𝐻𝑃 � 𝐻𝑃𝐻y𝐻𝐻𝑃 and can thus be

identified with a function from its position-set to its direction-set: 𝐻𝑃𝐻 → 𝐻𝐻𝑃. Here the first

factor of the domain refers to your height, the second factor to the your pressure, and the third

factor to the chalk’s height; while in the codomain, the first factor refers to the chalk’s height

that you receive, the second factor refers to your height that the chalk receives, and the third

factor refers to your pressure that the chalk receives. We should therefore define the function

𝐻𝑃𝐻 → 𝐻𝐻𝑃 to be the isomorphism that sends (ℎ
You

, 𝑝
You

, ℎ
Chalk

) ↦→ (ℎ
Chalk

, ℎ
You

, 𝑝
You
).

4.7. EXERCISE SOLUTIONS 137

2. If you alwayss cycle through three possible actions—reaching down and grabbing the chalk so

that it is pressed, moving your hand upwhile keeping it pressed to lift the chalk, and dropping

the chalk by leaving it unpressedwhile your hand is still up—you only need 3 possible states. So

we can provide your dynamics using a lens 3y3 → You = 𝐻𝑃y𝐻 . The return function 3→ 𝐻𝑃

indicates what happens at each state, sending 1 ↦→ (down, pressed), 2 ↦→ (up, pressed), and
3 ↦→ (up, unpressed). Meanwhile the update function 3𝐻 → 3 always changes the state to the

next one, regardless of direction: it ignores the 𝐻 coordinate and sends 1 ↦→ 2, 2 ↦→ 3, and 3 ↦→ 1.

Solution to Exercise 4.57.
1. The function 𝑓 : 𝑞(1) → Γ(𝑝) should send each 𝑞-position 𝑏 to the section of 𝑝 corresponding to

the constant function N → N that sends every 𝑝-position to 𝑏 itself. That is, 𝑓 is the function

𝑏 ↦→ (_ ↦→ 𝑏).
2. The function 𝑔 : 𝑝(1) → Γ(𝑞) should send each position 𝑝-position 𝑎 to the section of 𝑞 corre-

sponding to the function N→ N that sends each 𝑞-position 𝑏 to the sum 𝑎 + 𝑏. That is, 𝑔 is the

function 𝑎 ↦→ (𝑏 ↦→ 𝑎 + 𝑏).
3. Together, 𝑓 and 𝑔 form a function N × N → N × N mapping (𝑎, 𝑏) ↦→ ((𝑓 𝑏)𝑎, (𝑔𝑎)𝑏) = (𝑏, 𝑎 + 𝑏).

Then 𝛾 : 𝑝 ⊗ 𝑞 → y is the section with this function as its on-directions function.

4. As 𝜑 and 𝜓 are both the identity, their parallel product is the identity as well, so (𝜑 ⊗ 𝜓) # 𝛾 = 𝛾.

From the previous part, if the current state of this system is (𝑎, 𝑏), its next state will be (𝑏, 𝑎 + 𝑏).
So if its initial state is (0, 1), its following states will be (1, 1), (1, 2), (2, 3), (3, 5), (5, 8), (8, 13), . . .,
forming the familiar Fibonacci sequence.

Solution to Exercise 4.58.
1. Fix a position (𝑠

Chalk
, ℎ

chalk
) ∈ Chalk(1) = {out, in}𝐻 of the chalk. If 𝑠

Chalk
= out, then the

corresponding section You � 𝐻𝑃y𝐻 → y given by 𝑓 via (4.55) can be thought of as the function

𝐻𝑃 → 𝐻 sending

(ℎ
You

, 𝑝
You
) ↦→ ℎ

Chalk
,

according to the behavior of 𝛼 : 𝐻𝑃y𝐻 ⊗𝐻y𝑃 → ywhen we fix the position of the domain’s right

factor to be ℎ
chalk

∈ 𝐻 and focus on the direction in 𝐻 of the domain’s left factor. Meanwhile,

if 𝑠
Chalk

= in, then the corresponding section You � 𝐻𝑃y𝐻 → y can also be thought of as the

function 𝐻𝑃 → 𝐻 sending

(ℎ
You

, 𝑝
You
) ↦→ ℎ

Chalk
,

according to the behavior of 𝛽 : 𝐻𝑃y𝐻 ⊗ 𝐻y𝐻𝑃 → y when we again fix the position of the

domain’s right factor to be ℎ
chalk

∈ 𝐻 and focus on the direction in 𝐻 of the domain’s left factor.

So overall, the desired function Chalk(1) → Γ(You) is given by

(_, ℎ
chalk
) ↦→ ((_, _) ↦→ ℎ

Chalk
).

2. Fix a position (ℎ
You

, 𝑝
You
) ∈ You(1) = 𝐻𝑃 of the chalk. Then the corresponding section Chalk �

{out}𝐻y𝑃 + {in}𝐻y𝐻𝑃 → y can be thought of as a pair of functions: one {out}𝐻 → 𝑃 sending

(out, ℎ
Chalk

) ↦→
{
unpressed if ℎ

You
≠ ℎ

Chalk

𝑝
You

if ℎ
You

= ℎ
Chalk

,

according to the behavior of 𝛼 : 𝐻𝑃y𝐻 ⊗ 𝐻y𝑃 → y when we fix the position of the domain’s left

factor to be (ℎ
You

, 𝑝
You
) ∈ 𝐻𝑃 and focus on the direction in 𝑃 of the domain’s right factor; and

another {in}𝐻 → 𝐻𝑃 sending

(in, ℎ
Chalk

) ↦→ (ℎ
You

, 𝑝
You
)

according to the behavior of 𝛽 : 𝐻𝑃y𝐻 ⊗ 𝐻y𝐻𝑃 → y when we again fix the position of the

domain’s left factor to be (ℎ
You

, 𝑝
You
) ∈ 𝐻𝑃 and focus on the direction in 𝐻𝑃 of the domain’s

138 CHAPTER 4. DYNAMICAL SYSTEMS AS DEPENDENT LENSES

right factor. So overall, the desired function You(1) → Γ(Chalk) is given by

(ℎ
You

, 𝑝
You
) ↦→

©­­­«
(out, ℎ

Chalk
) ↦→

{
unpressed if ℎ

You
≠ ℎ

Chalk

𝑝
You

if ℎ
You

= ℎ
Chalk

(in, ℎ
Chalk

) ↦→ (ℎ
You

, 𝑝
You
)

ª®®®¬ .
Solution to Exercise 4.59.

1. We generalize (4.55) for 𝑛 polynomials as follows. Given polynomials 𝑝
1
, . . . , 𝑝𝑛 ∈ Poly, we

claim there is a bĳection

Γ

(
𝑛⊗
𝑖=1

𝑝𝑖

)
�

𝑛∏
𝑖=1

Set
©­­­­«

∏
1≤ 𝑗≤𝑛,
𝑗≠𝑖

𝑝 𝑗(1), Γ(𝑝𝑖)
ª®®®®¬
.

The 𝑛 = 1 case is tautological, and the 𝑛 = 2 case is given by (4.55). Then by induction on 𝑛, we

have

Γ

(
𝑛⊗
𝑖=1

𝑝𝑖

)
� Set

(
𝑝𝑛(1), Γ

(
𝑛−1⊗
𝑖=1

𝑝𝑖

))
× Set

(
𝑛−1∏
𝑖=1

(
𝑝𝑖(1)

)
, Γ(𝑝𝑛)

)
(4.55)

� Set
©­­­­«
𝑝𝑛(1),

𝑛−1∏
𝑖=1

Set
©­­­­«

∏
1≤ 𝑗≤𝑛−1,

𝑗≠𝑖

𝑝 𝑗(1), Γ(𝑝𝑖)
ª®®®®¬
ª®®®®¬
× Set

(
𝑛−1∏
𝑖=1

𝑝𝑖(1), Γ(𝑝𝑛)
)

(Inductive hypothesis)

�
𝑛−1∏
𝑖=1

©­­­­«
Set

©­­­­«
∏

1≤ 𝑗≤𝑛,
𝑗≠𝑖

𝑝 𝑗(1), Γ(𝑝𝑖)
ª®®®®¬
ª®®®®¬
× Set

(
𝑛−1∏
𝑖=1

𝑝𝑖(1), Γ(𝑝𝑛)
)
,

(Universal properties of products and internal homs)

and the result follows.

2. The general idea is that specifying a section for interfaces 𝑝
1
, . . . , 𝑝𝑛 together is equivalent to

specifying a section for 𝑝𝑖 for every combination of positions that all the other interfaces might

return together, for each 𝑖 ∈ n.

Solution to Exercise 4.63.
1. Here is the wiring diagram (4.61) modified so that the controller also receives information from

the outside world as an element of 𝐴′.

Plant

Controller

𝐴

𝐴′ 𝐵

𝐶

System

2. Themonomials represented by the boxes in this diagramare the same, except that the Controller

and the System both have extra 𝐴′ factors in their exponent:

Controller B 𝐵y𝐴
′𝐶 Plant B 𝐶y𝐴𝐵 System B 𝐶y𝐴𝐴

′
.

4.7. EXERCISE SOLUTIONS 139

3. The interaction pattern represented by this wiring diagram is the lens

𝑤′ : Controller ⊗ Plant→ System

consisting of an on-positions function 𝐵𝐶 → 𝐶 given by (𝑏, 𝑐) ↦→ 𝑐 and an on-directions function

𝐵𝐶𝐴𝐴′→ 𝐴′𝐶𝐴𝐵 given by (𝑏, 𝑐, 𝑎, 𝑎′) ↦→ (𝑎′, 𝑐, 𝑎, 𝑏).

Solution to Exercise 4.64.
1. According to the wiring diagram, we have that Alice B 𝐷y𝐻𝐴 , that Bob B 𝐸𝐹y𝐵 , and that

Carl B 𝐻𝐺y𝐷𝐸 .

2. According to the wiring diagram, we have that Team B 𝐺y𝐴𝐵 .

3. The wiring diagram constitutes a wrapper

𝑓 : Alice ⊗ Bob ⊗ Carl→ Team.

Its domain is Alice ⊗ Bob ⊗ Carl � 𝐷𝐸𝐹𝐻𝐺y𝐻𝐴𝐵𝐷𝐸 , while its codomain is Team = 𝐺y𝐴𝐵.

4. On positions, the lens 𝑓 is a function 𝐷𝐸𝐹𝐻𝐺→ 𝐺 that sends (𝑑, 𝑒 , 𝑓 , ℎ, 𝑔) ↦→ 𝑔. On directions,

𝑓 is a function 𝐷𝐸𝐹𝐻𝐺𝐴𝐵→ 𝐻𝐴𝐵𝐷𝐸 that sends (𝑑, 𝑒 , 𝑓 , ℎ, 𝑔 , 𝑎, 𝑏) ↦→ (ℎ, 𝑎, 𝑏, 𝑑, 𝑒).
5. Given dynamical systems 𝛼 : 𝐴y𝐴 → Alice, 𝛽 : 𝐵y𝐵 → Bob, and 𝛾 : 𝐶y𝐶 → Carl, the dynamical

system induced by the wiring diagram is given by the composite lens

𝐴𝐵𝐶y𝐴𝐵𝐶
𝛼 ⊗ 𝛽 ⊗ 𝛾
−−−−−−−→ Alice ⊗ Bob ⊗ Carl

𝑓
−→ Team.

Solution to Exercise 4.65.
1. Using Example 4.9, we can turn divmod into the dynamical system divmod: N × NyN×N →

N×NyN×N≥1
whose return function is the identity on N×N and whose update map N×N×N×

N≥1
→ N ×N sends (_, _, 𝑎, 𝑏) ↦→ (𝑎 div 𝑏, 𝑎 mod 𝑏).

2. From left to right, the inner boxes represent monomial interfaces N≥1
y,N × NyN×N≥1 ,Ny, and

NyN×N. The box labeled 7 is given dynamics 7 : y→ N≥1
y so that it always returns the position 7;

similarly, the box labeled 10 is given dynamics 10 : y→ Ny so that it always returns the position

10. Meanwhile, the box labeled divmod is given dynamics divmod: N×NyN×N → N×NyN×N≥1

from the previous part; and applying Exercise 4.10 to the multiplication function ∗ : N × N→ N
yields the dynamics for the box labeled ∗: a dynamical system ∗ : NyN → NyN×N whose return

function is the identity on N and whose update map N ×N ×N→ N sends (_, 𝑚, 𝑛) ↦→ 𝑚𝑛.

Then the outer box is the monomial interface N×NyN, and the wiring diagram is the interaction

pattern

𝑤 : N≥1
y ⊗

(
N ×NyN×N≥1

)
⊗ Ny ⊗ NyN×N → N ×NyN

withon-positions function (𝑠, 𝑞, 𝑟, 𝑡 , 𝑝) ↦→ (𝑞, 𝑝) andon-directionsmap (𝑠, 𝑞, 𝑟, 𝑡 , 𝑝, 𝑎) ↦→ (𝑎, 𝑠, 𝑟 , 𝑡).
So the dynamical system induced by the wiring diagram is the composite lens 𝜑 given by

y⊗
(
N ×NyN×N

)
⊗y⊗NyN

7 ⊗ divmod ⊗ 10 ⊗ ∗−−−−−−−−−−−−−−−−→ N≥1
y⊗

(
N ×NyN×N≥1

)
⊗Ny⊗NyN×N

𝑤−→ N×NyN ,

whose return function is given by the composite map (𝑞, 𝑟, 𝑝) ↦→ (7, 𝑞, 𝑟 , 10, 𝑝) ↦→ (𝑞, 𝑝) and
whose update function at state (𝑞, 𝑟, 𝑝) is given by the composite map 𝑎 ↦→ (𝑎, 7, 𝑟 , 10) ↦→
(𝑎 div 7, 𝑎 mod 7, 10𝑟).
In other words, the dynamical system 𝜑 behaves as follows: its state consists of a quotient 𝑞, a

remainder 𝑟, and a product 𝑝, of which it returns the quotient and the product. Then it is fed

a dividend 𝑎 and evaluates 𝑎 div 7 to obtain the new quotient and 𝑎 mod 7 to obtain the new

remainder. Meanwhile, the new product is given by the previous remainder multiplied by 10.

3. This second wiring diagram specifies an interaction pattern

𝑤′ : N ×NyN → Ny

140 CHAPTER 4. DYNAMICAL SYSTEMS AS DEPENDENT LENSES

with on-positions function (𝑞, 𝑝) ↦→ 𝑞 and on-directions function (𝑞, 𝑝) ↦→ 𝑝. So the dynamical

system induced by nesting the first wiring diagram within the inner box of the second wiring

diagram is the composite lens(
N ×NyN×N

)
⊗ NyN

𝜑
−→ N ×NyN

𝑤′−−→ Ny

whose return function is given by the composite map (𝑞, 𝑟, 𝑝) ↦→ (𝑞, 𝑝) ↦→ 𝑞 and whose update

function at state (𝑞, 𝑟, 𝑝) specifies the new state (𝑝 div 7, 𝑝 mod 7, 10𝑟).
In other words, the dynamical system 𝜑 behaves as follows: its state consists of a quotient 𝑞, a

remainder 𝑟, and a product 𝑝, of which it returns just the quotient. Then it advances to a new

state by evaluating 𝑝 div 7 to obtain the new quotient and 𝑝 mod 7 to obtain the new remainder.

Meanwhile, the new product is given by the previous remainder multiplied by 10.

If we set the initial state to be (𝑞, 𝑟, 𝑝) B (0, 0, 10), then the subsequent states will be as follows,

with the values of 𝑞 in the left column giving us the positions returned:

𝑞 (𝑝 div 7) 𝑟 (𝑝 mod 7) 𝑝 (10𝑟)
0 0 10

1 3 0

0 0 30

4 2 0

0 0 20

2 6 0

0 0 60

8 4 0

0 0 40

5 5 0

0 0 50

7 1 0

0 0 10

...
...

...

Solution to Exercise 4.67.
1. Following the suggestion from the end of Example 4.66, we can use a graph with 𝑉 ≔ Z × Z

and 𝐸 B ({−1, 0, 1} × {−1, 0, 1} − {(0, 0)}) ×𝑉 with 𝑠((𝑖 , 𝑗), (𝑚, 𝑛)) = (𝑚, 𝑛) and 𝑡((𝑖 , 𝑗), (𝑚, 𝑛)) =
(𝑚 + 𝑖 , 𝑛 + 𝑗) to model cellular automata like Conway’s Game of Life on a 2-dimensional integer

lattice in which each point observes only its eight immediate neighbors.

2. Each vertex only needs to return whether it is live or dead, so we assign 𝜏(𝑣) B {live, dead} for
every 𝑣 ∈ 𝑉 .

3. For each 𝑣 ∈ 𝑉 , the monomial represented by 𝑣 from Example 4.66 can be written as

𝑝𝑣 � {live, dead}ySet({−1,0,1}×{−1,0,1}−{(0,0)}, {live, dead}).

Every vertex returns either live or dead as its position and receives as its direction whether each

of its eight neighbors is live or dead.

4. Each vertex 𝑣 ∈ 𝑉 only needs to record whether it is live or dead, so 𝑆𝑣 B {live, dead}.
5. The appropriatedynamical system lens𝑆𝑣y

𝑆𝑣 → 𝑝𝑣 for eachvertex 𝑣 ∈ 𝑉 shouldhave the identity

function on {live, dead} as its return function, while its update map should be a function

{live, dead} × Set({−1, 0, 1} × {−1, 0, 1} − {(0, 0)}, {live, dead}) → {live, dead}

that takes whether 𝑣 is live or dead as its first coordinate and a function from {−1, 0, 1} ×
{−1, 0, 1} − {(0, 0)} to {live, dead} that says whether each of its eight neighbors is live or dead

as a second coordinate, then executes the rules fromConway’sGame of Life to determinewhether

it should be live or dead in the next time step.

4.7. EXERCISE SOLUTIONS 141

Solution to Exercise 4.76.
We compute [𝑞, 𝑟] for various values of 𝑞, 𝑟 ∈ Poly using (4.75).

1. If 𝑞 B 0, then 𝑞(1) � 0, so [𝑞, 𝑟] is an empty product. Hence [𝑞, 𝑟] � 1.
2. If 𝑞 B 1, then 𝑞(1) � 1 and 𝑞[1] � 0, so [𝑞, 𝑟] � 𝑟 ◦ (0y) � 𝑟(0).
3. If 𝑞 B y, then 𝑞(1) � 1 and 𝑞[1] � 1, so [𝑞, 𝑟] � 𝑟 ◦ (1y) � 𝑟.
4. If 𝑞 B 𝐴 for𝐴 ∈ Set, then 𝑞(1) � 𝐴 and 𝑞[𝑗] � 0 for every 𝑗 ∈ 𝐴, so [𝑞, 𝑟] � ∏

𝑗∈𝐴(𝑟◦(0y)) � 𝑟(0)𝐴.
5. If 𝑞 B 𝐴y for 𝐴 ∈ Set, then 𝑞(1) � 𝐴 and 𝑞[𝑗] � 1 for every 𝑗 ∈ 𝐴, so [𝑞, 𝑟] � ∏

𝑗∈𝐴(𝑟 ◦ (1y)) � 𝑟𝐴.
6. If 𝑞 B y2 + 2y and 𝑟 B 2y3 + 3, then

[𝑞, 𝑟] � (𝑟 ◦ (2y))(𝑟 ◦ (1y))2

�
(
2(2y)3 + 3

) (
2y3 + 3

)2

� 64y9 + 204y6 + 180y3 + 27.

Solution to Exercise 4.77.
We wish to show that for all 𝑝

1
, 𝑝

2
, 𝑞 ∈ Poly, we have [𝑝

1
+ 𝑝

2
, 𝑞] � [𝑝

1
, 𝑞] × [𝑝

2
, 𝑞]. By (4.75),

[𝑝
1
+ 𝑝

2
, 𝑞] � ©­«

∏
𝑖∈𝑝1(1)

𝑞 ◦ (𝑝
1
[𝑖]y)ª®¬ ©­«

∏
𝑖∈𝑝2(1)

𝑞 ◦ (𝑝
2
[𝑖]y)ª®¬ � [𝑝1

, 𝑞] × [𝑝
2
, 𝑞].

Solution to Exercise 4.78.
We may compute

[𝑞, 𝑟] �
∏
𝑗∈𝑞(1)

𝑟 ◦ (𝑞[𝑗]y) (4.75)

�
∏
𝑗∈𝑞(1)

∑
𝑘∈𝑟(1)

(𝑞[𝑗]y)𝑟[𝑘] (Replacing each y in 𝑟 by 𝑞[𝑗]y)

�
∑

𝑓1 : 𝑞(1)→𝑟(1)

∏
𝑗∈𝑞(1)

(𝑞[𝑗]y)𝑟[𝑓1(𝑗)] (1.30)

�
∑

𝑓1 : 𝑞(1)→𝑟(1)

©­«
∏
𝑗∈𝑞(1)

𝑞[𝑗]𝑟[𝑓1(𝑗)]ª®¬ ©­«
∏
𝑗∈𝑞(1)

y𝑟[𝑓1(𝑗)]ª®¬
�

∑
𝑓1 : 𝑞(1)→𝑟(1)

∑
𝑓 ♯∈∏𝑗∈𝑞(1) 𝑞[𝑗]𝑟[𝑓1(𝑗)]

y
∑
𝑗∈𝑞(1) 𝑟[𝑓1(𝑗)]

�
∑

𝑓 : 𝑞→𝑟
y
∑
𝑗∈𝑞(1) 𝑟[𝑓1(𝑗)]. (3.7)

Solution to Exercise 4.80.
We verify (3.24) as follows:

[𝑝, y] ⊗ 𝑝 � ©­«
∑

𝑓 : 𝑝→y

y
∑
𝑖∈𝑝(1) y[𝑓1 𝑖]ª®¬ ⊗ 𝑝 (4.79)

�
∑
𝑓 ∈Γ(𝑝)

y𝑝(1) ⊗
∑
𝑖∈𝑝(1)

y𝑝[𝑖]

�
∑
𝑓 ∈Γ(𝑝)

∑
𝑖∈𝑝(1)

y𝑝(1)×𝑝[𝑖] (3.66)

�
∑

𝑓 ∈∏𝑖∈𝑝(1) 𝑝[𝑖]

∑
𝑖∈𝑝(1)

y𝑝(1)×𝑝[𝑖]. (3.35)

142 CHAPTER 4. DYNAMICAL SYSTEMS AS DEPENDENT LENSES

Solution to Exercise 4.83.
We have that

[y𝐴 , y] �
∏

𝑗∈y𝐴(1)
y ◦ (y𝐴[𝑗]y) �

∏
𝑗∈1

𝐴y � 𝐴y,

that

[𝐴y, y] �
∏

𝑗∈𝐴y(1)
y ◦ ((𝐴y)[𝑗]y) �

∏
𝑗∈𝐴

y � y𝐴 ,

and that

[𝑝, y] �
∑

𝑓 : 𝑝→y

y
∑
𝑖∈𝑝(1) y[𝑓1 𝑖]

(4.79)

�
∑
𝑓 ∈Γ(𝑝)

y
∑
𝑖∈𝑝(1) 1

� Γ(𝑝)y𝑝(1).

Solution to Exercise 4.84.
Given 𝑝 ∈ Poly and an isomorphism [[𝑝, y], y] � 𝑝, we wish to show that 𝑝 is either linear or repre-

sentable. Applying (4.82) twice, we have that

[[𝑝, y], y] � Γ

(
Γ(𝑝)y𝑝(1)

)
yΓ(𝑝).

By (3.35),

Γ

(
Γ(𝑝)y𝑝(1)

)
�

∏
𝛾∈Γ(𝑝)

𝑝(1) � 𝑝(1)Γ(𝑝).

Hence taking [[𝑝, y], y] � 𝑝 and rewriting the left hand side using the isomorphisms above yields

𝑝(1)Γ(𝑝)yΓ(𝑝) � 𝑝. (4.94)

In particular, 𝑝 is a monomial, so we can write 𝑝 B 𝐼y𝐴 for some 𝐼 , 𝐴 ∈ Set. Then 𝑝(1) � 𝐼 and (3.35)

tells us that Γ(𝑝) � 𝐴𝐼 . Equating the direction-sets on either side of (4.94) yields 𝐴𝐼 � 𝐴; then equating

position-sets gives 𝐼𝐴 � 𝐼𝐴
𝐼
� 𝐼.

We conclude with some elementary set theory. If either one of 𝐼 or 𝐴 were (isomorphic to) 1, then 𝑝
would be either linear or representable, and we would be done. Meanwhile, if either one of 𝐼 or 𝐴were

0, then the other would be 1, and we would again be done. Otherwise, |𝐴|, |𝐵| ≥ 2. But by Cantor’s

theorem,

|𝐼| <
��2𝐼 �� ≤ ��𝐴𝐼 �� = |𝐴| and |𝐴| <

��2𝐴�� ≤ ��𝐼𝐴�� = |𝐼|,
a contradiction.

Solution to Exercise 4.87.
The isomorphism Poly(𝑝, 𝑞) � [𝑝, 𝑞](1) follows directly from Exercise 4.78 when both sides are applied

to 1. Alternatively, we can apply (4.86). Since 𝑝 � y ⊗ 𝑝, we have that

Poly(𝑝, 𝑞) � Poly(y ⊗ 𝑝, 𝑞)
� Poly(y, [𝑝, 𝑞]) (4.86)

� [𝑝, 𝑞](1). (Yoneda lemma)

Solution to Exercise 4.89.
To obtain the evaluation lens eval : [𝑞, 𝑟] ⊗ 𝑞 → 𝑟, we need to send the identity lens on [𝑞, 𝑟] leftward

through the natural isomorphism

Poly([𝑞, 𝑟] ⊗ 𝑞, 𝑟) � Poly([𝑞, 𝑟], [𝑞, 𝑟])

4.7. EXERCISE SOLUTIONS 143

To do so, we can start from the identity lens on [𝑞, 𝑟] and work our way along a chain of natural

isomorphisms from Poly([𝑞, 𝑟], [𝑞, 𝑟]) until we get to Poly([𝑞, 𝑟] ⊗ 𝑞, 𝑟). To start, Exercise 4.78 implies

that

Poly([𝑞, 𝑟], [𝑞, 𝑟]) � Poly ©­«
∑

𝑓 : 𝑞→𝑟

∏
𝑖′∈𝑞(1)

y𝑟[𝑓1 𝑖
′] ,

∏
𝑖∈𝑞(1)

∑
𝑗∈𝑟(1)
(𝑞[𝑖]y)𝑟[𝑗]ª®¬

�
∏

𝑓 : 𝑞→𝑟

∏
𝑖∈𝑞(1)

Poly ©­«
∏
𝑖′∈𝑞(1)

y𝑟[𝑓1 𝑖
′] ,

∑
𝑗∈𝑟(1)
(𝑞[𝑖]y)𝑟[𝑗]ª®¬ ,

where the second isomorphism follows from the universal properties of products and coproducts. In

particular, under this isomorphism, the identity lens on [𝑞, 𝑟] corresponds to a collection of lenses,

namely for each 𝑓 : 𝑞 → 𝑟 and each 𝑖 ∈ 𝑞(1) the composite∏
𝑖′∈𝑞(1)

y𝑟[𝑓1 𝑖
′] → y𝑟[𝑓1 𝑖] →

∑
𝑔 : 𝑟[𝑓1 𝑖]→𝑞[𝑖]

y𝑟[𝑓1 𝑖] � (𝑞[𝑖]y)𝑟[𝑓1 𝑖] →
∑
𝑗∈𝑟(1)
(𝑞[𝑖]y)𝑟[𝑗]

of the canonical projection with index 𝑖′ B 𝑖, the canonical inclusion with index 𝑔 B 𝑓
♯
𝑖
, and the

canonical inclusionwith index 𝑗 B 𝑓1 𝑖. On positions, this lens picks out the position of

∑
𝑗∈𝑟(1)(𝑞[𝑖]y)𝑟[𝑗]

corresponding to 𝑗 = 𝑓1 𝑖 ∈ 𝑟(1) and 𝑓
♯
𝑖

: 𝑟[𝑓1 𝑖] → 𝑞[𝑖]; on directions, the lens is the canonical inclusion

𝑟[𝑓1 𝑖] →
∑
𝑖′∈𝑞(1) 𝑟[𝑓1 𝑖′] with index 𝑖′ = 𝑖. By the Yoneda lemma, we can reinterpret each of these

lenses as a lens

y
𝑞[𝑖]×∑𝑖′∈𝑞(1) 𝑟[𝑓1 𝑖′] →

∑
𝑗∈𝑟(1)

y𝑟[𝑗] � 𝑟

that, on positions, picks out the position 𝑓1 𝑖 ∈ 𝑟(1) of 𝑟 and, on directions, is the map 𝑟[𝑓1 𝑖] →
𝑞[𝑖]×∑𝑖′∈𝑞(1) 𝑟[𝑓1 𝑖′] induced by the universal property of products applied to themap 𝑓

♯
𝑖

: 𝑟[𝑓1 𝑖] → 𝑞[𝑖]
and the inclusion 𝑟[𝑓1 𝑖] →

∑
𝑖′∈𝑞(1) 𝑟[𝑓1 𝑖′]. Then by the universal property of coproducts, this collection

of lenses induces a single lens eval : [𝑞, 𝑟]⊗𝑞 → 𝑟 that sends each position 𝑓 : 𝑞 → 𝑟 of [𝑞, 𝑟] andposition

𝑖 ∈ 𝑞(1) of 𝑞 to the position 𝑓1 𝑖 of 𝑟, with the same behavior on directions as the corresponding lens

described previously.

Solution to Exercise 4.90.
1. Given a set 𝑆, Example 4.81 shows that

[𝑆y, y] ⊗ (𝑆y) � y𝑆 ⊗ (𝑆y) � 𝑆y𝑆 ,

so by setting 𝑞 B 𝑆y and 𝑟 B y in (4.88), we obtain an evaluation lens eval : 𝑆y𝑆 → y. By the

solution to Exercise 4.89, given a position 𝑠 ∈ 𝑆 of 𝑆y𝑆 , the evaluation lens on directions is the

map 1→ 𝑆 that picks out 𝑠. In other words, it is indeed the identity on directions.

2. We wish to write the four lenses in (4.91) from Example 4.70 as the parallel product of identity

lenses and evaluation lenses. By the solution to Exercise 4.89, the evaluation lens [𝐹y, y𝐹]⊗ 𝐹y→
y𝐹 is a lens from

[𝐹y, y𝐹] ⊗ 𝐹y � 𝐹 ©­«
∑

𝑓 : 𝐹y→y𝐹

∏
𝑖∈𝐹

y𝐹
ª®¬ � 𝐹y𝐹𝐹

to y𝐹 that is uniquely determined on positions and has the on-directions map 𝐹𝐹→ 𝐹𝐹 given by

the identity. Then we can verify that 𝜅
11

is equivalent to the parallel product of this evaluation

lens with itself. We can define 𝜅
12

and 𝜅
21

to be the parallel product of this evaluation lens with

the identity on y𝐹 , while 𝜅
22

is the parallel product of the identity on y𝐹 with itself.

Chapter 5

More categorical properties of
polynomials

The category Poly has very useful formal properties, including completion under

colimits and limits, various adjunctions with Set, factorization systems, and so on.

Most of the following material is not necessary for the development of our main story,

but we collect it here for reference. The reader can skip directly to Part II if so inclined

and check back here when needed. Better yet might be to gently leaf through this

chapter, to see how well-behaved and versatile the category Poly is.

5.1 Special polynomials and adjunctions

There are a few special classes of polynomials that are worth discussing:

a) constant polynomials 0, 1, 2, 𝐴;
b) linear polynomials 0, y, 2y, 𝐴y;
c) representable (or pure power) polynomials 1, y, y2 , y𝐴; and

d) monomials 0, 𝐴, y, 2y3 , 𝐵y𝐴.

The first two classes, constant and linear polynomials, are interesting because they

both put a copy of Set inside Poly, as we’ll see in Propositions 5.2 and 5.3. The third

puts a copy of Setop inside Poly: it is the Yoneda embedding that we saw way back

in Exercise 1.12. Finally, the fourth puts a copy of bimorphic lenses inside Poly, as we

saw in Example 3.41.

Exercise 5.1 (Solution here). Which of the four classes above are closed under

1. the cocartesian monoidal structure (0,+) (i.e. addition)?
2. the cartesian monoidal structure (1,×) (i.e. multiplication)?

3. the parallel monoidal structure (y,⊗) (i.e. taking the parallel product)?

4. composition of polynomials 𝑝 ◦ 𝑞? (We have not discussed this yet, so feel free to

skip it.) ♦

145

146 CHAPTER 5. MORE CATEGORICAL PROPERTIES OF POLYNOMIALS

Proposition 5.2. There is a fully faithful functor Set→ Poly sending 𝐴 ↦→ 𝐴y0 = 𝐴.

Proof. By (3.8), a lens 𝑓 : 𝐴y0 → 𝐵y0
consists of a function 𝑓 : 𝐴 → 𝐵 and, for each

𝑎 ∈ 𝐴, a function 0→ 0. There is only one function 0→ 0, so 𝑓 can be identified with

just a function between sets 𝐴→ 𝐵. □

Proposition 5.3. There is a fully faithful functor Set→ Poly sending 𝐴 ↦→ 𝐴y.

Proof. By (3.8), a lens 𝑓 : 𝐴y1 → 𝐵y1
consists of a function 𝑓 : 𝐴→ 𝐵 and for each 𝑎 ∈ 𝐴

a function 1→ 1. There is only one function 1→ 1, so 𝑓 can be identified with just a

function between sets 𝐴→ 𝐵. □

Theorem 5.4. Poly has an adjoint quadruple with Set:

Set Poly𝐴

𝐴y

𝑝(0)

𝑝(1)
⇐
⇒

⇒
(5.5)

where the functors have been labeled by where they send 𝐴 ∈ Set and 𝑝 ∈ Poly.
Both rightward functors Set→ Poly are fully faithful.

Proof. For any set 𝐴, there is a functor Poly → Set given by sending 𝑝 to 𝑝(𝐴); by
the Yoneda lemma, it is the functor Poly(y𝐴 ,−). This, together with Propositions 5.2

and 5.3, gives us the four functors and the fact that the two rightward functors are fully

faithful. It remains to provide the following three natural isomorphisms:

Poly(𝐴, 𝑝) � Set(𝐴, 𝑝(0)) Poly(𝑝, 𝐴) � Set(𝑝(1), 𝐴) Poly(𝐴y, 𝑝) � Set(𝐴, 𝑝(1)).

All three come from our formula (3.7) for computing general hom-sets in Poly; we leave

the details to the reader in Exercise 5.6. □

Exercise 5.6 (Solution here). Here we prove the remainder of Theorem 5.4 using (3.7):

1. Provide a natural isomorphism Poly(𝐴, 𝑝) � Set(𝐴, 𝑝(0)).
2. Provide a natural isomorphism Poly(𝑝, 𝐴) � Set(𝑝(1), 𝐴).
3. Provide a natural isomorphism Poly(𝐴y, 𝑝) � Set(𝐴, 𝑝(1)). ♦

Exercise 5.7 (Solution here). Show that for any polynomial 𝑝, its set 𝑝(1) of positions
is in bĳection with the set of functions y→ 𝑝. ♦

5.1. SPECIAL POLYNOMIALS AND ADJUNCTIONS 147

In Theorem 5.4 we see that 𝑝 ↦→ 𝑝(0) and 𝑝 ↦→ 𝑝(1) have left adjoints. This is true

more generally for any set𝐴 in place of 0 and 1, as we show in Corollary 5.10. However,

the fact that 𝑝 ↦→ 𝑝(1) is itself the left adjoint of the left adjoint of 𝑝 ↦→ 𝑝(0)—and hence

that we have the quadruple of adjunctions in (5.5)—is special to 𝐴 = 0, 1.
We also have a copower-hom-power two-variable adjunction betweenPoly, Set, and

Poly.

Proposition 5.8. There is a two-variable adjunction between Poly, Set, and Poly:

Poly(𝐴𝑝, 𝑞) � Set(𝐴, Poly(𝑝, 𝑞)) � Poly(𝑝, 𝑞𝐴). (5.9)

Proof. Since 𝐴𝑝 is the 𝐴-fold coproduct of 𝑝 and 𝑞𝐴 is the 𝐴-fold product of 𝑞, the

universal properties of coproducts and products give natural isomorphisms

Poly(𝐴𝑝, 𝑞) �
∏
𝑎∈𝐴

Poly(𝑝, 𝑞) � Poly(𝑝, 𝑞𝐴).

The middle set is naturally isomorphic to Set(𝐴, Poly(𝑝, 𝑞)), completing the proof. □

Replacing 𝑝 with y𝐵 in (5.9), we obtain the following using the Yoneda lemma.

Corollary 5.10. For any set 𝐵 there is an adjunction

Set Poly
𝐴y𝐵

⇒
𝑞(𝐵)

where the functors are labeled by where they send 𝑞 ∈ Poly and 𝐴 ∈ Set.

Exercise 5.11 (Solution here). Prove Corollary 5.10 from Proposition 5.8. ♦

Proposition 5.12. The Yoneda embedding 𝐴 ↦→ y𝐴 has a left adjoint

Setop Poly
y−

Γ

⇐

where Γ(𝑝) B Poly(𝑝, y) � ∏
𝑖∈𝑝(1) 𝑝[𝑖], as in (3.37) and (3.35). That is, there is a natural

isomorphism

Poly(𝑝, y𝐴) � Set(𝐴, Γ(𝑝)). (5.13)

Proof. By (3.7), we have the natural isomorphism

Poly(𝑝, y𝐴) �
∏
𝑖∈𝑝(1)

𝑝[𝑖]𝐴 ,

which in turn is naturally isomorphic to Set(𝐴, Γ(𝑝)) by (3.35). □

148 CHAPTER 5. MORE CATEGORICAL PROPERTIES OF POLYNOMIALS

Exercise 5.14 (Solution here). Prove Proposition 5.12 from Proposition 5.8. ♦

Corollary 5.15 (Principal monomial). There is an adjunction

Poly Set × Setop
(𝑝(1),Γ(𝑝))
⇒
𝐴y𝐵

where the functors are labeled by where they send 𝑝 ∈ Poly and (𝐴, 𝐵) ∈ Set × Setop.
That is, there is a natural isomorphism

Poly(𝑝, 𝐴y𝐵) � Set(𝑝(1), 𝐴) × Set(𝐵, Γ(𝑝)). (5.16)

Proof. By the universal property of the product of 𝐴 and y𝐵, we have a natural isomor-

phism

Poly(𝑝, 𝐴y𝐵) � Poly(𝑝, 𝐴) × Poly(𝑝, y𝐵).

Then the desired natural isomorphism follows from Exercise 5.6 #2 and (5.13). □

Exercise 5.17 (Solution here). Use (5.16) together with (4.82) and (4.86) to find an

alternative proof for Proposition 4.54, i.e. that there is an isomorphism

Γ(𝑝 ⊗ 𝑞) � Set
(
𝑞(1), Γ(𝑝)

)
× Set

(
𝑝(1), Γ(𝑞)

)
.

for any 𝑝, 𝑞 ∈ Poly. ♦

5.2 Epi-mono factorization of lenses

Proposition 5.18. Let 𝑓 : 𝑝 → 𝑞 be a lens in Poly. It is a monomorphism if and only

if the on-positions function 𝑓1 : 𝑝(1) → 𝑞(1) is a monomorphism in Set and, for each
𝑖 ∈ 𝑝(1), the on-directions function 𝑓

♯
𝑖

: 𝑞[𝑓1𝑖] → 𝑝[𝑖] is an epimorphism in Set.

Proof. To prove the forward direction, suppose that 𝑓 is a monomorphism. Since

𝑝 ↦→ 𝑝(1) is a right adjoint (Theorem 5.4), it preserves monomorphisms, so the on-

positions function 𝑓1 is also a monomorphism.

We now need to show that for any 𝑖 ∈ 𝑝(1), the on-directions function 𝑓
♯
𝑖

: 𝑞[𝑓1𝑖] →
𝑝[𝑖] is an epimorphism. Suppose we are given a set 𝐴 and a pair of functions

𝑔♯ , ℎ♯ : 𝑝[𝑖] ⇒ 𝐴 with 𝑓
♯
𝑖

𝑔♯ = 𝑓
♯
𝑖

ℎ♯. Then there exist lenses 𝑔 , ℎ : y𝐴 ⇒ 𝑝 whose

on-positions functions both pick out 𝑖 andwhose on-directions functions are 𝑔♯
and ℎ♯,

so that 𝑔 # 𝑓 = ℎ # 𝑓 . As 𝑓 is a monomorphism, 𝑔 = ℎ; in particular, their on-directions

functions 𝑔♯
and ℎ♯ are equal, as desired.

5.2. EPI-MONO FACTORIZATION OF LENSES 149

Conversely, suppose that 𝑓1 is a monomorphism and that, for each 𝑖 ∈ 𝑝(1), the
function 𝑓

♯
𝑖
is an epimorphism. Let 𝑟 be a polynomial and 𝑔 , ℎ : 𝑟 ⇒ 𝑝 be two lenses

such that 𝑔 # 𝑓 = ℎ # 𝑓 . Then 𝑔1 # 𝑓1 = ℎ1 # 𝑓1, which implies 𝑔1 = ℎ1; we’ll consider 𝑔1

the default representation. We also have that 𝑓
♯
𝑔1𝑘

𝑔♯
𝑘
= 𝑓

♯
𝑔1𝑘

ℎ♯
𝑘
for any 𝑘 ∈ 𝑟(1). But

𝑓
♯
𝑔1𝑘

is an epimorphism, so in fact 𝑔♯
𝑘
= ℎ

♯
𝑘
, as desired. □

Example 5.19. Choose a finite nonempty set k for 1 ≤ 𝑘 ∈ N, e.g. k = 12. There is a

monomorphism

𝑓 : kyk → NyN

such that the trajectory “going around and around the 𝑘-clock” comes from the usual

counting trajectory NyN → y from Example 4.6.

On positions, we have 𝑓1𝑖 = 𝑖 for all 𝑖 ∈ k. On directions, for any 𝑖 ∈ k, we have

𝑓
♯
𝑖
(𝑛) = 𝑛 mod 𝑘 for all 𝑛 ∈ N.

Exercise 5.20 (Solution here). In Example 5.19, we gave a lens 12y12 → NyN. This

allows us to turn any dynamical system with N-many states into a dynamical system

with 12 states, while keeping the same interface—say, 𝑝.

Explain how the behavior of the new system 12y12 → 𝑝 would be seen to relate to

the behavior of the old system NyN → 𝑝. ♦

Proposition 5.21. Let 𝑓 : 𝑝 → 𝑞 be a lens in Poly. It is an epimorphism if and only if the

function 𝑓1 : 𝑝(1) → 𝑞(1) is an epimorphism in Set and, for each 𝑗 ∈ 𝑞(1), the induced

function

𝑓 ♭𝑗 : 𝑞[𝑗] →
∏
𝑖∈𝑝(1),
𝑓1 𝑖=𝑗

𝑝[𝑖]

from (3.20) is a monomorphism.

Proof. To prove the forward direction, suppose that 𝑓 is an epimorphism. Since 𝑝 ↦→
𝑝(1) is a left adjoint (Theorem 5.4), it preserves epimorphisms, so the on-positions

function 𝑓1 is also a epimorphism.

We now need to show that for any 𝑗 ∈ 𝑞(1), the induced function 𝑓 ♭
𝑗
is a monomor-

phism. Suppose we are given a set 𝐴 and a pair of functions 𝑔′, ℎ′ : 𝐴 ⇒ 𝑞[𝑗] with

𝑔′ # 𝑓 ♭
𝑗
= ℎ′ # 𝑓 ♭

𝑗
. They can be identified with lenses 𝑔 , ℎ : 𝑞 ⇒ y𝐴 + 1, which send the

𝑗-component to the first component, y𝐴, and send all other component to the second

component, 1. It is easy to check that 𝑓 𝑔 = 𝑓 ℎ, hence 𝑔 = ℎ, and hence 𝑔♯ = ℎ♯ as

desired.

Then we can construct lenses 𝑔 , ℎ : 𝑞 ⇒ y𝐴 + 1 whose on-positions functions both

send 𝑗 to the first position, corresponding to y𝐴, and all other positions to the second

150 CHAPTER 5. MORE CATEGORICAL PROPERTIES OF POLYNOMIALS

position, corresponding to 1. In addition, we let the on-directions functions be 𝑔♯
𝑗
B 𝑔′

and ℎ
♯
𝑗
B ℎ′. Then 𝑓 # 𝑔 = 𝑓 # ℎ. As 𝑓 is an epimorphism, 𝑔 = ℎ; in particular, their

on-directions functions are equal, so 𝑔′ = ℎ′, as desired.

Conversely, suppose that 𝑓1 is an epimorphism and that, for each 𝑗 ∈ 𝑞(1), the
function 𝑓 ♭

𝑗
is a monomorphism. Let 𝑟 be a polynomial and 𝑔 , ℎ : 𝑞 ⇒ 𝑟 be two lenses

such that 𝑓 #𝑔 = 𝑓 # ℎ. Then 𝑓1 #𝑔1 = 𝑓1 # ℎ1, which implies 𝑔1 = ℎ1; we’ll consider 𝑔1 the

default representation. We also have that 𝑔♯
𝑓1 𝑖

𝑓 ♯
𝑖
= ℎ

♯
𝑓1 𝑖

𝑓 ♯
𝑖
for any 𝑖 ∈ 𝑝(1). It follows

that, for any 𝑗 ∈ 𝑞(1), the two composites

𝑟[𝑔1 𝑗] 𝑞[𝑗]
∏
𝑖∈𝑝(1),
𝑓1 𝑖=𝑗

𝑝[𝑖]
𝑔♯
𝑗

ℎ
♯
𝑗

𝑓 ♭
𝑗

are equal, which implies that 𝑔♯
𝑗
= ℎ

♯
𝑗
as desired. □

Exercise 5.22 (Solution here). Show that the only way for a lens 𝑝 → y to not be an

epimorphism is when 𝑝 = 0. ♦

Exercise 5.23 (Solution here). Let 𝐴 and 𝐵 be sets and 𝐴𝐵 their product. Find an

epimorphism y𝐴 + y𝐵 ↠ y𝐴𝐵. ♦

Exercise 5.24 (Solution here). Suppose a lens 𝑓 : 𝑝 → 𝑞 is both a monomorphism and

an epimorphism; it is then an isomorphism? (That is, is Poly balanced?)
Hint: You may use the following facts.

1. A function that is both a monomorphism and an epimorphism in Set is an

isomorphism.

2. A lens is an isomorphism if and only if the on-positions function is an isomor-

phism and every on-directions function is an isomorphism. ♦

We are often interested in whether epimorphisms and monomorphisms form what

is called a factorization system in a given category, which we define below.

Definition 5.25 (Factorization system). Given a category C and two classes of mor-

phisms 𝐸 and 𝑀 in C, we say that (𝐸, 𝑀) is a factorization system of C if:

1. every morphism 𝑓 in C factors uniquely (up to unique isomorphism) as a mor-

phism 𝑒 ∈ 𝐸 composed with a morphism 𝑚 ∈ 𝑀, so that 𝑓 = 𝑒 # 𝑚;

2. 𝐸 and 𝑀 each contain every isomorphism; and

3. 𝐸 and 𝑀 are each closed under composition.

5.2. EPI-MONO FACTORIZATION OF LENSES 151

If 𝐸 is the class of epimorphisms and𝑀 is the class of monomorphisms (in which case

conditions 2 and 3 are automatically satisfied), we say that C has epi-mono factorization.

Example 5.26 (Epi-mono factorization in Set). The category Set has epi-mono factoriza-

tion: a function 𝑓 : 𝑋 → 𝑌 can be uniquely factored into an epimorphism (surjection) 𝑒

followed by a monomorphism (injection) 𝑖, as follows. The epimorphism 𝑒 : 𝑋 → 𝑓 (𝑋)
is given by restricting the codomain of 𝑓 to its image (also known as corestricting 𝑓),

so 𝑒 sends 𝑥 ↦→ 𝑓 (𝑥) for all 𝑥 ∈ 𝑋. The monomorphism 𝑖 : 𝑓 (𝑋) → 𝑌 is then given by

including the image into the codomain, so 𝑖 sends 𝑦 ↦→ 𝑦 for all 𝑦 ∈ 𝑓 (𝑋) ⊆ 𝑌.

Proposition 5.27. Poly has epi-mono factorization.

Proof. Take an arbitrary lens 𝜑 : 𝑝 → 𝑞. It suffices to show that there exists a unique

polynomial 𝑟 equippedwith an epimorphism 𝜖 : 𝑝 → 𝑟 and amonomorphism𝜇 : 𝑟 → 𝑞

such that 𝜑 = 𝜖 # 𝜇.
On positions, we must have 𝜑1 = 𝜖1 # 𝜇1, with 𝜇1 a monomorphism and 𝜖1 an

epimorphism per Propositions 5.18 and 5.21. By Example 5.26, since Set has epi-mono

factorization, such 𝑟(1), 𝜖1 , and 𝜇1 uniquely exist. In particular, we must have that

𝑟(1) � 𝜑1(𝑝(1)), that 𝜖1 : 𝑝(1) → 𝜑1(𝑝(1)) is the corestriction of 𝜑1 sending 𝑖 ↦→ 𝜑1(𝑖)
for each 𝑝-position 𝑖, and that 𝜇1 : 𝜑1(𝑝(1)) → 𝑞(1) is the inclusion sending 𝑗 ↦→ 𝑗 for

each 𝑟-position 𝑗.

Then on directions, for any 𝑖 ∈ 𝑝(1), we must have that

𝑞[𝜑1(𝑖)] 𝑟[𝜑1(𝑖)]

𝑝[𝑖]

𝜇♯
𝜑1(𝑖)

𝜑♯
𝑖

𝜖♯
𝑖

commutes—or, equivalently, for every 𝑗 ∈ 𝑟(1) � 𝜑1(𝑝(1)),

𝑞[𝑗] 𝑟[𝑗]

∏
𝑖∈𝑝(1),
𝜑1(𝑖)=𝑗

𝑝[𝑖]

𝜇♯
𝑗

𝜑♭
𝑗

𝜖♭
𝑗

commutes (here 𝜑♭
𝑗
and 𝜖♭

𝑗
are the induced functions from (3.20)), with 𝜇♯

𝑗
an epimor-

phism and 𝜖♭
𝑗
a monomorphism per Propositions 5.18 and 5.21. So again since Set has

epi-mono factorization, such 𝑟[𝑗], 𝜇♯
𝑗
, and 𝜖♭

𝑗
uniquely exist. Hence such 𝑝

𝜖−→ 𝑟
𝜇
−→ 𝑞

uniquely exists overall. □

152 CHAPTER 5. MORE CATEGORICAL PROPERTIES OF POLYNOMIALS

5.3 Cartesian closure

We have already seen in Section 4.5 the closure operation [−,−] for one monoidal

structure on Poly, namely (y,⊗). But this is not the only closed monoidal structure on

Poly: in fact, we will show that Poly is cartesian closed as well.

For any two polynomials 𝑞, 𝑟, define 𝑟𝑞 ∈ Poly by the formula

𝑟𝑞 B
∏
𝑗∈𝑞(1)

𝑟 ◦ (y + 𝑞[𝑗]) (5.28)

where ◦ denotes composition.

Before proving that this really is an exponential in Poly, which we do in Theo-

rem 5.31, we first get some practice with it.

Example 5.29. Let 𝐴 be a set. We’ve been writing the polynomial 𝐴y0
simply as 𝐴, so it

better be true that there is an isomorphism

y𝐴 � y𝐴y
0

in order for the notation to be consistent. Luckily, this is true. By (5.28), we have

y𝐴y
0
=

∏
𝑎∈𝐴

y ◦ (y + 0) � y𝐴

Exercise 5.30 (Solution here). Compute the following exponentials in Poly using (5.28):

1. 𝑝0
for an arbitrary 𝑝 ∈ Poly.

2. 𝑝1
for an arbitrary 𝑝 ∈ Poly.

3. 1𝑝 for an arbitrary 𝑝 ∈ Poly.
4. 𝐴𝑝 for an arbitrary 𝑝 ∈ Poly and 𝐴 ∈ Set.
5. yy.

6. y4y
.

7. (y𝐴)y𝐵 for arbitrary sets 𝐴, 𝐵 ∈ Set. ♦

Theorem 5.31. The category Poly is cartesian closed. That is, we have a natural iso-

morphism

Poly(𝑝, 𝑟𝑞) � Poly(𝑝 × 𝑞, 𝑟),

where 𝑟𝑞 is the polynomial defined in (5.28).

Proof. We have the following chain of natural isomorphisms:

Poly(𝑝, 𝑟𝑞) � Poly
(
𝑝,

∏
𝑗∈𝑞(1)

𝑟 ◦ (y + 𝑞[𝑗])
)

(5.28)

5.4. LIMITS AND COLIMITS OF POLYNOMIALS 153

�
∏
𝑖∈𝑝(1)

∏
𝑗∈𝑞(1)

Poly
(
y𝑝[𝑖] , 𝑟 ◦ (y + 𝑞[𝑗])

)
(Universal property of (co)products)

�
∏
𝑖∈𝑝(1)

∏
𝑗∈𝑞(1)

𝑟 ◦ (𝑝[𝑖] + 𝑞[𝑗]) (Yoneda lemma)

�
∏
𝑖∈𝑝(1)

∏
𝑗∈𝑞(1)

∑
𝑘∈𝑟(1)
(𝑝[𝑖] + 𝑞[𝑗])𝑟[𝑘]

�
∏

(𝑖 , 𝑗)∈(𝑝×𝑞)(1)

∑
𝑘∈𝑟(1)
(𝑝 × 𝑞)[(𝑖 , 𝑗)]𝑟[𝑘] (3.61)

� Poly(𝑝 × 𝑞, 𝑟). (3.7)

□

Exercise 5.32 (Solution here). Use Theorem 5.31 to show that for any polynomials 𝑝, 𝑞,

there is a canonical evaluation lens

eval : 𝑝𝑞 × 𝑞 → 𝑝.

♦

5.4 Limits and colimits of polynomials

We have already seen that Poly has all coproducts (Proposition 3.3) and products

(Proposition 3.56). We will now see that Poly has all small limits and colimits.

Theorem 5.33. The category Poly has all small limits.

Proof. A category has all small limits if and only if it has products and equalizers, so

by Proposition 3.56, it suffices to show that Poly has equalizers.

We claim that equalizers in Poly are simply equalizers on positions and coequalizers

on directions. More precisely, let 𝑓 , 𝑔 : 𝑝 ⇒ 𝑞 be two lenses. We construct the equalizer

𝑝′ of 𝑓 and 𝑔 as follows.
1

We define its position-set 𝑝′(1) to be the equalizer of

𝑓1 , 𝑔1 : 𝑝(1)⇒ 𝑞(1) in Set; that is,

𝑝′(1) B {𝑖 ∈ 𝑝(1) | 𝑓1𝑖 = 𝑔1𝑖}.

Then for each 𝑖 ∈ 𝑝′(1), we can define the direction-set 𝑝′[𝑖] to be the coequalizer of

𝑓
♯
𝑖
, 𝑔♯

𝑖
: 𝑞[𝑓1𝑖]⇒ 𝑝[𝑖]. In this way, we obtain a polynomial 𝑝′ that comes equipped with

a lens 𝑒 : 𝑝′→ 𝑝. One can check that 𝑝′ together with 𝑒 satisfies the universal property

of the equalizer of 𝑓 and 𝑔; see Exercise 5.34. □

1
If we’re being precise, a “(co)equalizer” is an object equipped with a morphism, but we will use the

term to refer to either just the object or just the morphism when the context is clear.

154 CHAPTER 5. MORE CATEGORICAL PROPERTIES OF POLYNOMIALS

Exercise 5.34 (Solution here). Complete the proof of Theorem 5.33 as follows:

1. We said that 𝑝′ comes equipped with a lens 𝑒 : 𝑝′→ 𝑝; what is it?

2. Show that 𝑒 # 𝑓 = 𝑒 # 𝑔.
3. Show that 𝑒 is the equalizer of the pair 𝑓 , 𝑔. ♦

Example 5.35 (Computing general limits in Poly). The proof of Theorem 5.33 justifies

the following mnemonic for limits in Poly:

The positions of a limit are the limit of the positions.
The directions of a limit are the colimit of the directions.

We can make this precise as follows: the limit of a functor 𝑝− : J → Poly is the

polynomial whose position-set is(
lim

𝑗∈J
𝑝 𝑗

)
(1) � lim

𝑗∈J
𝑝 𝑗(1), (5.36)

equipped with a canonical projection 𝜋 𝑗 to each 𝑝 𝑗(1), and whose direction-set for each

position 𝑖 is (
lim

𝑗∈J
𝑝 𝑗

)
[𝑖] � colim

𝑗∈Jop

𝑝 𝑗[𝜋 𝑗(𝑖)]. (5.37)

This notation obscures what is occuring on lenses, but in particular, each lens 𝜑 : 𝑝 𝑗 →
𝑝 𝑗′ in thediagram 𝑝− induces anon-positions function𝜑1 : 𝑝 𝑗(1) → 𝑝 𝑗′(1) in thediagram
whose limit we take in (5.36) and, for every position 𝑖 of the limit, an on-directions

function 𝜑♯
𝜋𝑗(𝑖) : 𝑝 𝑗

′[𝜋 𝑗′(𝑖)] → 𝑝 𝑗[𝜋 𝑗(𝑖)] in the diagram whose colimit we take in (5.37).

(Note that, by the definition of a limit, 𝜑1(𝜋 𝑗(𝑖)) = 𝜋 𝑗′(𝑖).)
We have seen (5.36) and (5.37) to be true for products: the position-set of the product

is just the product of the original position-sets, while the direction-set at a tuple of the

original positions is just the coproduct of the direction-sets at every position in the

tuple. We have also just shown (5.36) and (5.37) to be true for equalizers in the proof of

Theorem 5.33. It follows from the construction of any limit as an equalizer of products

that it is true for arbitrary limits.

Example 5.38 (Pullbacks in Poly). Given 𝑞, 𝑞′, 𝑟 ∈ Poly and lenses 𝑞
𝑓
−→ 𝑟

𝑓 ′

←− 𝑞′, the

pullback

𝑝 𝑞′

𝑞 𝑟

𝑔′

𝑔 𝑓 ′

𝑓

⌟

is given as follows. The position-set of 𝑝 is the pullback of the position-sets of 𝑞 and 𝑞′

5.4. LIMITS AND COLIMITS OF POLYNOMIALS 155

over that of 𝑟 in Set. Then at each position (𝑖 , 𝑖′) ∈ 𝑝(1) ⊆ 𝑞(1) × 𝑞′(1) with 𝑓1𝑖 = 𝑓 ′1 𝑖
′
,

we take the direction-set 𝑝[(𝑖 , 𝑖′)] to be the pushout of the direction-sets 𝑞[𝑖] and 𝑞′[𝑖′]
over 𝑟[𝑓1𝑖] = 𝑟[𝑓 ′1 𝑖′] in Set. These pullback and pushout squares also give the lenses 𝑔

and 𝑔′ on positions and on directions:

𝑝(1) 𝑞′(1)

𝑞(1) 𝑟(1)

𝑔′1

𝑔1 𝑓 ′1

𝑓1

⌟
and

𝑝[(𝑖 , 𝑖′)] 𝑞′[𝑖′]

𝑞[𝑖] 𝑟[𝑓1(𝑖)]

(𝑔′)♯(𝑖 ,𝑖′)

𝑔♯(𝑖 ,𝑖′) (𝑓 ′)♯
𝑖′

𝑓
♯
𝑖

⌟
(5.39)

Exercise 5.40 (Solution here). Let 𝑝 be any polynomial.

1. There is a canonical choice of lens 𝜂 : 𝑝 → 𝑝(1); what is it?

2. Given an element 𝑖 ∈ 𝑝(1), i.e. a function (or lens between constant polynomials)

𝑖 : 1→ 𝑝(1), let 𝑝𝑖 be the pullback

𝑝𝑖 𝑝

1 𝑝(1)

𝑔

𝑓 𝜂

𝑖

⌟

What is 𝑝𝑖? What are the lenses 𝑓 : 𝑝𝑖 → 1 and 𝑔 : 𝑝𝑖 → 𝑝? ♦

Exercise 5.41 (Solution here). Let 𝑞 B y2 + y, 𝑞′ B 2y3 + y2
, and 𝑟 ≔ y + 1.

1. Choose lenses 𝑓 : 𝑞 → 𝑟 and 𝑓 ′ : 𝑞′→ 𝑟 and write them down.

2. Find the pullback of 𝑞
𝑓
−→ 𝑟

𝑓 ′

←− 𝑞′. ♦

Exercise 5.42 (Solution here). An alternative way to prove Theorem 5.33 would have

been to show that the equalizer of two natural transformations between polynomial

functors in SetSet
is still a polynomial functor—since the full subcategory inclusion

Poly→ SetSet
reflects these equalizers, it would follow thatPoly has equalizers. Butwe

already knowwhat polynomial the equalizer should be from the proof of Theorem5.33.

So in this exercise, we will show that the equalizer of polynomials we found in Poly is

also the equalizer of those same functors in SetSet
.

Let 𝑓 , 𝑔 : 𝑝 ⇒ 𝑞 be a pair of natural transformations 𝑓 , 𝑔 : 𝑝 ⇒ 𝑞 between polynomial

functors 𝑝 and 𝑞, and let 𝑒 : 𝑝′→ 𝑝 be their equalizer in Poly that we computed in the

proof of Theorem 5.33.

1. Given a set 𝑋, show that 𝑒𝑋 : 𝑝′(𝑋) → 𝑝(𝑋) is the equalizer of the 𝑋-components

𝑓𝑋 , 𝑔𝑋 : 𝑝(𝑋)⇒ 𝑞(𝑋) in Set.
2. Deduce that equalizers in Poly coincide with equalizers in SetSet

.

156 CHAPTER 5. MORE CATEGORICAL PROPERTIES OF POLYNOMIALS

3. Conclude that limits in Poly coincide with limits in SetSet
. ♦

Theorem 5.43. The category Poly has all small colimits.

Proof. Acategory has all small colimits if and only if it has coproducts and coequalizers,

so by Proposition 3.3, it suffices to show that Poly has coequalizers.

Let 𝑠, 𝑡 : 𝑝 ⇒ 𝑞 be two lenses. We construct the coequalizer 𝑞′ of 𝑠 and 𝑡 as follows.

The pair of functions 𝑠1 , 𝑡1 : 𝑝(1)⇒ 𝑞(1) define a graph 𝐺 : •⇒ • → Set with vertices

in 𝑞(1), edges in 𝑝(1), sources indicated by 𝑠1, and targets indicated by 𝑡1. Then the set

𝐶 of connected components of 𝐺 is given by the coequalizer 𝑔1 : 𝑞(1) → 𝐶 of 𝑠1 and

𝑡1. We define the position-set of 𝑞′ to be 𝐶. Each direction-set of 𝑞′ will be a limit of a

diagram of direction-sets of 𝑝 and 𝑞, but expressing this limit, as we proceed to do, is

a bit involved.

For each connected component 𝑐 ∈ 𝐶, we have a connected subgraph 𝐺𝑐 ⊆ 𝐺 with

vertices𝑉𝑐 B 𝑔−1

1 (𝑐) and edges 𝐸𝑐 B 𝑠−1

1 (𝑔−1

1 (𝑐)) = 𝑡−1

1 (𝑔−1

1 (𝑐)). Note that 𝐸𝑐 ⊆ 𝑝(1) and
𝑉𝑐 ⊆ 𝑞(1), so to each 𝑒 ∈ 𝐸𝑐 (resp. to each 𝑣 ∈ 𝑉𝑐) we have an associated direction-set

𝑝[𝑒] (resp. 𝑞[𝑣]).
The category of elements

∫
𝐺𝑐 has objects 𝐸𝑐 + 𝑉𝑐 and two kinds of (non-identity)

morphisms, 𝑒 → 𝑠1(𝑒) and 𝑒 → 𝑡1(𝑒), associated to each 𝑒 ∈ 𝐸𝑐 , all pointing from an

object in 𝐸𝑐 to an object in 𝑉𝑐 . There is a functor 𝐹 : (
∫
𝐺𝑐)op → Set sending every

𝑣 ↦→ 𝑞[𝑣], every 𝑒 ↦→ 𝑝[𝑒], and every morphism to a function between them, namely

either 𝑠
♯
𝑒 : 𝑞[𝑠1(𝑒)] → 𝑝[𝑒] or 𝑡♯𝑒 : 𝑞[𝑡1(𝑒)] → 𝑝[𝑒]. So we can define 𝑞′[𝑐] to be the limit

of 𝐹 in Set.
We claim that 𝑞′ B

∑
𝑐∈𝐶 y

𝑞′[𝑐]
is the coequalizer of 𝑠 and 𝑡. We leave the complete

proof to the interested reader in Exercise 5.44. □

Exercise 5.44 (Solution here). Complete the proof of Theorem 5.43 as follows:

1. Provide a lens 𝑔 : 𝑞 → 𝑞′.

2. Show that 𝑠 # 𝑔 = 𝑡 # 𝑔.
3. Show that 𝑔 is a coequalizer of the pair 𝑠, 𝑡. ♦

Example 5.45. Given a diagram in Poly, one could either take its (co)limit as a diagram

of polynomial functors (i.e. its (co)limit in Poly) or its (co)limit simply as a diagram of

functors (i.e. its (co)limit in SetSet
). We saw in Exercise 5.42 that in the case of limits,

these yield the same result. So, too, in the case of coproducts, per Proposition 3.3.

But in the case of general colimits, there are diagrams that yield different results: by

the co-Yoneda lemma, every functor Set→ Set—even those that are not polynomials—

can be written as the colimit of representable functors in SetSet
, yet the colimit of the

same representables in Poly can only be another polynomial.

5.4. LIMITS AND COLIMITS OF POLYNOMIALS 157

For a concrete example, consider the two distinct projections y2 → y, which form

the diagram

y2 ⇒ y. (5.46)

According to Theorem 5.43, the colimit of (5.46) in Poly has the coequalizer of 1 ⇒ 1,
namely 1, as its position-set, and the limit of the diagram 1 ⇒ 2 consisting of the two

inclusions as its sole direction-set. But this latter limit is just 0, so in fact the colimit of

(5.46) in Poly is the constant functor 1y0 � 1.
But as functors, by Proposition 1.37, the colimit of (5.46) can be computed pointwise:

it is the (nonconstant!) functor

𝑋 ↦→
{

0 if 𝑋 = 0

1 if 𝑋 ≠ 0

Exercise 5.47 (Solution here). By Theorem 5.4, for any polynomial 𝑝, there are canonical

lenses involving positions and global sections:

𝜖 : 𝑝(1)y→ 𝑝 and 𝜂 : 𝑝 → yΓ(𝑝).

1. Characterize the behavior of the canonical lens 𝜖 : 𝑝(1)y→ 𝑝.

2. Characterize the behavior of the canonical lens 𝜂 : 𝑝 → yΓ(𝑝).

3. Show that the following is a pushout in Poly:

𝑝(1)y y

𝑝 yΓ(𝑝)

!

𝜖 !

𝜂

⌜
(5.48)

♦

Proposition 5.49. For polynomials 𝑝, 𝑞, the following is a pushout:

𝑝(1)y ⊗ 𝑞(1)y 𝑝(1)y ⊗ 𝑞

𝑝 ⊗ 𝑞(1)y 𝑝 ⊗ 𝑞
⌜

Proof. All the lenses shown are identities on positions, so the displayed diagram is the

coproduct over all (𝑖 , 𝑗) ∈ 𝑝(1) × 𝑞(1) of the diagram shown left

y y𝑞[𝑗]

y𝑝[𝑖] y𝑝[𝑖]×𝑞[𝑗]
⌜

1 𝑞[𝑗]

𝑝[𝑖] 𝑝[𝑖] × 𝑞[𝑗]
⌜

158 CHAPTER 5. MORE CATEGORICAL PROPERTIES OF POLYNOMIALS

whereweused (𝑝⊗𝑞)[(𝑖 , 𝑗)] � 𝑝[𝑖]×𝑞[𝑗]. This is the imageunder theYonedaembedding

of the diagram of sets shown right, which is clearly a pullback. The result follows by

Proposition 5.12. □

This means that to give a lens 𝜑 : 𝑝 ⊗ 𝑞 → 𝑟, it suffices to give two lenses 𝜑𝑝 : 𝑝 ⊗
𝑞(1)y → 𝑟 and 𝜑𝑞 : 𝑝(1)y ⊗ 𝑞 → 𝑟 that agree on positions. The lens 𝜑𝑝 says how

information about 𝑞’s position is transferred to 𝑝, and the lens 𝜑𝑞 says how information

about 𝑝’s position is transferred to 𝑞.

Corollary 5.50. Suppose we have polynomials 𝑝1 , . . . , 𝑝𝑛 ∈ Poly. Then 𝑝1 ⊗ · · · ⊗ 𝑝𝑛 is
isomorphic to the wide pushout

colim

©­­­­«
𝑝1(1)y ⊗ · · · ⊗ 𝑝𝑛(1)y

𝑝1 ⊗ 𝑝2(1)y ⊗ · · · ⊗ 𝑝𝑛(1)y · · · 𝑝1(1)y ⊗ · · · ⊗ 𝑝𝑛−1(1)y ⊗ 𝑝𝑛

ª®®®®¬
Proof. We proceed by induction on 𝑛 ∈ N. When 𝑛 = 0, the wide pushout has no legs

and the empty parallel product is y, so the result holds. If the result holds for 𝑛, then

it holds for 𝑛 + 1 by Proposition 5.49. □

5.5 Vertical-cartesian factorization of lenses

Aside from epi-mono factorization, there is another factorization system on Poly that

will show up frequently.

Definition 5.51 (Vertical and cartesian lenses). Let 𝑓 : 𝑝 → 𝑞 be a lens. It is called

vertical if 𝑓1 : 𝑝(1) → 𝑞(1) is an isomorphism. It is called cartesian if, for each 𝑖 ∈ 𝑝(1),
the function 𝑓

♯
𝑖

: 𝑞[𝑓 (𝑖)] → 𝑝[𝑖] is an isomorphism.

Proposition 5.52. Vertical and cartesian lenses form a factorization system of Poly.

Proof. It is easy to check that isomorphisms are both vertical and cartesian, and that

vertical and cartesian lenses are each closed under composition. It remains to show that

every lens in Poly can be uniquely (up to unique isomorphism) factored as a vertical

lens composed with a cartesian lens.

Recall from (3.8) that a lens in Poly can be written as to the left; we can thus rewrite

it as to the right:

𝑝(1) 𝑞(1)

Set𝑝[−]

𝑓1

𝑞[−]

𝑓 ♯

⇐
𝑝(1) 𝑝(1) 𝑞(1)

Set𝑝[−]

𝑞[𝑓1(−)]

𝑓1

𝑞[−]

𝑓 ♯

⇐

5.5. VERTICAL-CARTESIAN FACTORIZATION OF LENSES 159

We can see that the intermediary object

∑
𝑖∈𝑝(1) y

𝑞[𝑓1 𝑖]
is unique up to unique isomor-

phism. □

Proposition 5.53. Vertical lenses satisfy 2-out-of-3: given 𝑝
𝑓
−→ 𝑞

𝑔
−→ 𝑟 with ℎ = 𝑓 # 𝑔, if

any two of 𝑓 , 𝑔 , ℎ are vertical, then so is the third.

If 𝑔 is cartesian, then ℎ is cartesian if and only if 𝑓 is cartesian.

Proof. Given ℎ = 𝑓 # 𝑔, we have that ℎ1 = 𝑓1 # 𝑔1. Since isomorphisms satisfy 2-out-of-3,

it follows that vertical lenses satisfy 2-out-of-3 as well.

Now assume 𝑔 is cartesian. On directions, ℎ = 𝑓 # 𝑔 implies that for every 𝑖 ∈ 𝑝(1),
we have ℎ

♯
𝑖
= 𝑔♯

𝑓1 𝑖
𝑓 ♯

𝑖
. Since 𝑔♯

𝑓1 𝑖
is an isomorphism, it follows that every ℎ

♯
𝑖
is an

isomorphism if and only if every 𝑓
♯
𝑖
is an isomorphism, so ℎ is cartesian if and only if

𝑓 is cartesian. □

Exercise 5.54 (Solution here). Give an example of polynomials 𝑝, 𝑞, 𝑟 and lenses 𝑝
𝑓
−→

𝑞
𝑔
−→ 𝑟 such that 𝑓 and 𝑓 # 𝑔 are cartesian but 𝑔 is not. ♦

Here is an alternative characterization of a cartesian lens in Poly. Recall from

Exercise 3.25 that for any polynomial 𝑝, there is a corresponding function 𝜋𝑝 : ¤𝑝(1) →
𝑝(1), i.e. the set of all directions mapping to the set of positions. A lens (𝑓1 , 𝑓 ♯) : 𝑝 → 𝑞

can then be described as a function 𝑓1 : 𝑝(1) → 𝑞(1) alongwith a function 𝑓 ♯ that makes

the following diagram in Set commute:

¤𝑝(1) • ¤𝑞(1)

𝑝(1) 𝑝(1) 𝑞(1)

𝜋𝑝

𝑓 ♯

𝜋𝑞

𝑓1

⌟
(5.55)

Here, the pullback denoted by the dot • is the set of pairs comprised of a 𝑝-position

𝑖 and a 𝑞[𝑓1𝑖]-direction 𝑒. The function 𝑓 ♯ sends each such pair to a direction 𝑓
♯
𝑖
(𝑒)

of 𝑝, and the commutativity of the left square implies that 𝑓
♯
𝑖
(𝑒) is specifically a 𝑝[𝑖]-

direction. So 𝑓
♯
𝑖
is indeed our familiar on-directions function 𝑞[𝑓1𝑖] → 𝑝[𝑖], and 𝑓 ♯ is

just the sum of all these on-directions functions over 𝑖 ∈ 𝑝(1).

Exercise 5.56 (Solution here). Show that a lens 𝑓 : 𝑝 → 𝑞 in Poly is cartesian if and

160 CHAPTER 5. MORE CATEGORICAL PROPERTIES OF POLYNOMIALS

only if the square on the left hand side of (5.55) is also a pullback:

¤𝑝(1) • ¤𝑞(1)

𝑝(1) 𝑝(1) 𝑞(1)

𝜋𝑝

𝑓 ♯

𝜋𝑞

⌞

𝑓1

⌟

♦

Exercise 5.57 (Solution here). Is the pushout of a cartesian lens always cartesian? ♦

Why do we use the word cartesian to describe cartesian morphisms? It turns out

that, as natural transformations, cartesian morphisms are precisely what are known as

cartesian natural transformations.

Definition 5.58 (Cartesian natural transformation). A cartesian natural transformation
is a natural transformation whose naturality squares are all pullbacks. That is, given

categories C,D, functors 𝐹, 𝐺, and natural transformation 𝛼, we say that 𝛼 is cartesian
if for all morphisms ℎ : 𝑐 → 𝑐′ in C,

𝐹𝑐 𝐺𝑐

𝐹𝑑 𝐺𝑑

𝐹ℎ

𝛼𝑐

𝐺ℎ

𝛼𝑑

⌟

is a pullback.

5.5. VERTICAL-CARTESIAN FACTORIZATION OF LENSES 161

Proposition 5.59. Let 𝑓 : 𝑝 → 𝑞 be a morphism in Poly. The following are equivalent:

1. viewed as a lens, 𝑓 is cartesian in the sense of Definition 5.51: for each 𝑖 ∈ 𝑝(1),
the on-directions function 𝑓

♯
𝑖
is a bĳection;

2. the square on the left hand side of (5.55) is also a pullback:

¤𝑝(1) • ¤𝑞(1)

𝑝(1) 𝑝(1) 𝑞(1)

𝜋𝑝

𝑓 ♯

𝜋𝑞

⌞

𝑓1

⌟

3. viewed as a natural transformation, 𝑓 is cartesian in the sense of Definition 5.58:

for any sets 𝐴, 𝐵 and function ℎ : 𝐴→ 𝐵, the naturality square

𝑝(𝐴) 𝑞(𝐴)

𝑝(𝐵) 𝑞(𝐵)

𝑓𝐴

𝑝(ℎ) 𝑞(ℎ)

𝑓𝐵

⌟
(5.60)

is a pullback.

Proof. We already showed that the first two are equivalent in Exercise 5.56, and we will

complete this proof in Exercise 5.61. □

Exercise 5.61 (Solution here). In this exercise, you will complete the proof of Proposi-

tion 5.59.

First, we will show that 1⇒ 3. In the following, let 𝑓 : 𝑝 → 𝑞 be a cartesian lens in

Poly and ℎ : 𝐴→ 𝐵 be a function.

1. Using Proposition 3.44 to translate 𝑓 from a lens in Poly to a natural trans-

formation and Proposition 2.10 to interpret 𝑞(ℎ), characterize the pullback of

𝑝(𝐵)
𝑓𝐵−→ 𝑞(𝐵)

𝑞(ℎ)
←−−− 𝑞(𝐴) in Set.

2. Show that this pullback coincideswith the naturality square (5.60), hence proving

1⇒ 3.

Next, we show that 3 ⇒ 1. In the following, let 𝑓 : 𝑝 → 𝑞 be a lens in Poly that is

cartesian when viewed as a natural transformation, so that (5.60) is a pullback for any

function ℎ : 𝐴→ 𝐵. Also fix 𝑖 ∈ 𝑝(1).

162 CHAPTER 5. MORE CATEGORICAL PROPERTIES OF POLYNOMIALS

3. Show that the diagram

1 𝑞(𝑞[𝑓1𝑖])

𝑝(𝑝[𝑖]) 𝑞(𝑝[𝑖])

(𝑓1 𝑖 , id𝑞[𝑓1 𝑖])

(𝑖 , id𝑝[𝑖]) 𝑞(𝑓 ♯
𝑖
)

𝑓𝑝[𝑖]

⌟
(5.62)

commutes. Hint: Use Proposition 2.10, Proposition 3.44, and/or Corollary 3.47.

4. Apply the universal property of the pullback (5.60) to the diagram (5.62) above

to exhibit an element of 𝑝(𝑞[𝑓1𝑖]). Conclude from the existence of this element

that 𝑓
♯
𝑖
is an isomorphism, hence proving 3⇒ 1. ♦

Proposition 5.63. The monoidal structures +, ×, and ⊗ preserve both vertical and

cartesian morphisms.

Proof. Suppose that 𝑓 : 𝑝 → 𝑝′ and 𝑔 : 𝑞 → 𝑞′ are vertical, so that the on-positions

functions 𝑓1 and 𝑔1 are isomorphisms.

We can obtain the on-positions function of a lens by passing it through the functor

Poly
𝑝(1)
−−−→ Set from Theorem 5.4. As this functor is both a left adjoint and a right

adjoint, it preserves both sums and products, so (𝑓 +𝑔)1 = 𝑓1+𝑔1 and (𝑓 ×𝑔)1 = 𝑓1×𝑔1.

Hence 𝑓 + 𝑔 and 𝑓 × 𝑔 are both vertical. On-positions, the behavior of ⊗ is identical to

the behavior of ×, so 𝑓 ⊗ 𝑔 must be vertical as well.

Now suppose that 𝑓 : 𝑝 → 𝑝′ and 𝑔 : 𝑞 → 𝑞′ are cartesian.

A position of 𝑝 + 𝑞 is a position 𝑖 ∈ 𝑝(1) or a position 𝑗 ∈ 𝑞(1), and the map (𝑓 + 𝑔)♯
at that position is either 𝑓

♯
𝑖
or 𝑔♯

𝑗
; either way it is an isomorphism, so 𝑓 + 𝑔 is cartesian.

A position of 𝑝 × 𝑞 (resp. of 𝑝 ⊗ 𝑞) is a pair (𝑖 , 𝑗) ∈ 𝑝(1) × 𝑞(1). The lens (𝑓 × 𝑔)♯(𝑖 , 𝑗)
(resp. (𝑓 ⊗ 𝑔)♯(𝑖 , 𝑗)) is 𝑓

♯
𝑖
+ 𝑔♯

𝑗
(resp. 𝑓

♯
𝑖
× 𝑔♯

𝑗
) which is again an isomorphism if 𝑓

♯
𝑖
and 𝑔♯

𝑗

are. Hence 𝑓 × 𝑔 (resp. 𝑓 ⊗ 𝑔) is cartesian, completing the proof. □

Proposition 5.64. Pullbacks preserve vertical (resp. cartesian) lenses. In other words,

if 𝑓 : 𝑝 → 𝑞 is a lens and 𝑔 : 𝑞′→ 𝑞 a vertical (resp. cartesian) lens, then the pullback 𝑔′

of 𝑔 along 𝑝

𝑝 ×𝑞 𝑞′ 𝑞′

𝑝 𝑞

𝑔′ 𝑔

𝑓

⌟

is vertical (resp. cartesian).

Proof. This follows from Example 5.38, since the pullback (resp. pushout) of an isomor-

phism is an isomorphism. □

5.6. MONOIDAL ∗-BIFIBRATION OVER Set 163

5.6 Monoidal ∗-bifibration over Set

We conclude this chapter by showing that the functor 𝑝 ↦→ 𝑝(1) has special properties
that make it what [Shu08] refers to as a monoidal ∗-bifibration. Roughly speaking, this

means that Set acts as a sort of remote controller on the category Poly, grabbing every

polynomial by its positions and pushing or pulling it this way and that. The material

in this section is even more technical than the rest of this chapter, and we won’t use it

again in the book, so the reader may wish to skip to Part II.

As an example, suppose one has a set 𝐴 and a function 𝑓 : 𝐴→ 𝑝(1), which we can

also think of as a cartesian lens between constant polynomials. From 𝑓 , we can obtain

a new polynomial 𝑓 ∗𝑝 with position-set 𝐴 via a pullback

𝑓 ∗𝑝 𝑝

𝐴 𝑝(1)

cart

𝜂𝑝

𝑓

⌟
(5.65)

Here 𝜂𝑝 is the unit of the adjunction Set Poly
𝐴

𝑝(1)
⇐ ; it is a vertical lens. We could

evaluate this pullback using Example 5.38. Alternatively, we can use Proposition 5.64

to deduce that the top lens 𝑓 ∗𝑝 → 𝑝 (which we presciently labeled cart) is cartesian like

𝑓 and that the left lens 𝑓 ∗𝑝 → 𝐴 is vertical like 𝜂𝑝 . Furthermore, cart1 = 𝑓 . Hence

𝑓 ∗𝑝 �
∑
𝑎∈𝐴

y𝑝[𝑓 (𝑎)].

We’ll see this as part of a bigger picture in Proposition 5.72 and Theorem 5.73, but first

we need the following definitions and a result about cartesian lenses.

Definition 5.66 (Slice category). Given an object 𝑐 in a categoryC, the slice category ofC

over 𝑐, denoted C/𝑐, is the category whose objects are morphisms in C with codomain

𝑐 and whose morphisms are commutative triangles in C.

Definition 5.67 (Exponentiable morphism). Given a category C with objects 𝑐, 𝑑 and

morphism 𝑓 : 𝑐 → 𝑑 such that all pullbacks along 𝑓 exist in C, we say that 𝑓 is

exponentiable if the functor 𝑓 ∗ : C/𝑑 → C/𝑐 given by pulling back along 𝑓 is a left

adjoint.

Theorem 5.68. Cartesian lenses in Poly are exponentiable. That is, if 𝑓 : 𝑝 → 𝑞 is

cartesian, then the functor 𝑓 ∗ : Poly/𝑞 → Poly/𝑝 given by pulling back along 𝑓 is a left

adjoint:

Poly/𝑝 Poly/𝑞
𝑓∗

𝑓 ∗

⇐

164 CHAPTER 5. MORE CATEGORICAL PROPERTIES OF POLYNOMIALS

Proof. Fix 𝑒 : 𝑝′→ 𝑝 and 𝑔 : 𝑞′→ 𝑞.

𝑝′ 𝑞′

𝑝 𝑞

𝑒 𝑔

𝑓

Weneed todefinea functor 𝑓∗ : Poly/𝑝 → Poly/𝑞 andprove the analogous isomorphism

establishing it as right adjoint to 𝑓 ∗. We first establish some notation. Given a set 𝑄

and sets (𝑃′
𝑖
)𝑖∈𝐼 , each equippedwith a map𝑄 → 𝑃′

𝑖
, let𝑄/∑𝑖∈𝐼 𝑃

′
𝑖
denote the coproduct

in 𝑄/Set, or equivalently the wide pushout of sets 𝑃′
𝑖
with apex 𝑄. Then we give the

following formula for 𝑓∗𝑝′, which we write in larger font for clarity:

𝑓∗𝑝
′ B

∑
𝑗∈𝑞(1)

∑
𝑖′∈ ∏

𝑖∈ 𝑓−1

1 (𝑗)
𝑒−1

1 (𝑖)
y
𝑞[𝑗]/∑

𝑖∈ 𝑓−1

1 (𝑗) 𝑝
′[𝑖′(𝑖)]

(5.69)

Again, 𝑞[𝑗]/∑𝑖∈ 𝑓 −1

1 (𝑗)
𝑝′[𝑖′(𝑖)] is the coproduct of the 𝑝′[𝑖′(𝑖)], taken in 𝑞[𝑗]/Set. Since

𝑝[𝑖] � 𝑞[𝑓 (𝑖)] for any 𝑖 ∈ 𝑝(1) by the cartesian assumption on 𝑓 , we have the following

chain of natural isomorphisms

(Poly/𝑝)(𝑓 ∗𝑞′, 𝑝′) �
∏
𝑖∈𝑝(1)

∏
{ 𝑗′∈𝑞′(1) | 𝑔1(𝑗′)= 𝑓1 𝑖}

∑
{𝑖′∈𝑝′(1) | 𝑒1(𝑖′)=𝑖}

(𝑝[𝑖]/Set)(𝑝′[𝑖′], 𝑝[𝑖] +𝑞[𝑓 (𝑖)] 𝑞′[𝑗′])

�
∏
𝑖∈𝑝(1)

∏
{ 𝑗′∈𝑞′(1) | 𝑔1(𝑗′)= 𝑓1 𝑖}

∑
{𝑖′∈𝑝′(1) | 𝑒1(𝑖′)=𝑖}

(𝑞[𝑓 (𝑖)]/Set)(𝑝′[𝑖′], 𝑞′[𝑗′])

�
∏
𝑗∈𝑞(1)

∏
{ 𝑗′∈𝑞′(1) | 𝑔1(𝑗′)=𝑗}

∏
{𝑖∈𝑝(1) | 𝑓1 𝑖=𝑗}

∑
{𝑖′∈𝑝′(1) | 𝑒1(𝑖′)=𝑖}

(𝑞[𝑗]/Set)(𝑝′[𝑖′], 𝑞′[𝑗′])

�
∏
𝑗∈𝑞(1)

∏
{ 𝑗′∈𝑞′(1) | 𝑔1(𝑗′)=𝑗}

∑
𝑖′∈∏

𝑖∈ 𝑓−1

1 (𝑗) 𝑒
−1

1 (𝑖)

∏
𝑖∈ 𝑓 −1

1 (𝑗)
(𝑞[𝑗]/Set)(𝑝′[𝑖′(𝑖)], 𝑞′[𝑗′])

�
∏
𝑗∈𝑞(1)

∏
{ 𝑗′∈𝑞′(1) | 𝑔1(𝑗′)=𝑗}

∑
𝑖′∈∏

𝑖∈ 𝑓−1

1 (𝑗) 𝑒
−1

1 (𝑖)
(𝑞[𝑗]/Set)

(∑
𝑖∈ 𝑓 −1

1 (𝑗)
𝑝′[𝑖′(𝑖)], 𝑞′[𝑗′]

)
� (Poly/𝑞)(𝑞′, 𝑓∗𝑝′)

□

Example 5.70. Let 𝑝 B 2y2
, 𝑞 B y2+y0

, and 𝑓 : 𝑝 → 𝑞 the unique cartesian lens between

them. Then for any 𝑒 : 𝑝′→ 𝑝 over 𝑝, (5.69) provides the following description for the

pushforward 𝑓∗𝑝′.

Over the 𝑗 = 2 position, 𝑓 −1

1 (2) = 0 and 𝑞[2] = 0, so
∏

𝑖∈ 𝑓 −1

1 (2)
𝑒−1

1 (𝑖) is an empty

product and 𝑞[2]/∑𝑖∈ 𝑓 −1

1 (2)
𝑝′[𝑖′(𝑖)] is an empty pushout. Hence the corresponding

summand of (5.69) is simply y0 � 1.
Over the 𝑗 = 1 position, 𝑓 −1

1 (1) = 2 and 𝑞[1] = 𝑝[1] = 𝑝[2] = 2, so
∏

𝑖′∈ 𝑓 −1

1 (1)
𝑒−1

1 (𝑖) �

5.6. MONOIDAL ∗-BIFIBRATION OVER Set 165

𝑒−1

1 (1) × 𝑒−1

1 (2). For 𝑖′ ∈ 𝑒−1

1 (1) × 𝑒−1

1 (2), we have that 𝑞[1]/∑𝑖∈ 𝑓 −1

1 (2)
𝑝′[𝑖′(𝑖)] � 𝑋𝑖′ in the

following pushout square:

𝑋𝑖′ 𝑝′[𝑖′(2)]

𝑝′[𝑖′(1)] 2

𝑒
♯
𝑖′(2)

𝑒
♯
𝑖′(1)

⌟

Then in sum we have

𝑓∗𝑝
′ �

©­«
∑

𝑖′∈𝑒−1

1 (1)×𝑒
−1

2
(2)

y𝑋𝑖′
ª®¬ + 1.

Exercise 5.71 (Solution here). Prove that the unique lens 𝑓 : y → 1 is exponentiable.

♦

For any set 𝐴, let 𝐴.Poly denote the category whose objects are polynomials 𝑝

equipped with an isomorphism 𝐴 � 𝑝(1), and whose morphisms are lenses respecting

the isomorphisms with 𝐴.

Proposition 5.72 (Base change). For any function 𝑓 : 𝐴 → 𝐵, pullback 𝑓 ∗ along 𝑓

induces a functor 𝐵.Poly→ 𝐴.Poly, which we also denote 𝑓 ∗.

Proof. This follows from (5.39) with 𝑞 B 𝐴 and 𝑟 B 𝐵, since pullback of an iso is an

iso. □

Theorem 5.73. For any function 𝑓 : 𝐴→ 𝐵, the pullback functor 𝑓 ∗ has both a left and

a right adjoint

𝐴.Poly 𝐵.Poly

𝑓!

𝑓∗

⇒
⇐
𝑓 ∗ (5.74)

Moreover ⊗ preserves the op-cartesian arrows, making this a monoidal ∗-bifibration in

the sense of [Shu08, Definition 12.1].

Proof. Let 𝑝 be a polynomial with 𝑝(1) � 𝐴. Then the formula for 𝑓!𝑝 and 𝑓∗𝑝 are given

as follows:

𝑓!𝑝 �

∑
𝑏∈𝐵

y

∏
𝑎 ↦→𝑏

𝑝[𝑎]
and 𝑓∗𝑝 �

∑
𝑏∈𝐵

y

∑
𝑎 ↦→𝑏

𝑝[𝑎]
(5.75)

It may at first be counterintuitive that the left adjoint 𝑓! involves a product and the right

adjoint 𝑓∗ involves a sum. The reason for this comes from the fact that Poly is equivalent

166 CHAPTER 5. MORE CATEGORICAL PROPERTIES OF POLYNOMIALS

to the Grothendieck construction applied to the functor Setop → Cat sending each set

𝐴 to the category (Set/𝐴)op. The fact that functions 𝑓 : 𝐴→ 𝐵 induces an adjoint triple

between Set/𝐴 and Set/𝐵, and hence between (Set/𝐴)op and (Set/𝐵)op explains the

variance in (5.75) and simultaneously establishes the adjoint triple (5.74).

The functor 𝑝 ↦→ 𝑝(1) is strong monoidal with respect to ⊗ and strict monoidal

if we choose the lens construction as our model of Poly. By Proposition 5.63, the

monoidal product ⊗ preserves cartesian lenses; thus we will have established the

desired monoidal ∗-bifibration in the sense of [Shu08, Definition 12.1] as soon as we

know that ⊗ preserves op-cartesian lenses.

Given 𝑓 and 𝑝 as above, the op-cartesian lens is the lens 𝑝 → 𝑓!𝑝 obtained as the

composite 𝑝 → 𝑓 ∗ 𝑓!𝑝 → 𝑓!𝑝 where the first lens is the unit of the (𝑓! , 𝑓 ∗) adjunction
and the second is the cartesian lens for 𝑓!𝑝. On positions 𝑝 → 𝑓!𝑝 acts as 𝑓 , and on

directions it is given by projection.

If 𝑓 : 𝑝(1) → 𝐵 and 𝑓 ′ : 𝑝′(1) → 𝐵′ are functions then we have

𝑓!(𝑝) ⊗ 𝑓 ′
!
(𝑝′) �

∑
𝑏∈𝐵

∑
𝑏′∈𝐵′

y

(∏
𝑎 ↦→𝑏 𝑝[𝑎]

)
×
(∏

𝑎′ ↦→𝑏′ 𝑝
′[𝑎′]

)
�

∑
(𝑏,𝑏′)∈𝐵×𝐵′

y

(∏
(𝑎,𝑎′)↦→(𝑏,𝑏′) 𝑝[𝑎]×𝑝[𝑏]

)
� (𝑓! ⊗ 𝑓 ′

!
)(𝑝 ⊗ 𝑝′)

and the op-cartesian lenses are clearly preserved since projections in the second line

match with projections in the first. □

5.7 Summary and further reading

In this chapter we discussed several of the nice properties of the category Poly: it has
various adjunctions to Set and Setop, is Cartesian closed, has limits and colimits, has an

epi-mono factorization system, has a vertical-cartesian factorization system, and comes

with a monoidal ∗-bifibration to Set.
The principal monomial functor 𝑝 ↦→ 𝑝(1)yΓ𝑝 discussed in Corollary 5.15 is in

fact distributive monoidal, and this comes up in work on entropy [Spi22] and on

noncooperative strategic games [Cap22].

5.8 Exercise solutions
Solution to Exercise 5.1.

Here 𝐴, 𝐵, 𝐴′, 𝐵′ ∈ Set.
1. We determine whether various classes of polynomials are closed under addition.

a) Constant polynomials are closed under addition: given constants 𝐴, 𝐵, their sum 𝐴 + 𝐵 is

also a constant polynomial.

b) Linear polynomials are closed under addition: given linear polynomials 𝐴y, 𝐵y, their sum

𝐴y + 𝐵y � (𝐴 + 𝐵)y is also a linear polynomial.

5.8. EXERCISE SOLUTIONS 167

c) Representable polynomials are not closed under addition: for example, y is a representable

polynomial, but the sum of y with itself, 2y, is not.
d) Monomials are not closed under addition: for example, y and 2y3

are monomials, but their

sum y + 2y3
is not.

2. We determine whether various classes of polynomials are closed under multiplication. The

results below follow from Exercise 3.63 #1.

a) Constant polynomials are closed under multiplication: given constants 𝐴, 𝐵, their product

𝐴𝐵 is also a constant polynomial.

b) Linear polynomials are not closed under multiplication: for example, y and 2y are linear

polynomials, but their product 2y2
is not.

c) Representable polynomials are closed under multiplication: given representables y𝐴 , y𝐵,

their product y𝐴+𝐵 is also a representable polynomial.

d) Monomials are closed under multiplication: given monomials 𝐵y𝐴 , 𝐵′y𝐴
′
, their product

𝐵𝐵′y𝐴+𝐴
′
is also a monomial.

3. We determine whether various classes of polynomials are closed under taking parallel products.

The results below follow from Exercise 3.67 #1.

a) Constant polynomials are closed under taking parallel products: given constants 𝐴, 𝐵, their

parallel product 𝐴𝐵 is also a constant polynomial.

b) Linear polynomials are closed under taking parallel products: given linear polynomials

𝐴y, 𝐵y, their parallel product 𝐴𝐵y is also a linear polynomial.

c) Representable polynomials are closed under taking parallel products: given representables

y𝐴 , y𝐵, their parallel product y𝐴𝐵 is also a representable polynomial.

d) Monomials are closed under taking parallel products: given monomials 𝐵y𝐴 , 𝐵′y𝐴
′
, their

parallel product 𝐵𝐵′y𝐴𝐴
′
is also a monomial.

4. We determine whether various classes of polynomials are closed under composition. (Recall that

we can think of computing the composite 𝑝 ◦ 𝑞 of 𝑝, 𝑞 ∈ Poly as replacing each appearance of y

in 𝑝 with 𝑞.)

a) Constant polynomials are closed under composition: given constants 𝐴, 𝐵, their composite

𝐴 ◦ 𝐵 � 𝐴 is also a constant polynomial.

b) Linear polynomials are closed under composition: given linear polynomials 𝐴y, 𝐵y, their

composite 𝐴y ◦ 𝐵y � 𝐴(𝐵y) � 𝐴𝐵y is also a linear polynomial.

c) Representable polynomials are closed under composition: given representables y𝐴 , y𝐵,

their composite y𝐴 ◦ y𝐵 � (y𝐵)𝐴 � y𝐵𝐴 is also a representable polynomial.

d) Monomials are closed under taking parallel products: given monomials 𝐵y𝐴 , 𝐵′y𝐴
′
, their

composite 𝐵y𝐴 ◦ 𝐵′y𝐴′ � 𝐵(𝐵′y𝐴′)𝐴 � 𝐵𝐵′𝐴y𝐴′𝐴 is also a monomial.

Solution to Exercise 5.6.
We complete the proof of Theorem 5.4 by exhibiting three natural isomorphisms, all special cases of

(3.7), as follows.

1. By (3.7), we have the natural isomorphism

Poly(𝐴, 𝑝) �
∏
𝑎∈𝐴

∑
𝑖∈𝑝(1)

0𝑝[𝑖].

As 0𝑝[𝑖] is 1 if 𝑝[𝑖] � 0 and 0 otherwise, it follows that

Poly(𝐴, 𝑝) �
∏
𝑎∈𝐴
{𝑖 ∈ 𝑝(1) | 𝑝[𝑖] � 0} �

∏
𝑎∈𝐴

𝑝(0) � Set(𝐴, 𝑝(0)).

2. By (3.7), we have the natural isomorphism

Poly(𝑝, 𝐴) �
∏
𝑖∈𝑝(1)

∑
𝑎∈𝐴

𝑝[𝑖]0

�
∏
𝑖∈𝑝(1)

∑
𝑎∈𝐴

1

168 CHAPTER 5. MORE CATEGORICAL PROPERTIES OF POLYNOMIALS

�
∏
𝑖∈𝑝(1)

𝐴

� Set(𝑝(1), 𝐴).

3. By (3.7), we have the natural isomorphism

Poly(𝐴y, 𝑝) �
∏
𝑎∈𝐴

∑
𝑖∈𝑝(1)

1𝑝[𝑖]

�
∏
𝑎∈𝐴

∑
𝑖∈𝑝(1)

1

�
∏
𝑎∈𝐴

𝑝(1)

� Set(𝐴, 𝑝(1)).

Solution to Exercise 5.7.
Given 𝑝 ∈ Poly, we wish to show that 𝑝(1) is in bĳection with the set of functions y→ 𝑝. In fact, this

follows directly from the Yoneda lemma, but we can also invoke the isomorphism from Exercise 5.6 #3

with 𝐴 B 1 to observe that

𝑝(1) � Set(1, 𝑝(1)) � Poly(y, 𝑝).

Solution to Exercise 5.11.
To prove Corollary 5.10, it suffices to exhibit a natural isomorphism

Poly(𝐴y𝐵 , 𝑞) � Set(𝐴, 𝑞(𝐵)).

Replacing 𝑝 with y𝐵 in (5.9) from Proposition 5.8, we obtain the natural isomorphism

Poly(𝐴y𝐵 , 𝑞) � Set(𝐴, Poly(y𝐵 , 𝑞)).

By the Yoneda lemma, Poly(y𝐵 , 𝑞) is naturally isomorphic to 𝑞(𝐵), yielding the desired result.

Solution to Exercise 5.14.
Replacing 𝑞 with y in the second isomorphism in (5.9) from Proposition 5.8, we obtain the natural

isomorphism

Set(𝐴, Poly(𝑝, y)) � Poly(𝑝, y𝐴).
As Γ(𝑝) = Poly(𝑝, y), yields the desired result.

Solution to Exercise 5.17.
We have the following chain of natural isomorphisms involving global sections:

Γ(𝑝 ⊗ 𝑞) = Poly(𝑝 ⊗ 𝑞, y) (3.37)

� Poly(𝑝, [𝑞, y]) (4.86)

� Poly(𝑝, Γ(𝑞)y𝑞(1)) (4.82)

� Set
(
𝑝(1), Γ(𝑞)

)
× Set

(
𝑞(1), Γ(𝑝)

)
. (5.16)

Solution to Exercise 5.20.
We are given a monomorphism 𝑓 : 12y12 → NyN from Example 5.19. Let 𝑔 : NyN → 𝑝 be a dynamical

systemwith return function 𝑔1 : N→ 𝑝(1) and update functions 𝑔♯𝑛 : 𝑝[𝑔1(𝑛)] → N for each state 𝑛 ∈ N.

Then the new composite dynamical system ℎ B 𝑓 # 𝑔 has a return function ℎ1 : 12→ 𝑝(1)which sends

each state 𝑖 ∈ 12 to the output ℎ1 𝑖 = 𝑔1 𝑓1 𝑖 = 𝑔1 𝑖, the same output that the original system returned

in the state 𝑖 ∈ N. Meanwhile, the update function for each state 𝑖 ∈ 12 is a function ℎ
♯
𝑖
: 𝑝[𝑔1 𝑖] → 12

5.8. EXERCISE SOLUTIONS 169

which, given an input 𝑎 ∈ 𝑝[𝑔1 𝑖], updates the state from 𝑖 to ℎ
♯
𝑖
𝑎 = 𝑓

♯
𝑔1 𝑖
(𝑔♯
𝑖
𝑎) = 𝑔♯

𝑖
𝑎 mod 12, which is

where the original systemwould have taken the same state to, but reduced modulo 12. In other words,

the new system behaves like the old system but with only the states in 12 ⊆ N retained, and on any

input that would have caused the old system to move to a state outside of 12, the new systemmoves to

the equivalent state (modulo 12) within 12 instead.

Solution to Exercise 5.22.
Given 𝑝 ∈ Poly anda lens 𝑓 : 𝑝 → y, wewill useProposition 5.21 to show that either 𝑓 is an epimorphism

or 𝑝 = 0. First, note that 𝑓1 : 𝑝(1) → 1 must be an epimorphism unless 𝑝(1) � 0, in which case 𝑝 = 0.
Next, note that the induced function

𝑓 ♭ : 1→
∏
𝑖∈𝑝(1)

𝑝[𝑖]

from (3.20) must be a monomorphism. So it follows from Proposition 5.21 that either 𝑓 is an epimor-

phism or 𝑝 = 0.

Solution to Exercise 5.23.
Given sets 𝐴 and 𝐵, by Proposition 5.21, a lens 𝑓 : y𝐴 + y𝐵 → y𝐴𝐵 is an epimorphism if its on-positions

function 𝑓1 : 2→ 1 is an epimorphism (which must be true) and if the induced function

𝑓 ♭ : 𝐴𝐵→
∏
𝑖∈2
(y𝐴 + y𝐵)[𝑖] � 𝐴𝐵

is a monomorphism. If we take the on-directions functions 𝐴𝐵 → 𝐴 and 𝐴𝐵 → 𝐵 of 𝑓 to be the

canonical projections, then the induced function 𝑓 ♭ : 𝐴𝐵→ 𝐴𝐵 would be the identity, which is indeed

a monomorphism. So 𝑓 would be an epimorphism.

Solution to Exercise 5.24.
Let 𝑓 : 𝑝 → 𝑞 be a lens in Poly that is both a monomorphism and an epimorphism. We claim that 𝑓 is

an isomorphism. By Proposition 5.18 and Proposition 5.21, the on-positions function 𝑓1 : 𝑝(1) → 𝑞(1)
is both a monomorphism and an epimorphism, so it is an isomorphism. Meanwhile, Proposition 5.21

says that, for each 𝑗 ∈ 𝑞(1), the induced function

𝑓 ♭
𝑗

: 𝑞[𝑗] →
∏
𝑖∈𝑝(1),
𝑓1 𝑖=𝑗

𝑝[𝑖]

is a monomorphism. As 𝑓1 is an isomorphism, it follows that for each 𝑖 ∈ 𝑝(1), the function

𝑓 ♭
𝑓1 𝑖

: 𝑞[𝑓1 𝑖] → 𝑝[𝑖]

is a monomorphism. But this is just the on-directions function 𝑓
♯
𝑖
of 𝑓 . From Proposition 5.18, we also

know that 𝑓
♯
𝑖
is an epimorphism. It follows that every on-directions function of 𝑓 is an isomorphism.

Hence 𝑓 itself is an isomorphism.

Solution to Exercise 5.30.
We use (5.28) to compute various exponentials. Here 𝑝 ∈ Poly and 𝐴, 𝐵 ∈ Set.

1. We have that 𝑝0
is an empty product, so 𝑝0 � 1 as expected.

2. We have that 𝑝1 � 𝑝 ◦ (y + 0) � 𝑝, as expected.
3. We have that 1𝑝 �

∏
𝑖∈𝑝(1) 1 ◦ (y + 𝑝[𝑖]) � 1, as expected.

4. We have that 𝐴𝑝 �
∏
𝑖∈𝑝(1) 𝐴 ◦ (y + 𝑝[𝑖]) � 𝐴𝑝(1).

5. We have that yy � y ◦ (y + 1) � y + 1.
6. We have that y4y �

∏
𝑗∈4 y ◦ (y + 1) � (y + 1)4 � y4 + 4y3 + 6y2 + 4y + 1.

7. We have that (y𝐴)y𝐵 � (y𝐴) ◦ (y + 𝐵) � (y + 𝐵)𝐴 � ∑
𝑓 : 𝐴→2 𝐵

𝑓 −1(1)y 𝑓
−1(2)

.

170 CHAPTER 5. MORE CATEGORICAL PROPERTIES OF POLYNOMIALS

Solution to Exercise 5.32.
By Theorem 5.31, there is a natural isomorphism

Poly(𝑝𝑞 , 𝑝𝑞) � Poly(𝑝𝑞 × 𝑞, 𝑝).

Under this isomorphism, there exists a lens eval : 𝑝𝑞 × 𝑞 → 𝑝 corresponding to the identity lens on 𝑝𝑞 .

The lens eval is the canonical evaluation lens.

Solution to Exercise 5.34.
1. The lens 𝑒 : 𝑝′→ 𝑝 can be characterized as follows. The on-positions function 𝑒1 : 𝑝′(1) → 𝑝(1) is

the equalizer of 𝑓1 , 𝑔1 : 𝑝(1) ⇒ 𝑞(1) in Set. In particular, 𝑒1 is the canonical inclusion that sends

each element of 𝑝′(1) to the same element in 𝑝(1). Then for each 𝑖 ∈ 𝑝′(1), the on-directions

function 𝑒
♯
𝑖

: 𝑝[𝑖] → 𝑝′[𝑖] is the coequalizer of 𝑓 ♯
𝑖
, 𝑔♯
𝑖

: 𝑞[𝑓1 𝑖]⇒ 𝑝[𝑖] in Set.
2. To show that 𝑒 # 𝑓 = 𝑒 # 𝑔, it suffices to show that both sides are equal on positions and on

directions. On positions, 𝑒1 is defined to be the equalizer of 𝑓1 and 𝑔1, so 𝑒1 # 𝑓1 = 𝑒1 # 𝑔1. Then

for each 𝑖 ∈ 𝑝′(1), the on-directions function 𝑒
♯
𝑖
is defined to be the coequalizer of 𝑓

♯
𝑖
and 𝑔♯

𝑖
, so

𝑓
♯
𝑖

𝑒♯
𝑖
= 𝑔♯

𝑖
𝑒♯
𝑖
.

3. To show that 𝑒 is the equalizer of 𝑓 and 𝑔, it suffices to show that for any 𝑟 ∈ Poly and lens

𝑎 : 𝑟 → 𝑝 satisfying 𝑎 # 𝑓 = 𝑎 # 𝑔, there exists a unique lens ℎ : 𝑟 → 𝑝′ for which 𝑎 = ℎ # 𝑒, so that

the following diagram commutes.

𝑝′ 𝑝 𝑞

𝑟

𝑒
𝑓

𝑔

ℎ 𝑎

In order for 𝑎 = ℎ # 𝑒 to hold, we must have 𝑎1 = ℎ1 # 𝑒1 on positions. But we have that

𝑎1 # 𝑓1 = 𝑎1 # 𝑔1, so by the universal property of 𝑝′(1) and the map 𝑒1 as the equalizer of 𝑓1 and

𝑔1 in Set, there exists a unique ℎ1 for which 𝑎1 = ℎ1 # 𝑒1. Hence ℎ is uniquely characterized on

positions. In particular, it must send each 𝑘 ∈ 𝑟(1) to 𝑎1(𝑘) ∈ 𝑝′(1).
Then for 𝑎 = ℎ # 𝑒 to hold on directions, wemust have that 𝑎

♯
𝑘
= 𝑒

♯
𝑎1(𝑘)

ℎ♯
𝑘
for each 𝑘 ∈ 𝑟(1). But we

have that 𝑓
♯
𝑎1(𝑘)

𝑎♯
𝑎1(𝑘) = 𝑔♯

𝑎1(𝑘)
𝑎♯
𝑎1(𝑘), so by the universal property of 𝑝′[𝑎1(𝑘)] and the map 𝑒

♯
𝑎1(𝑘)

as the coequalizer of 𝑓
♯
𝑎1(𝑘) and 𝑔♯

𝑎1(𝑘) in Set, there exists a unique ℎ♯
𝑘
for which 𝑎

♯
𝑘
= 𝑒

♯
𝑎1(𝑘)

ℎ♯
𝑘
, so

that the diagram below commutes.

𝑝′[𝑎1(𝑘)] 𝑝[𝑎1(𝑘)] 𝑞[𝑓1(𝑎1(𝑘))]

𝑟[𝑘]

ℎ
♯
𝑘

𝑒
♯
𝑎1(𝑘)

𝑎
♯
𝑘

𝑓
♯
𝑎1(𝑘)

𝑔♯
𝑎1(𝑘)

Hence ℎ is also uniquely characterized on directions, so it is unique overall. Moreover, we have

shown thatwe can define ℎ on positions so that 𝑎1 = ℎ1 #𝑒1, and thatwe can define ℎ on directions

such that 𝑎
♯
𝑘
= 𝑒

♯
𝑎1(𝑘)

ℎ♯
𝑘
for all 𝑘 ∈ 𝑟(1). It follows that there exists ℎ for which 𝑎 = ℎ # 𝑒.

Solution to Exercise 5.40.
Here 𝑝 ∈ Poly.

1. The canonical lens 𝜂 : 𝑝 → 𝑝(1) is the identity 𝜂1 : 𝑝(1) → 𝑝(1) on positions and the empty

function on directions.

2. On positions, we have that 𝑝𝑖(1) along with 𝑓1 and 𝑔1 form the following pullback square in Set:

𝑝𝑖(1) 𝑝(1)

1 𝑝(1)

𝑔1

𝑓1

𝑖

⌟

5.8. EXERCISE SOLUTIONS 171

So 𝑝𝑖(1) B {(𝑎, 𝑖′) ∈ 1 × 𝑝(1) | 𝑖 = 𝑖′} = {(1, 𝑖)}, with 𝑓1 uniquely determined and 𝑔
1
picking out

𝑖 ∈ 𝑝(1). Then on directions, we have that 𝑝𝑖[(1, 𝑖)] along with 𝑓
♯
(1,𝑖) and 𝑔♯(1,𝑖) form the following

pushout square in Set:

𝑝𝑖[(1, 𝑖)] 𝑝[𝑖]

0 0

𝑔♯(1,𝑖)

𝑓
♯
(1,𝑖) !

!

⌟

So 𝑝𝑖[(1, 𝑖)] B 𝑝[𝑖], with 𝑓
♯
(1,𝑖) uniquely determined and 𝑔♯(1,𝑖) as the identity. It follows that

𝑝𝑖 B {(1, 𝑖)}y𝑝[𝑖] � y𝑝[𝑖], where 𝑓 : 𝑝𝑖 → 1 is uniquely determined and 𝑔 : 𝑝𝑖 → 𝑝 picks out

𝑖 ∈ 𝑝(1) on positions and is the identity on 𝑝[𝑖] on directions.

Solution to Exercise 5.41.
1. There are many possible answers, but one lens 𝑓 : 𝑞 → 𝑟, on positions, sends 1 ∈ 𝑞(1) (corre-

sponding to y2
) to 2 ∈ 𝑟(1) (corresponding to 1) and 2 ∈ 𝑞(1) (corresponding to y) to 1 ∈ 𝑟(1)

(corresponding to y). Then the on-directions functions 𝑓
♯
1 : 0 → 2 and 𝑓

♯
2

: 1 → 1 are uniquely

determined. Another morphism 𝑓 ′ : 𝑞′ → 𝑟, on positions, sends 1 ∈ 𝑞′(1) (corresponding to

one of the y3
terms) to 2 ∈ 𝑟(1) and both 2 ∈ 𝑞′(1) (corresponding to the other y3

term) and

3 ∈ 𝑞′(1) (corresponding to the y2
term) to 1 ∈ 𝑟(1). Then the on-directions function (𝑓 ′)♯

1
: 0→ 3

is uniquely determined, while we can let (𝑓 ′)♯
2

: 1→ 3 pick out 3 and (𝑓 ′)♯
3

: 1→ 2 pick out 1.

2. We compute the pullback 𝑝 along with the lenses 𝑔 : 𝑝 → 𝑞 and 𝑔′ : 𝑝 → 𝑞′ of 𝑞
𝑓
−→ 𝑟

𝑓 ′
←− 𝑞′ by

following Example 5.38. We can compute 𝑝(1) by taking the pullback in Set:

𝑝(1) B {(𝑖 , 𝑖′) ∈ 2 × 3 | 𝑓1 𝑖 = 𝑓 ′1(𝑖)} = {(1, 1), (2, 2), (2, 3)}.

Moreover, the on-positions functions 𝑔1 and 𝑔′1 send each pair in 𝑝(1) to its left component and

its right component, respectively.

To compute the direction-set at each 𝑝-position, we must compute a pushout. At (1, 1), we have

𝑟[𝑓1(1)] = 𝑟[𝑓 ′1(1)] = 𝑟[2] = 0, so the pushout 𝑝[(1, 1)] is just the sum 𝑞[1] + 𝑞′[1] = 2 + 3 � 5.

Moreover, the on-directions functions 𝑔♯(1,1) and (𝑔
′)♯(1,1) are the canonical inclusions 2 → 2 + 3

and 3→ 2 + 3.
At (2, 2), we have 𝑟[𝑓1(2)] = 𝑟[𝑓 ′1(2)] = 𝑟[1] = 1, with 𝑓

♯
2

picking out 1 ∈ 1 = 𝑞[2] and (𝑓 ′)♯
2

picking out 3 ∈ 3 = 𝑞′[2]. So the pushout 𝑝[(2, 2)] is the set 1 + 3 = {(1, 1), (2, 1), (2, 2), (2, 3)}
but with (1, 1) identified with (2, 3); we can think of it as the set of equivalence classes 𝑝[(2, 2)] �
{{(1, 1), (2, 3)}, {(2, 1)}, {(2, 2)}} � 3. Moreover, the on-directions function 𝑔♯(2,2) maps 1 ↦→

{(1, 1), (2, 3)}, while the on-directions function (𝑔′)♯(2,2) maps 1 ↦→ {(2, 1)}, 2 ↦→ {(2, 2)}, and
3 ↦→ {(1, 1), (2, 3)}.
Finally, at (2, 3), we have 𝑟[𝑓1(2)] = 𝑟[𝑓 ′1(3)] = 𝑟[1] = 1, with 𝑓

♯
2
still picking out 1 ∈ 1 = 𝑞[2] and

(𝑓 ′)♯
3
picking out 1 ∈ 2 = 𝑞′[3]. So the pushout 𝑝[(2, 3)] is the set 1 + 2 = {(1, 1), (2, 1), (2, 2)} but

with (1, 1) identified with (2, 1); we can think of it as the set of equivalence classes 𝑝[(2, 3)] �
{{(1, 1), (2, 1)}, {(2, 2)}} � 2. Moreover, the on-directions function 𝑔♯(2,3) maps 1 ↦→ {(1, 1), (2, 1)},

while the on-directions function (𝑔′)♯(2,3) maps 1 ↦→ {(1, 1), (2, 1)} and 2 ↦→ {(2, 2)}.
It follows that 𝑝 � y5 + y3 + y2

, with 𝑔 and 𝑔′ as described.

Solution to Exercise 5.42.
1. By Proposition 3.44, 𝑓𝑋 (resp. 𝑔𝑋) sends each (𝑖 , ℎ) ∈ 𝑝(𝑋) with 𝑖 ∈ 𝑝(1) and ℎ : 𝑝[𝑖] → 𝑋 to

(𝑓1 𝑖 , 𝑓 ♯𝑖 # ℎ) (resp. (𝑔1 𝑖 , 𝑔
♯
𝑖
ℎ)) in 𝑞(𝑋). So the equalizer of 𝑓𝑋 and 𝑔𝑋 is the set of all (𝑖 , ℎ) ∈ 𝑝(𝑋)

for which both 𝑓1 𝑖 = 𝑔1 𝑖 and 𝑓
♯
𝑖

ℎ = 𝑔♯
𝑖

ℎ.

172 CHAPTER 5. MORE CATEGORICAL PROPERTIES OF POLYNOMIALS

Indeed, by our construction of 𝑝′, the set 𝑝′(𝑋) consists of all pairs (𝑖 , ℎ′) with 𝑖 ∈ 𝑝(1) such
that 𝑓1 𝑖 = 𝑔1 𝑖 and ℎ′ : 𝑝′[𝑖] → 𝑋, where 𝑝′[𝑖] is the coequalizer of 𝑓

♯
𝑖
, 𝑔♯
𝑖

: 𝑞[𝑓1 𝑖] ⇒ 𝑝[𝑖]. By the

universal property of the coequalizer, functions ℎ′ : 𝑝′[𝑖] → 𝑋 precisely correspond to functions

ℎ : 𝑝[𝑖] → 𝑋 for which 𝑓
♯
𝑖

ℎ = 𝑔♯
𝑖

ℎ. So 𝑝′(𝑋) is indeed the equalizer of 𝑓𝑋 and 𝑔𝑋 .

The equalizer natural transformation 𝑒′ : 𝑝′ → 𝑝 has the inclusion 𝑒′
𝑋

: 𝑝′(𝑋) → 𝑝(𝑋) as its

𝑋-component, so by Corollary 3.47, it is the lens whose on-positions function is the canonical

equalizer inclusion 𝑒′1 : 𝑝′(1) → 𝑝(1), while its on-directions function at 𝑖 ∈ 𝑝′(1) is themap 𝑝[𝑖] →
𝑝′[𝑖] corresponding to the identity on 𝑝′[𝑖] given by the universal property of the coequalizer—

which is just the canonical coequalizer map 𝑝[𝑖] → 𝑝′[𝑖]. But this is exactly the lens 𝑒 : 𝑝′ → 𝑝

constructed in the proof of Proposition 3.56, as desired.

2. By Proposition 1.37, limits—including equalizers—in SetSet
are computed pointwise. So if

𝑒𝑋 : 𝑝′(𝑋) → 𝑝(𝑋) is the equalizer of 𝑓𝑋 , 𝑔𝑋 : 𝑝(𝑋) ⇒ 𝑞(𝑋) for every 𝑋 ∈ Set, then 𝑒 : 𝑝′ → 𝑝 is

the equalizer of 𝑓 , 𝑔 : 𝑝(𝑋)⇒ 𝑞(𝑋).
3. We have just shown that equalizers in Poly coincide with equalizers in SetSet

. We saw in the

proof of Proposition 3.56 that products in Poly also coincide with products in SetSet
. Since every

limit can be computed as an equalizer of products, we can conclude that limits in Poly coincide

with limits in SetSet
.

Solution to Exercise 5.44.
1. We define a lens 𝑔 : 𝑞 → 𝑞′ as follows. The on-positions function 𝑔1 : 𝑞(1) → 𝑞′(1) is the

coequalizer of 𝑠1 , 𝑡1 : 𝑝(1)⇒ 𝑞(1). In particular, 𝑔1 sends each vertex in 𝑞(1) to its corresponding

connected component in 𝑞′(1) = 𝐶. Then for each 𝑣 ∈ 𝑞(1), if we let its corresponding connected

component be 𝑐 B 𝑔1(𝑣), we can define the on-directions function 𝑔♯𝑣 : 𝑞′[𝑐] → 𝑞[𝑣] to be the

projection from the limit 𝑞′[𝑐] to its component 𝑞[𝑣].
2. To show that 𝑠 # 𝑔 = 𝑡 # 𝑔, we must show that both sides are equal on positions and on directions.

The on-positions function 𝑔1 is defined to be the coequalizer of 𝑠1 and 𝑡1, so 𝑠1 # 𝑔1 = 𝑡1 # 𝑔1.

So it suffices to show that for all 𝑒 ∈ 𝑝(1), if we let its corresponding connected component be

𝑐 B 𝑔1(𝑠1(𝑒)) = 𝑔1(𝑡1(𝑒)), then the following diagram of on-directions functions commutes:

𝑞[𝑠1(𝑒)]

𝑝[𝑒] 𝑞′[𝑐]

𝑞[𝑡1(𝑒)]

𝑠
♯
𝑒

𝑔♯
𝑠1(𝑒)

𝑔♯
𝑡1(𝑒)

𝑡
♯
𝑒

But this is automatically true by the definition of 𝑞′[𝑐] as a limit—specifically the limit of a functor

with 𝑠
♯
𝑒 and 𝑡

♯
𝑒 in its image—and the definitions of 𝑔♯

𝑠1(𝑒) and 𝑔♯
𝑡1(𝑒) as projections from this limit.

3. To show that 𝑔 is the coequalizer of 𝑠 and 𝑡, it suffices to show that for any 𝑟 ∈ Poly and lens

𝑓 : 𝑞 → 𝑟 satisfying 𝑠 # 𝑓 = 𝑡 # 𝑓 , there exists a unique lens ℎ : 𝑞′ → 𝑟 for which 𝑓 = 𝑔 # ℎ, so that

the following diagram commutes.

𝑝 𝑞 𝑞′

𝑟

𝑠

𝑡

𝑔

𝑓
ℎ

In order for 𝑓 = 𝑔#ℎ to hold, wemust have 𝑓1 = 𝑔1#ℎ1 onpositions. Butwehave that 𝑠1# 𝑓1 = 𝑡1# 𝑓1,
so by the universal property of 𝑞′(1) and the map 𝑔1 as the coequalizer of 𝑠1 and 𝑡1 in Set, there
exists a unique ℎ1 for which 𝑓1 = 𝑔1 # ℎ1. Hence ℎ is uniquely characterized on positions. In

particular, it must send each connected component 𝑐 ∈ 𝑞′(1) to the element in 𝑟(1) to which 𝑓1
sends every vertex 𝑣 ∈ 𝑉𝑐 = 𝑔−1

1 (𝑐) that lies in the connected component 𝑐.

Then for 𝑓 = 𝑔 # ℎ to hold on directions, we must have that 𝑓
♯
𝑣 = ℎ

♯
𝑔1(𝑣)

𝑔♯𝑣 for each 𝑣 ∈ 𝑞(1). Put

anotherway, given 𝑐 ∈ 𝑞′(1), wemust have that 𝑓
♯
𝑣 = ℎ

♯
𝑐 #𝑔

♯
𝑣 for every 𝑣 ∈ 𝑉𝑐 . But 𝑠# 𝑓 = 𝑡# 𝑓 implies

5.8. EXERCISE SOLUTIONS 173

that for each 𝑒 ∈ 𝐸𝑐 = 𝑠−1

1 (𝑔
−1

1 (𝑐)) = 𝑡−1

1 (𝑔
−1

1 (𝑐)) ⊆ 𝑝(1), the following diagram of on-directions

functions commutes:

𝑞[𝑠1(𝑒)]

𝑝[𝑒] 𝑟[𝑓1(𝑣)]

𝑞[𝑡1(𝑒)]

𝑠
♯
𝑒

𝑓
♯
𝑠1(𝑒)

𝑓
♯
𝑡1(𝑒)

𝑡
♯
𝑒

It follows that 𝑟[𝑓1(𝑣)] together with the maps (𝑓 ♯𝑣)𝑣∈𝑉𝑐 form a cone over the functor 𝐹. So

by the universal property of the limit 𝑞′[𝑐] of 𝐹 with projection maps (𝑔♯𝑣)𝑣∈𝑉𝑐 , there exists a

unique ℎ
♯
𝑐 : 𝑟[𝑓1(𝑣)] → 𝑞′[𝑐] for which 𝑓

♯
𝑣 = ℎ

♯
𝑐 # 𝑔♯𝑣 for every 𝑣 ∈ 𝑉𝑐 . Hence ℎ is also uniquely

characterized on directions, so it is unique overall. Moreover, we have shown that we can define

ℎ on positions so that 𝑓1 = 𝑔1 # ℎ1, and that we can define ℎ on directions such that 𝑓
♯
𝑣 = ℎ

♯
𝑐 # 𝑔♯𝑣

for all 𝑐 ∈ 𝑞′(1) and 𝑣 ∈ 𝑉𝑐 . It follows that there exists ℎ for which 𝑓 = 𝑔 # ℎ.

Solution to Exercise 5.47.
1. We characterize the lens 𝜖 : 𝑝(1)y → 𝑝 as follows. On positions, it is the identity on 𝑝(1). Then

for each 𝑖 ∈ 𝑝(1), on directions, it is the unique map 𝑝[𝑖] → 1.
2. We characterize the lens 𝜂 : 𝑝 → yΓ(𝑝) as follows. On positions, it is the unique map 𝑝(1) → 1.

Then for each 𝑖 ∈ 𝑝(1), on directions, it is the canonical projection Γ(𝑝) � ∏
𝑖′∈𝑝(1) 𝑝[𝑖′] → 𝑝[𝑖].

3. Showing that (5.48) is a pushout square is equivalent to showing that, in the diagram

y

𝑝(1)y y + 𝑝 yΓ(𝑝)

𝑝

𝜄
!!

𝜖

𝑠

𝑡

𝑔

𝜄′ 𝜂

(5.76)

inwhich 𝜄, 𝜄′ are the canonical inclusions and the four triangles commute, yΓ(𝑝) equippedwith the

lens 𝑔 is the coequalizer of 𝑠 and 𝑡. To do so, we apply Theorem 5.43 to compute the coequalizer

𝑞′ of 𝑠 and 𝑡. The position-set of 𝑞′ is the coequalizer of 𝑠1 = (! # 𝜄)1, which sends every 𝑖 ∈ 𝑝(1)
to the position of y + 𝑝 corresponding to the summand y, and 𝑡1 = (𝜖 # 𝜄′)1, which sends each

𝑖 ∈ 𝑝(1) to the corresponding position in the summand 𝑝 of y + 𝑝. It follows that the coequalizer

of 𝑠1 and 𝑡1 is 1, so 𝑞′(1) � 1.
Then the direction-set of 𝑞′ at its sole position is the limit of the functor 𝐹 whose image consists

of lenses of the form 1→ 1 or 𝑝[𝑖] → 1 for every 𝑖 ∈ 𝑝(1). It follows that the limit of 𝐹 is just a

product, namely

∏
𝑖∈𝑝(1) 𝑝[𝑖] � Γ(𝑝). Hence 𝑞′ � yΓ(𝑝), as desired.

It remains to check that the upper right and lower right triangles in (5.76) commute. The upper

right triangle must commute by the uniqueness of morphisms y → yΓ(𝑝); and the lower right

triangle must commute on positions. Moreover, the on-directions function of the coequalizer

morphism 𝑔 at each position 𝑖 ∈ 𝑝(1) ⊆ (y + 𝑝)(1) must be the canonical projection Γ(𝑝) → 𝑝[𝑖],
which matches the behavior of the corresponding on-directions function of 𝜂; hence the lower

right triangle also commutes on directions.

Solution to Exercise 5.54.
Consider the lenses y

𝑓
−→ y2 + y

𝑔
−→ y where 𝑓 is the canonical inclusion and 𝑔 is uniquely determined

on positions and picks out 1 ∈ 2 and 1 ∈ 1 on directions. Then the only on-directions function of 𝑓 is

a function 1→ 1, an isomorphism, so 𝑓 is cartesian. Meanwhile, one of the on-directions functions of

𝑔 is a function 1→ 2, which is not an isomorphism, so 𝑔 is not cartesian. Finally, 𝑓 # 𝑔 can only be the

unique lens y→ y, namely the identity, which is cartesian.

174 CHAPTER 5. MORE CATEGORICAL PROPERTIES OF POLYNOMIALS

Solution to Exercise 5.56.
We wish to show that a lens 𝑓 : 𝑝 → 𝑞 in Poly is cartesian if and only if the square on the left hand side

of (5.55) is a pullback. We already know that that square commutes, so it is a pullback if and only if 𝑓 ♯

is an isomorphism. The right pullback square tells us that the • is ∑
𝑖∈𝑝(1) 𝑞[𝑓1 𝑖]. So 𝑓

♯
𝑖

: 𝑞[𝑓1 𝑖] → 𝑝[𝑖]
is an isomorphism for every 𝑖 ∈ 𝑝(1) if and only if their sum 𝑓 ♯ :

∑
𝑖∈𝑝(1) 𝑞[𝑓1 𝑖] →

∑
𝑖∈𝑝(1) 𝑝[𝑖] � ¤𝑝(1) is

an isomorphism as well. Hence 𝑓 is cartesian if and only if 𝑓 ♯ is an isomorphism, as desired.

Solution to Exercise 5.57.
The pushout of a cartesian lens is not necessarily cartesian. Take the pushout square (5.48). The lens

! : 𝑝(1)y→ y has 1→ 1 as every on-directions function, so it is cartesian, but its pushout 𝜂 : 𝑝 → yΓ(𝑝)

is not going to be cartesian as long as there is some 𝑖 ∈ 𝑝(1) for which Γ(𝑝) ̸� 𝑝[𝑖]. For instance, when

𝑝 B y + 1, we have that Γ(𝑝) � 0 ̸� 1 � 𝑝[1], so 𝜂 is not cartesian.

Solution to Exercise 5.61.
First, we will show that 1 ⇒ 3 in Proposition 5.59. Here 𝑓 : 𝑝 → 𝑞 is a cartesian lens in Poly and

ℎ : 𝐴→ 𝐵 is a function.

1. An element of 𝑝(𝐵) is a pair comprised of a 𝑝-position 𝑖 and a function 𝑘 : 𝑝[𝑖] → 𝐵, and

Proposition 3.44 tells us that 𝑓𝐵 : 𝑝(𝐵) → 𝑞(𝐵) sends (𝑖 , 𝑘) ↦→ (𝑓1 𝑖 , 𝑓 ♯𝑖 # 𝑘). Meanwhile, an element

of 𝑞(𝐴) is a pair comprised of a 𝑞-position 𝑗 and a function ℓ : 𝑞[𝑗] → 𝐴, and Proposition 2.10 tells

us that 𝑞(ℎ) sends (𝑗 , ℓ) ↦→ (𝑗 , ℓ # ℎ). So ((𝑖 , 𝑘), (𝑗 , ℓ)) is in the pullback of 𝑝(𝐵)
𝑓𝐵−−→ 𝑞(𝐵)

𝑞(ℎ)
←−−− 𝑞(𝐴)

if and only if 𝑓1 𝑖 = 𝑗 and 𝑓
♯
𝑖

𝑘 = ℓ # ℎ.

As 𝑓 is cartesian, 𝑓
♯
𝑖
is an isomorphism, so we can rewrite the latter equation as 𝑘 = 𝑔𝑖 # ℓ # ℎ,

where 𝑔𝑖 is the inverse of 𝑓
♯
𝑖
. In fact, if we let ℓ ′ B 𝑔𝑖 # ℓ , we observe that the values of 𝑗 , 𝑘, and

ℓ are all already determined by the values of 𝑖 and ℓ ′: we have that 𝑗 = 𝑓1 𝑖, that 𝑘 = ℓ ′ # ℎ, and

that ℓ = 𝑓
♯
𝑖

ℓ ′ It follows that the pullback is equivalently the set of pairs (𝑖 , ℓ ′) comprised of a

𝑝-position 𝑖 and a function ℓ ′ : 𝑝[𝑖] → 𝐴 (with no other restrictions on 𝑖 and ℓ ′). The projection

from the pullback to 𝑝(𝐵) sends (𝑖 , ℓ ′) ↦→ (𝑖 , ℓ ′ # ℎ), and the projection from the pullback to 𝑞(𝐴)
sends (𝑖 , ℓ ′) ↦→ (𝑓1 𝑖 , 𝑓 ♯𝑖 # ℓ ′).

2. The pullback described above—the set of pairs (𝑖 , ℓ ′) comprised of a 𝑝-position 𝑖 and a function

ℓ ′ : 𝑝[𝑖] → 𝐴—is exactly the set 𝑝(𝐴). Moreover, the projection to 𝑝(𝐵) sending (𝑖 , ℓ ′) ↦→ (𝑖 , ℓ ′ # ℎ)
is 𝑝(ℎ), and the projection to 𝑞(𝐴) sending (𝑖 , ℓ ′) ↦→ (𝑓1 𝑖 , 𝑓 ♯𝑖 # ℓ ′) is 𝑓𝐴 by Proposition 3.44. So

(5.60) is a pullback, as desired.

Next, we will show that 3 ⇒ 1 in Proposition 5.59, with 𝑓 : 𝑝 → 𝑞 as a lens in Poly that is a cartesian

natural transformation and 𝑖 ∈ 𝑝(1).
3. By Corollary 3.47, we have that 𝑓𝑝[𝑖] sends (𝑖 , id𝑝[𝑖]) ↦→ (𝑓1 𝑖 , 𝑓

♯
𝑖
), and by Proposition 2.10, we have

that 𝑞(𝑓 ♯
𝑖
) sends (𝑓1 𝑖 , id𝑞[𝑓1 𝑖]) ↦→ (𝑓1 𝑖 , 𝑓

♯
𝑖
) as well. Hence (5.62) commutes.

4. Taking 𝐴 B 𝑞[𝑓1 𝑖], 𝐵 B 𝑝[𝑖], and ℎ B 𝑓
♯
𝑖
in (5.60) and applying its universal property to (5.62)

induces an element (𝑖′, 𝑔) of 𝑝(𝑞[𝑓1 𝑖]), with 𝑖′ ∈ 𝑝(1) and 𝑔 : 𝑝[𝑖′] → 𝑞[𝑓1 𝑖], such that 𝑝(𝑓 ♯
𝑖
) sends

(𝑖′, 𝑔) ↦→ (𝑖 , id𝑝[𝑖]) and 𝑓𝑞[𝑓1 𝑖] sends (𝑖′, 𝑔) ↦→ (𝑓1 𝑖 , id𝑞[𝑓1 𝑖]). It follows from the behavior of 𝑝(𝑓 ♯
𝑖
)

(by Proposition 2.10) that 𝑖′ = 𝑖 and 𝑔 # 𝑓 ♯
𝑖
= id𝑝[𝑖], and it follows from the behavior of 𝑓𝑞[𝑓1 𝑖] (by

Proposition 3.44) that 𝑓
♯
𝑖

#𝑔 = id𝑞[𝑓1 𝑖 . So 𝑔 is the inverse of 𝑓
♯
𝑖
, proving that 𝑓

♯
𝑖
is an isomorphism,

as desired.

Solution to Exercise 5.71.
Choose 𝑝 ∈ Poly and 𝑞′ ∈ Poly/y. Then there is 𝑞 ∈ Poly such that 𝑞′ � 𝑞y, equipped with the

projection 𝑞y→ y. The pushforward is given by the exponential

𝑓∗(𝑞y) B 𝑞y

5.8. EXERCISE SOLUTIONS 175

from the cartesian closure; see (5.28). Indeed, we have

Poly/y(𝑓 ∗𝑝, 𝑞y) � Poly/y(𝑝y, 𝑞y)
� Poly(𝑝y, 𝑞)
� Poly(𝑝, 𝑞y).

Part II

A different category of categories

177

Chapter 6

The composition product

We have seen that the category Poly of polynomial functors has quite a bit of well-

interoperating mathematical structure. Further, it is an expressive way to talk about

dynamical systems that can change their interfaces and wiring patterns based on their

internal states.

But we touched upon one thing—what in some sense is the most interesting part

of the story—only briefly. That thing is quite simple to state, and yet has profound

consequences. Namely, polynomials can be composed:

y2 ◦ (y + 1) = (y + 1)2 � y2 + 2y + 1.

In other words, (y+ 1) is substituted in for the variable y in y2
. What could be simpler?

It turns out that this operation, which we will soon see is a monoidal product, has

a lot to do with time. There is a strong sense—made precise in Proposition 6.2—in

which the polynomial 𝑝 ◦ 𝑞 represents “starting at a position 𝑖 in 𝑝, choosing a direction

in 𝑝[𝑖], landing at a position 𝑗 in 𝑞, choosing a direction in 𝑞[𝑗], and then landing...

somewhere.” This is exactlywhatweneed to run throughmultiple steps of a dynamical

system, the very thing we didn’t know how to do in Example 4.43. We’ll continue that

story in Section 6.1.4.

The composition product has many surprises up its sleeve, as we’ll see throughout

the rest of the book.
1

6.1 Defining the composition product

We begin with the definition of the composition product in terms of polynomials as

functors.

1
Some authors refer to ⊳ as the substitution product, rather than the composition product. We elected

to use the composition product terminology because it provides a good noun form “the composite” for

𝑝 ⊳ 𝑞, whereas “the substitute” is somehow strange in English.

179

180 CHAPTER 6. THE COMPOSITION PRODUCT

6.1.1 Composite functors

Definition 6.1 (Composition product). Given polynomial functors 𝑝, 𝑞, we let 𝑝 ◦ 𝑞
denote their composition product, or their composite as functors. That is, 𝑝◦𝑞 : Set→ Set
sends each set 𝑋 to the set 𝑝(𝑞(𝑋)).

Functor composition gives a monoidal structure on the category SetSet
of functors

Set→ Set, but to check that the full subcategory Poly of SetSet
inherits this monoidal

structure, we need to verify that the composite of two functors in Poly is still a functor

in Poly.

Proposition 6.2. Suppose 𝑝, 𝑞 ∈ Poly are polynomial functors 𝑝, 𝑞 : Set → Set. Then
their composite 𝑝 ◦ 𝑞 is again a polynomial functor, and we have the following isomor-

phism:

𝑝 ◦ 𝑞 �
∑
𝑖∈𝑝(1)

∏
𝑎∈𝑝[𝑖]

∑
𝑗∈𝑞(1)

∏
𝑏∈𝑞[𝑗]

y. (6.3)

Proof. We can rewrite 𝑝 and 𝑞 as

𝑝 �
∑
𝑖∈𝑝(1)

y𝑝[𝑖] �
∑
𝑖∈𝑝(1)

∏
𝑎∈𝑝[𝑖]

y and 𝑞 �
∑
𝑗∈𝑞(1)

y𝑞[𝑗] �
∑
𝑗∈𝑞(1)

∏
𝑏∈𝑞[𝑗]

y.

For any set 𝑋 we have (𝑝 ◦ 𝑞)(𝑋) = 𝑝(𝑞(𝑋)) = 𝑝(∑𝑗

∏
𝑏 𝑋) =

∑
𝑖

∏
𝑎

∑
𝑗

∏
𝑏 𝑋, so (6.3) is

indeed the formula for the composite 𝑝 ◦ 𝑞. To see this is a polynomial, we use (1.30),

which says we can rewrite the

∏∑
in (6.3) as a

∑∏
to obtain

𝑝 ◦ 𝑞 �
∑
𝑖∈𝑝(1)

∑
𝑗 : 𝑝[𝑖]→𝑞(1)

y
∑
𝑎∈𝑝[𝑖] 𝑞[𝑗(𝑎)]

(6.4)

(written slightly bigger for clarity), which is clearly a polynomial. □

Corollary 6.5. The categoryPoly has amonoidal structure (y, ◦), where y is the identity

functor and ◦ is given by composition.

Because we may wish to use ◦ to denote composition in arbitrary categories, we use

a special symbol for polynomial composition, namely

𝑝 ⊳ 𝑞 B 𝑝 ◦ 𝑞.

The symbol ⊳ looks a bit like the composition symbol in that it is an open shape, and

when writing quickly by hand, it’s okay if it morphs into a ◦. But ⊳ highlights the

asymmetry of composition, in contrast with the other monoidal structures on Poly
we’ve encountered. Moreover, we’ll soon see that ⊳ is quite evocative in terms of trees.

6.1. DEFINING THE COMPOSITION PRODUCT 181

For each 𝑛 ∈ N, we’ll also use 𝑝⊳ 𝑛 to denote the 𝑛-fold composition product of 𝑝, i.e. 𝑛

copies of 𝑝 all composed with each other.
2
In particular, 𝑝⊳ 0 = y and 𝑝⊳ 1 = 𝑝.

We repeat the important formulas from Proposition 6.2 and its proof in the new

notation:

𝑝 ⊳ 𝑞 �
∑
𝑖∈𝑝(1)

∏
𝑎∈𝑝[𝑖]

∑
𝑗∈𝑞(1)

∏
𝑏∈𝑞[𝑗]

y. (6.6)

𝑝 ⊳ 𝑞 �

∑
𝑖∈𝑝(1)

∑
𝑗 : 𝑝[𝑖]→𝑞(1)

y
∑
𝑎∈𝑝[𝑖] 𝑞[𝑗(𝑎)]

(6.7)

Exercise 6.8 (Solution here). Let’s consider (6.7) piece by piece, with concrete polyno-

mials 𝑝 B y2 + y1
and 𝑞 B y3 + 1.

1. What is y2 ⊳ 𝑞?

2. What is y1 ⊳ 𝑞?

3. What is (y2 + y1) ⊳ 𝑞? This is what 𝑝 ⊳ 𝑞 “should be.”

4. How many functions 𝑗1 : 𝑝[1] → 𝑞(1) are there?
5. For each function 𝑗1 as above, what is

∑
𝑎∈𝑝[1] 𝑞[𝑗1(𝑎)]?

6. How many functions 𝑗2 : 𝑝[2] → 𝑞(1) are there?
7. For each function 𝑗2 as above, what is

∑
𝑎∈𝑝[2] 𝑞[𝑗2(𝑎)]?

8. Write out ∑
𝑖∈𝑝(1)

∑
𝑗 : 𝑝[𝑖]→𝑞(1)

y
∑
𝑎∈𝑝[𝑖] 𝑞[𝑗(𝑎)].

Does the result agree with what 𝑝 ⊳ 𝑞 should be? ♦

Exercise 6.9 (Solution here).
1. If 𝑝 and 𝑞 are representable, show that 𝑝 ⊳ 𝑞 is too. Give a formula for it.

2. If 𝑝 and 𝑞 are linear, show that 𝑝 ⊳ 𝑞 is too. Give a formula for it.

3. If 𝑝 and 𝑞 are constant, show that 𝑝 ⊳ 𝑞 is too. Give a formula for it. ♦

Exercise 6.10 (Solution here). Recall the closure operation [−,−] : Polyop×Poly→ Poly
for ⊗ from (4.75). Show that for all 𝐴 ∈ Set and 𝑞 ∈ Poly, there is an isomorphism

y𝐴 ⊳ 𝑞 � [𝐴y, 𝑞].

2
When we say “the 𝑛-fold composition product of 𝑝,” we mean 𝑛 copies of 𝑝 all composed with

each other; but when we discuss an “𝑛-fold composition product” in general, we refer to an arbitrary

composition product of 𝑛 polynomials that may or may not all be equal to each other. This will apply to

composition products of lenses as well, once we define those.

182 CHAPTER 6. THE COMPOSITION PRODUCT

♦

We know how ⊳ acts on the objects in Poly, but what does it do to the morphisms

between them? For any pair of natural transformations 𝑓 : 𝑝 → 𝑝′ and 𝑔 : 𝑞 → 𝑞′

between polynomial functors, their composite 𝑓 ⊳𝑔 : 𝑝 ⊳ 𝑞 → 𝑝′ ⊳ 𝑞′ is given by horizontal
composition.

Definition 6.11 (Horizontal composition of natural transformations). Let 𝑓 : 𝑝 →
𝑝′ and 𝑔 : 𝑞 → 𝑞′ be two natural transformations between (polynomial) functors

𝑝, 𝑝′, 𝑞, 𝑞′ : Set → Set. Then the horizontal composite of 𝑓 and 𝑔, denoted 𝑓 ⊳ 𝑔, is

the natural transformation 𝑝 ⊳ 𝑞 → 𝑝′ ⊳ 𝑞′ whose 𝑋-component for each 𝑋 ∈ Set is the
function

𝑝(𝑞(𝑋))
𝑓𝑞(𝑋)−−−→ 𝑝′(𝑞(𝑋))

𝑝′(𝑔𝑋)−−−−→ 𝑝′(𝑞′(𝑋)) (6.12)

obtained by composing the 𝑞(𝑋)-component of 𝑓 with the functor 𝑝′ applied to the

𝑋-component of 𝑔.

Exercise 6.13 (Solution here). Show thatwe could have replaced the composite function

(6.12) in Definition 6.11 with the function

𝑝(𝑞(𝑋))
𝑝(𝑔𝑋)−−−−→ 𝑝(𝑞′(𝑋))

𝑓𝑞′(𝑋)−−−→ 𝑝′(𝑞′(𝑋)) (6.14)

obtained by composing 𝑝 applied to the 𝑋-component of 𝑔 with the 𝑞′(𝑋)-component

of 𝑓 , without altering the definition. ♦

Remark 6.15. There are two very different notions of lens composition floating around,

so we’ll try to mitigate confusion by standardizing terminology here. We’ll reserve the

term composite lens for lenses ℎ # 𝑗 : 𝑟 → 𝑡 obtained by composing a lens ℎ : 𝑟 → 𝑠 with a

lens 𝑗 : 𝑠 → 𝑡, according to the composition rule of the category Poly. This corresponds
to vertical composition of natural transformations. This is also the kind of composition

we will mean whenever we use the verb “compose,” if the objects of that verb are lenses.

Meanwhile, we’ll use the term composition product (of lenses) for lenses 𝑓 ⊳ 𝑔 : 𝑝 ⊳ 𝑞 →
𝑝′⊳ 𝑞′ obtained by applying themonoidal product functor ⊳ : Poly×Poly→ Poly on the

lenses 𝑓 : 𝑝 → 𝑝′ and 𝑔 : 𝑞 → 𝑞′. This corresponds to horizontal composition of natural

transformations. In this case, we’ll use the verb phrase “taking the monoidal product.”
On the other hand, we’ll use the terms “composite” and “composition product”

interchangeably to refer to polynomials 𝑝 ⊳ 𝑞, obtained by composing 𝑝, 𝑞 ∈ Poly as

functors or, equivalently, applying the monoidal product functor ⊳ on them—as there

is no risk of confusion here.

This is another reason we tend to avoid the symbol ◦, preferring to use # for vertical
composition and ⊳ for horizontal composition. Of course, if you’re ever confused, you

can always check whether the codomain of the first lens matches up with the domain

of the second. If they don’t, we must be taking their monoidal product.

6.1. DEFINING THE COMPOSITION PRODUCT 183

The composition product of polynomials and lenses will be extremely important

in the story that follows. However, we only sometimes think of it as the composition

of functors and the horizontal composition of natural transformations; more often we

think of it as certain operations on positions and directions or on corolla forests.

6.1.2 Composite positions and directions

Let us interpret our formula (6.7) for the composition product of two polynomials in

terms of positions and directions. The position-set of 𝑝 ⊳ 𝑞 is

(𝑝 ⊳ 𝑞)(1) �
∑
𝑖∈𝑝(1)

∑
𝑗 : 𝑝[𝑖]→𝑞(1)

1 �
∑
𝑖∈𝑝(1)

Set(𝑝[𝑖], 𝑞(1)). (6.16)

In other words, specifying a position of 𝑝 ⊳ 𝑞 amounts to first specifying a 𝑝-position 𝑖,

then specifying a function 𝑗 : 𝑝[𝑖] → 𝑞(1), i.e. a 𝑞-position 𝑗(𝑎) for each 𝑝[𝑖]-direction 𝑎.
Given such a position (𝑖 , 𝑗) of 𝑝 ⊳ 𝑞, the direction-set of 𝑝 ⊳ 𝑞 at (𝑖 , 𝑗) is

(𝑝 ⊳ 𝑞)[(𝑖 , 𝑗)] �
∑
𝑎∈𝑝[𝑖]

𝑞[𝑗(𝑎)]. (6.17)

So a direction of 𝑝 ⊳ 𝑞 at (𝑖 , 𝑗) consists of a 𝑝[𝑖]-direction 𝑎 and a 𝑞[𝑗(𝑎)]-direction.
While this description completely characterizes 𝑝 ⊳ 𝑞, it may be a bit tricky to wrap

your head around. Here is an alternative perspective that can help us get a better

intuition for what’s going on with the composition product of polynomials.

Back in Section 1.2, we sawhow towrite the instructions for choosing an element of a

sum or product of sets. For instance, given a polynomial 𝑝 and a set 𝑋, the instructions

for choosing an element of

𝑝 ⊳ 𝑋 = 𝑝(𝑋) �
∑
𝑖∈𝑝(1)

∏
𝑎∈𝑝[𝑖]

𝑋

would be written as follows.

To choose an element of 𝑝(𝑋):
1. choose an element 𝑖 ∈ 𝑝(1);
2. for each element 𝑎 ∈ 𝑝[𝑖]:

2.1. choose an element of 𝑋.

But say we hadn’t picked a set 𝑋 yet; in fact, say we might replace 𝑋 with a general

polynomial instead. We’ll replace “an element of 𝑋” with a placeholder—the words “a

future”—that indicates that we don’t yet know what will go there. It depends on what

has come before.
3
Furthermore, to highlight that these instructions are associated with

some polynomial 𝑝, we will use our familiar positions and directions terminology.

The instructions associated with a polynomial 𝑝 are:

3
In a significant sense, the composition product should be thought of as being about dependency.

184 CHAPTER 6. THE COMPOSITION PRODUCT

1. choose a 𝑝-position 𝑖;

2. for each 𝑝[𝑖]-direction 𝑎:
2.1. choose a future.

If we think of polynomials in terms of their instructions, then (6.6) tells us that the

composition product simply nests one set of instructions within another, as follows.

The instructions associated with a polynomial 𝑝 ⊳ 𝑞 are:

1. choose a 𝑝-position 𝑖;

2. for each 𝑝[𝑖]-direction 𝑎:
2.1. choose a 𝑞-position 𝑗;

2.2. for each 𝑞[𝑗]-direction 𝑏:
2.2.1. choose a future.

Similarly, we couldwrite down the instructions associatedwith any 𝑛-fold composition

product bynesting even further. Wemight thinkof such instructions as specifying some

sort of length-𝑛 strategy, in the sense of game theory, for picking positions given any

directions—except that the opponent is somehow abstract, having no positions of its

own.

When we rewrite (6.6) (6.7), we are collapsing the instructions down into the fol-

lowing, highlighting the positions and directions of 𝑝 ⊳ 𝑞.

The instructions associated with a polynomial 𝑝 ⊳ 𝑞 are:

1. choose a 𝑝-position 𝑖 and, for each 𝑝[𝑖]-direction 𝑎, a 𝑞-position 𝑗 𝑖(𝑎);
2. for each 𝑝[𝑖]-direction 𝑎 and each 𝑞[𝑗 𝑖(𝑎)]-direction 𝑏:

2.1. choose a future.

We will see in Section 6.1.3 that these instructions have a very natural interpretation

when we depict these polynomials as corolla forests.

Exercise 6.18 (Solution here).
1. Let 𝑝 be an arbitrary polynomial. Write out the (uncollapsed) instructions asso-

ciated with 𝑝⊳ 3 = 𝑝 ⊳ 𝑝 ⊳ 𝑝.

2. Write out the (uncollapsed) instructions for choosing an element of 𝑝 ⊳ 𝑝 ⊳ 1, but
where you would normally write “choose an element of 1,” just write “done.” ♦

But how does the composition product act on lenses? Given lenses 𝑓 : 𝑝 → 𝑝′

and 𝑔 : 𝑞 → 𝑞′, we can translate them to natural transformations, take their horizontal

composite, then translate this back to a lens. The following exercise guides us through

this process.

Exercise 6.19 (The composition product of lenses; solution here). Fix lenses 𝑓 : 𝑝 → 𝑝′

and 𝑔 : 𝑞 → 𝑞′. We seek to characterize their composition product 𝑓 ⊳ 𝑔 : 𝑝 ⊳ 𝑞 → 𝑝′ ⊳ 𝑞′.

6.1. DEFINING THE COMPOSITION PRODUCT 185

1. Use Proposition 3.44 to compute the 𝑞(𝑋)-component of 𝑓 as a natural transfor-

mation.

2. Use Propositions 2.10 and 3.44 to compute 𝑝′ applied to the 𝑋-component of 𝑔 as

a natural transformation.

3. Combine #1 and #2 using Definition 6.11 to compute the horizontal composite

𝑓 ⊳ 𝑔 of 𝑓 and 𝑔 as natural transformations.

4. Use Corollary 3.47 to translate the natural transformation 𝑓 ⊳ 𝑔 obtained in #3

to a lens 𝑝 ⊳ 𝑞 → 𝑝′ ⊳ 𝑞′. Verify that for each (𝑖 , 𝑗 𝑖) in (𝑝 ⊳ 𝑞)(1) (see (6.16)), its

on-positions function sends

(𝑖 , 𝑗 𝑖)
(𝑓 ⊳ 𝑔)1↦−−−−−→

(
𝑓1(𝑖), 𝑓 ♯𝑖 # 𝑗 𝑖 # 𝑔1

)
; (6.20)

while for each (𝑎′, 𝑏′) in (𝑝′ ⊳ 𝑞′)[(𝑓1(𝑖), 𝑓 ♯𝑖 # 𝑗 𝑖 # 𝑔1)] (see (6.17)), its on-directions

function sends

(𝑎′, 𝑏′)
(𝑓 ⊳ 𝑔)♯

(𝑖 , 𝑗𝑖)↦−−−−−−−→
(
𝑓
♯
𝑖
(𝑎′), 𝑔♯

𝑗 𝑖(𝑓
♯
𝑖
(𝑎′))
(𝑏′)

)
. (6.21)

♦

So what does Exercise 6.19 tell us about the behavior of 𝑓 ⊳ 𝑔 : 𝑝 ⊳ 𝑞 → 𝑝′ ⊳ 𝑞′? By

(6.20), on positions, 𝑓 ⊳ 𝑔 takes a 𝑝-position 𝑖 and sends it to the 𝑝′-position 𝑓1(𝑖); then
for each direction 𝑎′ at this position, the associated 𝑞′-position is obtained by sending

𝑎′ back to a 𝑝[𝑖]-direction via 𝑓
♯
𝑖
, checking what 𝑞-position is associated to that 𝑝[𝑖]-

direction via some 𝑗 𝑖 , then sending that 𝑞-position forward again to a 𝑞′-position via

𝑔1.

Then by (6.20), on directions, 𝑓 ⊳ 𝑔 sends a direction of 𝑝′ back to a direction of 𝑝 via

an on-directions function of 𝑓 , then sends a direction of 𝑞′ back to a direction of 𝑞 via

an on-directions funtion of 𝑔. We’ll get a better sense of what’s happening when we

see this drawn out as corolla forests in Example 6.31.

6.1.3 Composition product on corolla forests

It turns out that the forest of 𝑝 ⊳ 𝑞 is given by grafting 𝑞-corollas onto the leaves of

𝑝-corollas in every possible way. We will demonstrate this using an example.

Let’s say 𝑝 B y2 + y and 𝑞 B y3 + 1, whose corolla forests we draw as follows:

•
1

•
2

𝑝

•
1

•
2

𝑞

(6.22)

By (6.16), choosing a position of 𝑝 ⊳ 𝑞 amounts to first choosing a 𝑝-root 𝑖, then choosing

a 𝑞-root for every 𝑝[𝑖]-leaf. Sowemay depict (𝑝 ⊳𝑞)(1) by grafting roots from the corolla

186 CHAPTER 6. THE COMPOSITION PRODUCT

forest of 𝑞 to leaves in the corolla forest of 𝑝 in every possible way, as follows:

•
1

•1 •1
•
1

•1 •2
•
1

•2 •1
•
1

•2 •2
•
2

•1
•
2

•2
“(𝑝 ⊳ 𝑞)(1)”

(6.23)

Now fix one of the positions of 𝑝 ⊳ 𝑞 drawn above: a 𝑝-root 𝑖 and a 𝑞-root grafted to

every 𝑝[𝑖]-leaf. By (6.17), a direction of 𝑝 ⊳ 𝑞 at that position consists of a 𝑝[𝑖]-leaf 𝑎 and
a second leaf emanating from the 𝑞-root that has been grafted on to 𝑎. In other words,

in the following picture, where we have grafted not just 𝑞-roots but entire 𝑞-corollas

onto leaves in 𝑝, the directions of 𝑝 ⊳ 𝑞 at the position corresponding to each tree are

the rooted paths
4
of that tree of length 2 (we omit the labels):

•
• •

•
• •

•
• •

•
• •

•
•

•
•

“𝑝 ⊳ 𝑞”

(6.24)

Equivalently, we can think of the directions in the picture above as the leaves at the

second level of each tree. So 𝑝⊳𝑞 has six positions; the first has six directions, the second,

third, and fifth have three directions, and the fourth and sixth have no directions. In

total, we can read off that 𝑝 ⊳ 𝑞 is isomorphic to y6 + 3y3 + 2.
We put the 𝑝 ⊳ 𝑞 in scare quotes above (6.24) because, to be pedantic, the corolla

forest of 𝑝 ⊳ 𝑞 has the two levels smashed together as follows:

• • • • • •

𝑝 ⊳ 𝑞

(6.25)

Usually, we will prefer the style of (6.24) rather than the more pedantic style of (6.25).

We have now seen how to draw a single polynomial as a corolla forest, with height-1

leaves as directions; as well as how to draw a two-fold composite of polynomials as

a forest of trees, with height-2 leaves as directions. Note that drawing a corolla of 𝑝

or a tree of 𝑝 ⊳ 𝑞 is just a graphical way of following the instructions associated with

the polynomial 𝑝 or 𝑝 ⊳ 𝑞 that we saw in Section 6.1.2, where the arrows—the top-

level leaves—are where the “futures” would go. Similarly, we could depict any 𝑛-fold

composite as a forest with height-𝑛 leaves as directions. You’ll have an opportunity to

try this in the following exercise.

Exercise 6.26 (Solution here). Use 𝑝, 𝑞 as in (6.22) and 𝑟 B 2y + 1 in the following.

1. Draw 𝑞 ⊳ 𝑝.

2. Draw 𝑝 ⊳ 𝑝.

4
A rooted path of a rooted tree is a path up the tree that starts from the root.

6.1. DEFINING THE COMPOSITION PRODUCT 187

3. Draw 𝑝 ⊳ 𝑝 ⊳ 1.
4. Draw 𝑟 ⊳ 𝑟.

5. Draw 𝑟 ⊳ 𝑟 ⊳ 𝑟. ♦

Example 6.27 (Composing polynomials with constants). For any set 𝑋 and polynomial

𝑝, we can take 𝑝(𝑋) ∈ Set; indeed 𝑝 : Set → Set is a functor! In particular, by this

point you’ve seen us write 𝑝(1) hundreds of times. But we’ve also seen that 𝑋 is itself

a polynomial, namely a constant one.

It’s not hard to see that 𝑝(𝑋) � 𝑝 ⊳ 𝑋. Here’s a picture, where 𝑝 B y3 + y + 1 and

𝑋 B 2.

•
1

•
2

•
3

𝑝

•
1

⋄
2

𝑋

Let’s see how (y3 + y + 1) ⊳ 2 looks.

•
•••

•
••⋄

•
•⋄•

•
•⋄⋄

•
⋄••

•
⋄•⋄

•
⋄⋄•

•
⋄⋄⋄

•
•
•
⋄
•

𝑝 ⊳ 𝑋

It has 11 positions and no height-2 leaves, which means it’s a set (constant polynomial,

with no directions), namely 𝑝 ⊳ 𝑋 � 11.
We could also draw 𝑋 ⊳ 𝑝, since both are perfectly valid polynomials. Here it is:

•
1

⋄
2

𝑋 ⊳ 𝑝

Each of the leaves in 𝑋—of which there are none—is given a 𝑝-corolla.

Exercise 6.28 (Solution here).
1. Choose a polynomial 𝑝 and draw 𝑝 ⊳ 1 in the style of Example 6.27.

2. Show that if 𝑋 is a set (considered as a constant polynomial) and 𝑝 is any poly-

nomial, then 𝑋 ⊳ 𝑝 � 𝑋.

3. Show that if 𝑋 is a set and 𝑝 is a polynomial, then 𝑝 ⊳ 𝑋 � 𝑝(𝑋), where 𝑝(𝑋) is
the set given by applying 𝑝 as a functor to 𝑋. ♦

In particular, this means we could write the position-set of a polynomial 𝑝 inter-

changeably as 𝑝(1) or as 𝑝 ⊳ 1. We’ll generally write 𝑝(1) when we want to emphasize

the position-set as a set, and 𝑝 ⊳ 1 when we want to emphasize the position-set as a

polynomial (albeit a constant one, with no directions).

188 CHAPTER 6. THE COMPOSITION PRODUCT

Exercise 6.29 (Solution here). Let 𝜑 : 𝑝 → 𝑞 be a lens and 𝑋 be a set viewed as a

constant polynomial. Consider the lens 𝜑 ⊳ 𝑋 : 𝑝 ⊳ 𝑋 → 𝑞 ⊳ 𝑋, given by taking the

composition product of 𝜑 with the identity lens on 𝑋. Show that 𝜑 ⊳ 𝑋, when viewed

as a function 𝑝(𝑋) → 𝑞(𝑋) between sets, is exactly the 𝑋-component of 𝜑 viewed as a

natural transformation. ♦

Exercise 6.30 (Solution here). For any 𝑝 ∈ Poly there are natural isomorphisms 𝑝 � 𝑝⊳y

and 𝑝 � y ⊳ 𝑝.

1. Thinking of polynomials as functors Set→ Set, what functor does y represent?

2. Why are 𝑝 ⊳ y and y ⊳ 𝑝 isomorphic to 𝑝?

3. Let 𝑝 B y3 + y + 1. In terms of tree pictures, draw 𝑝 ⊳ y and y ⊳ 𝑝, and explain

pictorially how to see the isomorphisms 𝑝 ⊳ y � 𝑝 � y ⊳ 𝑝. ♦
This is just 𝑝 with every position propped up one level, so it is also still a picture of 𝑝.

How shall we think about taking the composition product of lenses in terms of our

tree pictures? We can interpret the results of Exercise 6.19 as follows.

Example 6.31. Let’s take 𝑝 B y2 + y, 𝑞 B y2 + y, 𝑝′ B y3 + y, and 𝑞′ B y + 1.

•
1

•
2

𝑝 =

•
1

•
2

𝑞 =

•
1

•
2

𝑝′ =

•
1

•
2

𝑞′ =

For any pair of lenses 𝑝 → 𝑝′ and 𝑞 → 𝑞′, we have a lens 𝑝 ⊳ 𝑞 → 𝑝′ ⊳ 𝑞′. Let’s draw

𝑝 ⊳ 𝑞 and 𝑝′ ⊳ 𝑞′.

•
• •

•
• •

•
• •

•
• •

•
•

•
•

𝑝 ⊳ 𝑞

•
• • •

•
• • •

•
• • •

•
• • •

•
• • •

•
• • •

•
• • •

•
• • •

•
•

•
•

𝑝′ ⊳ 𝑞′

6.1. DEFINING THE COMPOSITION PRODUCT 189

Let’s also pick a pair of lenses, 𝜑 : 𝑝 → 𝑝′ and 𝜓 : 𝑞 → 𝑞′.

𝜑 : 𝑝 → 𝑝′ •
1

•
1

•
2

•
2

𝜓 : 𝑞 → 𝑞′ •
1

•
1

•
2

•
2

Then by Exercise 6.19, we can form the lens 𝜑 ⊳ 𝜓 : 𝑝 ⊳ 𝑞 → 𝑝′ ⊳ 𝑞′ as follows. On

positions, we follow (6.20): for each tree 𝑡 in the picture of 𝑝 ⊳ 𝑞, we begin by using 𝜑1

to send the 𝑝-corolla 𝑖 that forms the bottom level of 𝑡 to a 𝑝′-corolla 𝑖′. Then for each

𝑝′[𝑖′]-leaf 𝑎′ of 𝑖′, to choose which 𝑞′-corolla gets grafted onto 𝑎′, we use 𝜑♯
𝑖
to send 𝑎′

back to a 𝑝[𝑖]-leaf 𝑎. Since 𝑡 has the corolla 𝑖 as its bottom level, 𝑎 is just a height-1

vertex of the tree 𝑡. So we can take the 𝑞-corolla 𝑗 that is grafted onto 𝑎 in 𝑡, then use

𝜓1 to send 𝑗 forward to a 𝑞′-corolla 𝑗′. This is the corolla we graft onto the 𝑝′[𝑖′]-leaf 𝑎′.
All this specifies a tree 𝑡′ in 𝑝′ ⊳ 𝑞′ that 𝑡 gets sent to via (𝜑 ⊳ 𝜓)1.

On directions, we follow (6.21): picking a direction of 𝑡′ consists of picking a height-

1 vertex 𝑎′ and a height-2 leaf 𝑏′ emanating from 𝑎′. The on-directions function 𝜑♯
𝑖

sends 𝑎′ back to a height-1 vertex 𝑎 of 𝑡, and as we saw, the on-positions function 𝜓1

sends the 𝑞-corolla 𝑗 grafted onto 𝑎 in 𝑡 forward to the 𝑞′-corolla grafted onto 𝑎′. Then

𝑏′ is a leaf of that 𝑞′-corolla, and 𝜓♯
𝑗
sends 𝑏′ back to a leaf 𝑏 emanating from 𝑎. So the

on-directions function (𝜑 ⊳ 𝜓)♯𝑡 sends the height-2 leaf 𝑏′ to the height-2 leaf 𝑏.

We draw the lens 𝜑 ⊳ 𝜓 → 𝑝 ⊳ 𝑞 → 𝑝′ ⊳ 𝑞′ below. To avoid clutter, we leave out the

arrows for 𝜓1 that show how the red corollas on the right are selected; we hope the

reader can put it together for themselves.

•
• •

•
• •

•
• •

•
• •

•
•

•
•

•
• • •

•
• • •

•
• • •

•
• • •

•
•

•
•

Exercise 6.32 (Solution here). With 𝑝, 𝑞, 𝑝′, 𝑞′ and 𝜑,𝜓 as in Example 6.31, draw the

lens 𝜓 ⊳ 𝜑 : 𝑞 ⊳ 𝑝 → 𝑞′ ⊳ 𝑝′ in terms of trees as in the example. ♦

190 CHAPTER 6. THE COMPOSITION PRODUCT

Exercise 6.33 (Solution here). Suppose 𝑝, 𝑞, and 𝑟 are polynomials and you’re given

arbitrary lenses 𝜑 : 𝑞 → 𝑝 ⊳ 𝑞 and 𝜓 : 𝑞 → 𝑞 ⊳ 𝑟. Does the following diagram necessarily

commute?
5

𝑞 𝑞 ⊳ 𝑟

𝑝 ⊳ 𝑞 𝑝 ⊳ 𝑞 ⊳ 𝑟

𝑔

𝜑 𝜑 ⊳ 𝑟

𝑝 ⊳ 𝜓

?

That is, do we have 𝜑 # (𝑝 ⊳ 𝜓) =? 𝜓 # (𝜑 ⊳ 𝑟)? ♦

6.1.4 Dynamical systems and the composition product

Back in Example 4.43, we posed the question of how to model running multiple steps

of dynamical system in Poly. The answer lies with the composition product.

Recall that a (dependent) dynamical system is a lens 𝜑 : 𝑆y𝑆 → 𝑝, where 𝑆 is a set

of states and 𝑝 is a polynomial interface. We call 𝑆y𝑆 the state system and the on-

position and on-direction functions of 𝜑 the return and update functions, respectively.
More generally, we saw in Example 4.43 that we could replace the state system with a

monomial 𝑞 B 𝑆y𝑆
′
, where 𝑆′ is another set, as long as there is a function 𝑒 : 𝑆 → 𝑆′

(or equivalently a section 𝜖 : 𝑆y𝑆
′ → y) that is bĳective.

The lens models a dynamical system as follows. Every state 𝑠 ∈ 𝑞(1) = 𝑆 returns

a position 𝑜 B 𝜑1(𝑠) ∈ 𝑝(1), and every direction 𝑖 ∈ 𝑝[𝑜] yields an updated direction

𝑠′ B 𝜑♯
𝑠 (𝑎) ∈ 𝑞[𝑠] = 𝑆′. Then to model a second step through the system, we identify

the 𝑞[𝑠]-direction 𝑠′with a 𝑞-position 𝑒−1(𝑠′), plug this position back into 𝜑1, and repeat

the process all over again.

But this is exactly what the composition product 𝜑 ⊳𝜑 : 𝑞 ⊳ 𝑞 → 𝑝 ⊳ 𝑝 does: by (6.20),

its on-positions function sends the pair (𝑠0 , 𝑒−1) ∈ (𝑞 ⊳ 𝑞)(1), comprised of an initial

state 𝑠0 ∈ 𝑞(1) and the function 𝑒−1
: 𝑞[𝑠0] = 𝑆′→ 𝑆 = 𝑞(1), to the pair(

𝜑1(𝑠0), 𝜑♯
𝑠0

𝑒−1 # 𝜑1

)
∈ (𝑝 ⊳ 𝑝)(1), (6.34)

comprised of the initial position 𝑜0 B 𝜑1(𝑠) ∈ 𝑝(1) and a composite function

𝑝[𝑜0]
𝜑♯
𝑠
0−−→ 𝑞[𝑠0] = 𝑆′

𝑒−1

−−→ 𝑆 = 𝑞(1)
𝜑1−−→ 𝑝(1), (6.35)

which uses the update function at 𝑠0 and the return function to tell us what the next

position 𝑜1 will be for every possible direction 𝑖1 we could select. Then by (6.21), the on-

directions function of 𝜑⊳𝜑 sends each direction (𝑖1 , 𝑖2) at the position (6.34), comprised

of an initial direction 𝑖1 ∈ 𝑝[𝑜0] and (setting 𝑜1 to be the function (6.35) applied to 𝑖1) a

5
When the name of an object is used in place of a morphism, we refer to the identity morphism on

that object. So for instance, 𝜑 ⊳ 𝑟 is the composition product of 𝜑 with the identity lens on 𝑟.

6.1. DEFINING THE COMPOSITION PRODUCT 191

second direction 𝑖2 ∈ 𝑝[𝑜1], to the pair(
𝜑♯
𝑠0(𝑖1), 𝜑

♯

𝑒−1(𝜑♯
𝑠
0

(𝑖1))
(𝑖2)

)
,

comprised of directions in 𝑆′ that (under 𝑒−1
) correspond to the next state 𝑠1 upon

selecting direction 𝑖1 at state 𝑠0 and the successive state 𝑠2 upon selecting direction 𝑖2 at

𝑠1. In summary, at certain positions, 𝜑⊳𝜑 tells us how thedynamical systemwill behave

when we step through it twice: starting from state 𝑠0, returning position 𝑜0, receiving

direction 𝑖1, updating its state to 𝑠1, returning position 𝑜1, receiving direction 𝑖2, and

preparing to update its state to 𝑠2. Adding another layer, 𝜑 ⊳ 𝜑 ⊳ 𝜑 : 𝑞 ⊳ 𝑞 ⊳ 𝑞 → 𝑝 ⊳ 𝑝 ⊳ 𝑝

will tell us how the system behaveswhenwe step through it three times; and in general,

𝜑⊳ 𝑛
: 𝑞⊳ 𝑛 → 𝑝⊳ 𝑛 will tell us how the system behaves when we step through it 𝑛 times.

Example 6.36 (Substitution products of dynamical systems as trees). Consider the dy-

namical system𝜑 : 𝑆y𝑆 → 𝑝with 𝑝 B y𝐴+1, corresponding to the haltingdeterministic

state automaton (4.24) from Exercise 4.23, depicted again here for convenience:

• •

•

Below, we draw the corolla pictures for 𝑆y𝑆 and for 𝑝.

• • •

𝑆y𝑆

◦ ⋄

𝑝

In the picture for 𝑆y𝑆, the roots are the three states in {•, •, •} appearing in the au-

tomaton, while the leaves of each corolla correspond to the three states as well. In

the picture for 𝑝, there is one corolla whose two leaves correspond to the two arrows

coming out of every state—except for the halting state, which is sent to the corolla with

no leaves instead. So the lens 𝜑 : 𝑆y𝑆 → 𝑝 capturing the dynamics of the automaton

can be drawn as follows:

• ◦ • ◦ • ⋄

The corolla picture tells us, for example, that from the yellow state, we can go in one

of two directions: the green direction, which leads us to the blue state, or the orange

direction, which leads us to the red state. This describes the dynamics of the automaton

one step away from the yellow state.

192 CHAPTER 6. THE COMPOSITION PRODUCT

But what if we want to understand the dynamics of 𝜑 two steps away from the

yellow state? Consider the following tree, corresponding to a position of the 2-fold

composite 𝑆y𝑆 ⊳ 𝑆y𝑆:

•
• • •

(6.37)

We can follow the steps from Example 6.31 to find that the composition product of

lenses 𝜑 ⊳ 𝜑 : 𝑆y𝑆 ⊳ 𝑆y𝑆 → 𝑝 ⊳ 𝑝 acts on this tree as follows:

•
• • •

◦
◦ ⋄

Read each tree the way you would read a decision tree, and you will find that this

picture tells you exactly what the dynamics of the automaton are two steps away from

the yellow state! Actually, it says that if we start from the yellow state (the root on the

left, which is sent to the root on the right) and go in the orange direction (up from the

root along the orange arrow to the right), the automaton will halt (as there are no more

directions to follow). But if we instead go in the green direction (up from the root along

the green arrow to the left), we could go in the green direction again (up the next green

arrow) to arrive at a blue state (as indicated by the dashed arrow above), or instead in

the orange direction to arrive at a yellow state (similarly).

This is what we meant at the start of this chapter when we said that the substitution

product has to do with time. It takes a specification 𝜑 for how a state system and

an interface can interact back-and-forth—or, indeed, any interaction pattern between

wrapper interfaces—andextends it to amultistepmodel𝜑⊳ 𝑛
that simulates 𝑛 successive

interaction cycles over time, accounting for all possible external directions that the

interface could encounter. Alternatively, we can think of 𝜑⊳ 𝑛
as “speeding up” the

original dynamical system 𝜑 by a factor of 𝑛, as it runs 𝑛 steps in one—as long as

whatever’s connected to its new interface 𝑝⊳ 𝑛 can keep up with its pace and feed it 𝑛

directions of 𝑝 at a time! The lens 𝜑 tells us how the machine can run, but it is ⊳ that

makes the clock tick.

Why this is not enough

There are several pressing issues we must address, however, before we can even begin

to provide a satisfying answer to everything we asked for in Example 4.43. The first

is a communication issue: as you probably sensed, our set-theoretic notation for 𝜑⊳ 𝑛

is rather cumbersome, and that was just for 𝑛 = 2. We could depict the behavior of

our composition products of dynamical systems more clearly using tree pictures (see

Example 6.36), but even that becomes infeasible in greater generality. A concise visual

6.1. DEFINING THE COMPOSITION PRODUCT 193

representation of the back-and-forth interaction of lenses would help us reason about

composition products more effectively.

The second issue is more technical: to ensure that 𝜑 ⊳ 𝜑 behaves the way we want,

when we specify a position of its domain 𝑞 ⊳ 𝑞, we have to provide not only an initial

state 𝑠0 but also the isomorphism 𝑒−1
: 𝑆′ → 𝑆 to let the lens know which state in 𝑆

each 𝑞[𝑠0]-direction in 𝑆′ should lead to. But there are many other positions (𝑠0 , 𝑓) of
𝑞 ⊳ 𝑞 that we could have specified, and each 𝑓 : 𝑆′ → 𝑆 associates 𝑞[𝑠0]-directions to
𝑞-positions in a different way. So 𝜑 ⊳ 𝜑 is carrying around a lot of extraneous—even

misleading!—data about how our dynamical system behaves when the state system

moves in the right direction but to thewrong state. Our isomorphism 𝑒−1
is a temporary

fix, but as we pointed out in Example 4.43, it relies on the set-theoretic equality of the

direction-sets of 𝑞—there’s nothing inherent to the categorical structure of 𝑞 in Poly
that encodes how directions map to states, at least not yet. What are we missing?

Example 6.38 (Composition products of dynamical systems can be misleading). In

Example 6.38, instead of (6.37), we could have picked the following tree, corresponding

to a different (yet entirely valid) position of 𝑆y𝑆 ⊳ 𝑆y𝑆:

•
• • •

The composition product 𝜑 ⊳ 𝜑 : 𝑆y𝑆 ⊳ 𝑆y𝑆 → 𝑝 ⊳ 𝑝 acts on this tree like so:

•
• • •

◦
⋄ ◦

Now the picture tells us that, starting from the yellow state, it is the green arrow that

will lead to a halting state, whereas we should somehow be able to follow the orange

arrow twice!

Of course, this is nonsense—stemming from the fact that we have grafted the

“wrong” corollas to each leaf when forming the position of 𝑆y𝑆 ⊳ 𝑆y𝑆 on the left.

It’s important to note, however, that this is nevertheless part of the data of 𝜑 ⊳ 𝜑, and

we don’t yet know how to tell Poly to rule it out.

The key to resolving both these issues lies in the next section, where we will in-

troduce a graphical notation to help us study lenses whose codomains are composite

polynomials.

194 CHAPTER 6. THE COMPOSITION PRODUCT

6.2 Lenses to composites

Lenses to composites—that is, lenses of the form 𝑓 : 𝑝 → 𝑞1 ⊳ · · · ⊳ 𝑞𝑛 for some 𝑛 ∈ N
with composites as their codomains—will be ubiquitous in the remainder of our story.

Fortunately, they have some very nice properties that make them convenient to work

with, especially using polyboxes.

6.2.1 Lenses to composites as polyboxes

A lens 𝑝 → 𝑞1 ⊳ 𝑞2 is an element of the set

Poly(𝑝, 𝑞1 ⊳ 𝑞2) � Poly ©­«𝑝,
∑

𝑗1∈𝑞1(1)

∏
𝑏1∈𝑞1[𝑗1]

∑
𝑗2∈𝑞2(1)

∏
𝑏2∈𝑞2[𝑗2]

y
ª®¬ (6.6)

�
∏
𝑖∈𝑝(1)

∑
𝑗1∈𝑞1(1)

∏
𝑏1∈𝑞1[𝑗1]

∑
𝑗2∈𝑞2(1)

∏
𝑏2∈𝑞2[𝑗2]

𝑝[𝑖]. (3.7)

So we can write down the instructions for picking a lens 𝑝 → 𝑞1 ⊳ 𝑞2 as follows.

To choose a lens 𝑝 → 𝑞1 ⊳ 𝑞2:

1. for each 𝑝-position 𝑖:

1.1. choose a 𝑞1-position 𝑗1;

1.2. for each 𝑞1[𝑗1]-direction 𝑏1:

1.2.1. choose a 𝑞2-position 𝑗2;

1.2.2. for each 𝑞2[𝑗2]-direction 𝑏2:

1.2.2.1. choose a 𝑝[𝑖]-direction 𝑎.

We could try to write out the dependent functions that these instructions correspond

to. Alternatively, we could simply draw this protocol out using polyboxes, with every

“for each” step corresponding to a user-maintained blue box and every “choose” step

corresponding to an automated white box:

𝑎

𝑖
𝑝

𝑏
1

𝑗
1

𝑞
1

𝑏
2

𝑗
2

𝑞
2

(6.39)

Whenever we draw two pairs of polyboxes on top of each other, as we do with the

polyboxes for 𝑞1 and 𝑞2 above on the right, we are indicating that the entire column of

polyboxes depicts the composite of the polynomials depicted by each individual pair.

So the column of polyboxes on the right represents the composite 𝑞1 ⊳ 𝑞2. In particular,

the position in the lower box of the top pair is the position associatedwith the direction

in the upper box of the bottom pair, for the depicted position of the composite.

6.2. LENSES TO COMPOSITES 195

So a lens 𝑝 → 𝑞1 ⊳ 𝑞2 is any protocol that will fill in the white boxes above as the

user fills in the blue boxes in the direction of the arrows. We’ll see this in action in

Example 6.40.

In fact, (3.34), (3.13), and (6.39) are the respective polybox depictions of the 𝑛 =

0, 𝑛 = 1, and 𝑛 = 2 cases of lenses 𝑝 → 𝑞1 ⊳ · · · ⊳ 𝑞𝑛 to 𝑛-fold composites (we consider

the monoidal unit y of ⊳ to be the 0-fold composite, and a 1-fold composite is just a

polynomial on its own). In general, for any 𝑛 ∈ N, we can apply

Poly(𝑝, 𝑞1 ⊳ · · · ⊳ 𝑞𝑛) � Poly ©­«𝑝,
∑

𝑗1∈𝑞1(1)

∏
𝑏1∈𝑞1[𝑗1]

· · ·
∑

𝑗𝑛∈𝑞𝑛(1)

∏
𝑏𝑛∈𝑞𝑛[𝑗𝑛]

y
ª®¬ (6.6)

�
∏
𝑖∈𝑝(1)

∑
𝑗1∈𝑞1(1)

∏
𝑏1∈𝑞1[𝑗1]

· · ·
∑

𝑗𝑛∈𝑞𝑛(1)

∏
𝑏𝑛∈𝑞𝑛[𝑗𝑛]

𝑝[𝑖], (3.7)

so the polybox depiction of 𝑝 → 𝑞1 ⊳ · · · ⊳ 𝑞𝑛 generalizes analogously. For example, here

are the polyboxes corresponding to a lens to a 4-fold composite:

𝑝

𝑞
1

𝑞
2

𝑞
3

𝑞
4

These lenses to 𝑛-fold composites lend themselves to a very natural interpretation

in terms of our decision-making language. Each of 𝑝’s menus is passed forward to a

menu for 𝑞1 to choose from. For every option that 𝑞1 may choose, there is then also a

menu for 𝑞2 to choose from. Then for every option that 𝑞2 may choose, there is a menu

for 𝑞3 to choose from, and so on, all the way until 𝑞𝑛 has chosen an option. Together,

all the options that 𝑞1 , . . . , 𝑞𝑛 chose then inform the option that 𝑝 should select from

its original menu.

A lens 𝑝 → 𝑞1 ⊳ · · · ⊳ 𝑞𝑛 is a multi-step policy for 𝑝 to make decisions by asking for decisions
from 𝑞1, then 𝑞2, etc., all the way to 𝑞𝑛 , then interpreting the results.

Example 6.40 (Lenses 𝑝 → 𝑞 ⊳ 𝑟). Consider a lens 𝜑 : 𝑝 → 𝑞 ⊳ 𝑟. Let’s label the three

196 CHAPTER 6. THE COMPOSITION PRODUCT

arrows in the lens’s polybox depiction:

𝑝

𝑞

𝑟

𝜑𝑞

𝜑𝑟

𝜑♯

So the on-position function of 𝜑 can be split into two parts: a function 𝜑𝑞
: 𝑝(1) → 𝑞(1)

and, for each 𝑖 ∈ 𝑝(1), a function 𝜑𝑟
𝑖
: 𝑞[𝜑𝑞(𝑖)] → 𝑟(1). Then the on-directions function

𝜑♯
𝑖
: (𝑞 ⊳ 𝑟)[𝜑1(𝑖)] → 𝑝[𝑖] takes the direction of 𝑞 and the direction of 𝑟 in the two blue

boxes on the right and sends them to a direction of 𝑝 at 𝑖 to fill the white box on the

left.

For example, let 𝑝 B {𝐴}y{𝑅,𝑆} + 𝐵y{𝑇}, 𝑞 B {𝐶}y{𝑈,𝑉,𝑊} + {𝐷}y{𝑋}, and 𝑟 B

{𝐸}y{𝑌,𝑍} + {𝐹}.

•
𝐴

𝑅 𝑆

•
𝐵

𝑇

𝑝 = •
𝐶

𝑈 𝑉 𝑊

•
𝐷

𝑋

𝑞 = •
𝐸

𝑌 𝑍

•
𝐹

𝑟 =

Here is a tree picture of a lens 𝜑 : 𝑝 → 𝑞 ⊳ 𝑟:

•
𝐴

•
𝐶

• • •
•
𝐵

•
𝐷

•

If we write 𝜑 as the corresponding triple (𝜑𝑞 , 𝜑𝑟 , 𝜑♯), then we have

𝜑𝑞(𝐴) = 𝐶, 𝜑𝑞(𝐵) = 𝐷;

𝜑𝑟𝐴(𝑈) = 𝐸, 𝜑𝑟𝐴(𝑉) = 𝐹, 𝜑𝑟𝐴(𝑊) = 𝐸;

𝜑𝑟𝐵(𝑋) = 𝐸;

𝜑♯
𝐴
(𝑈,𝑌) = 𝑆, 𝜑♯

𝐴
(𝑈, 𝑍) = 𝑅, 𝜑♯

𝐴
(𝑊,𝑌) = 𝑅, 𝜑♯

𝐴
(𝑊, 𝑍) = 𝑅;

𝜑♯
𝐵
(𝑋,𝑌) = 𝑇, 𝜑♯

𝐵
(𝑋, 𝑍) = 𝑇.

6.2. LENSES TO COMPOSITES 197

Polyboxes display the same data in a different format:

𝑆

𝐴 𝑈

𝐶

𝑌

𝐸
𝑅

𝐴 𝑈

𝐶

𝑍

𝐸

𝐴
𝑉

𝐶

𝐹
𝑅

𝐴
𝑊

𝐶

𝑌

𝐸
𝑅

𝐴
𝑊

𝐶

𝑍

𝐸

𝑇

𝐵
𝑋

𝐷

𝑌

𝐸
𝑇

𝐵
𝑋

𝐷

𝑍

𝐸

As before, keep in mind that each arrow of a lens depends not only on the box it

emerges from, but also on every box that came before it in our usual reading order

(lower left to lower right to upper right to upper left).

The third set of polyboxes, where the left blue box has been filled with an 𝐴 and the

lower right blue box has been filled with a 𝑉 , is worth highlighting: as 𝜑𝑟
𝐴
(𝑉) = 𝐹, but

𝑟[𝐹] = ∅, it is impossible to write a direction of 𝑟 at 𝐹 to go in the upper right box. To

indicate this, we color the upper right box red and leave the arrow emerging from it

dashsed.

Example 6.41 (Dynamical systems with composite interfaces). We explored dynamical

systems with product interfaces in Section 4.3.1 and parallel product interfaces in

Section 4.3.2. How about dynamical systems with composite interfaces? We now have

all the tools we need to characterize them.

By the previous example, a dynamical system 𝜑 : 𝑆y𝑆 → 𝑞 ⊳ 𝑟 can be drawn as

𝑡

𝑠
𝑆y𝑆

𝑏

𝑗
𝑞

𝑐

𝑘
𝑟

𝜑𝑞

𝜑𝑟

𝜑♯

We can interpret the behavior of this system as follows. Rather than a single interface

𝑞 ⊳ 𝑟, we view 𝜑 as having two interfaces that must be interacted with in succession, 𝑞

followed by 𝑟.

Given the current state 𝑠 ∈ 𝑆, the system feeds it into 𝜑𝑞
to return a position 𝑗

of the first interface 𝑞. Upon receiving a direction 𝑏 ∈ 𝑞[𝑗], it then uses 𝜑𝑟 to return

another position 𝑘 (dependent on the state 𝑠 and the direction 𝑏), this time belonging

198 CHAPTER 6. THE COMPOSITION PRODUCT

to the second interface 𝑟. Once a second direction 𝑐 is received, this time from 𝑟[𝑘], the
system updates its state by feeding the current state 𝑠 and the pair of directions (𝑏, 𝑐)
it received into 𝜑♯

, yielding a new state 𝑡 ∈ 𝑆.
That’s a lot of words, which is why the polybox picture is so helpful: by following

the arrows, we can see that a dynamical system with a composite interface actually

captures a very natural type of interaction! Mixing our metaphors a little, 𝜑 could

model a system that displays cascading menus, where selecting an option 𝑏 on the first

menu 𝑗 opens up a second menu 𝑘. It is only when the interacting agent selects an

option 𝑐 from this second menu that both choices are sent back to the state system,

which updates its state accordingly.

All this generalizes to 𝑛-fold composite interfaces exactly how you’d expect: a

dynamical system with interface 𝑞1 ⊳ · · · ⊳ 𝑞𝑛 returns a position and receives a direc-

tion through interface 𝑞1, then accordingly returns a position and receives a direction

through interface 𝑞2, and so on, until it returns a position (according to the current

state and all previous directions) and receives a direction through 𝑞𝑛 , whereupon it

updates its state according to the 𝑛 directions it received along with the current state.

6.2.2 The composition product of lenses as polyboxes

A special case of a lens whose codomain is a composite is a lens that is itself the

composition product of lenses. If we draw such a lens using polyboxes by following

the instructions from (6.20) and (6.21), we would really just be stacking the polyboxes

for the constituent lenses on top of each other. For example, given lenses 𝜑 : 𝑝 → 𝑞 and

𝜑′ : 𝑝′→ 𝑞′, here is 𝜑 ⊳ 𝜑′ drawn as polyboxes:

𝑝

𝑝′

𝑞

𝑞′

𝜑1

𝜑♯

𝜑′1

(𝜑′)♯

(6.42)

What differentiates this from simply writing down the polyboxes for 𝜑 and the poly-

boxes for 𝜑′ is that we are explictly associating the position that will fill the lower

box of 𝑝′ with the direction that will fill the upper box of 𝑝, and likewise the position

that will fill the lower box of 𝑞′ with the direction that will fill the upper box of 𝑞.

Moreover, we have the user fill out the lower set of boxes first and work their way up,

so that, in particular, they can use the information they obtained from the behavior of

𝜑1 and 𝜑♯
to decide what to put in the lower box of 𝑝′. So this really does depict a lens

𝑝 ⊳ 𝑝′→ 𝑞 ⊳ 𝑞′.

How does (6.42) relate to our usual polybox depiction of a lens to a composite, as

in (6.39), but with the domain also replaced with a composite? A user who interacts

6.2. LENSES TO COMPOSITES 199

with (6.42) can fill the lower set of polyboxes (the ones for 𝜑) first, ignoring the upper

set of polyboxes (the ones for 𝜑′) until the entire lower half is filled. Alternatively, after

they fill in the lower box of 𝑝, but before they fill in anything else, they can already

decide what position to put in the lower box of 𝑝′ for every possible direction that

could end up in the upper box of 𝑝. By (6.16), such a choice is equivalent to picking

a position of the composite 𝑝 ⊳ 𝑝′. Then by (6.20), following just the bottom arrow 𝜑1

leads to the corresponding position of 𝑞 given by 𝜑 ⊳ 𝜑′, while filling in the upper box

of 𝑞 and following 𝜑♯
, then 𝜑′1 leads to the position of 𝑞′ that goes in the bottom box

of 𝑞′. Finally, once the user fills in the upper box of 𝑞′, following the top arrow (𝜑′)♯
completes the specification of a direction of 𝑝 ⊳ 𝑝′. In this way, (6.42) can be thought of

as a special case of (6.39).

Example 6.43 (Dynamical systems and the composition product, revisited). In Sec-

tion 6.1.4, we explained how the 𝑛-fold composition product 𝜑⊳ 𝑛
of a dynamical system

𝜑 : 𝑆y𝑆 → 𝑝 models the behavior of running through the system 𝑛 times, provided

we choose the positions of (𝑆y𝑆)⊳ 𝑛 appropriately. We can visualize this behavior using

polyboxes—for example, here’s what the 𝑛 = 3 case looks like:

𝑠
1

𝑠
0

𝑆y𝑆

𝑠
2

𝑠
1

𝑆y𝑆

𝑠
3

𝑠
2

𝑆y𝑆

𝑖
1

𝑜
0

𝑝

𝑖
2

𝑜
1

𝑝

𝑖
3

𝑜
2

𝑝

return

update

return

update

return

update

It is now patently obvious what 𝜑⊳ 3
does from this picture, as long as we know

how to read polyboxes (and we could probably make a pretty good guess even if we

didn’t!). This resolves the first issue we raised in Section 6.1.4, page 192: we now have a

concise way of depicting the 𝑛-fold composite of a dynamical system. The second issue

becomes clear when we look at which boxes are blue along the left: we would really

like the position 𝑠1 to be entered above the direction 𝑠1 automatically, the 𝑠2 entered

above 𝑠2 automatically, etc. rather than having to specify the contents of those blue

boxes manually. We shouldn’t even having the option to fill those blue boxes in with

anything else. We’ll see how to address this issue shortly in Example 6.44.

We make a big deal out of it, but (6.42) really is just the polyboxes of two separate

lenses drawn together. Where such polyboxes truly get interesting iswhenwe compose

them with polyboxes that look like (6.39). That is, given a lens 𝑔 : 𝑟 → 𝑝 ⊳ 𝑝′, consider

200 CHAPTER 6. THE COMPOSITION PRODUCT

the polyboxes for 𝑔 # (𝑓 ⊳ 𝑓 ′):

𝑟

𝑝

𝑝′

𝑞

𝑞′

𝑓1

𝑓 ♯

𝑓 ′1

(𝑓 ′)♯

𝑔𝑝

𝑔𝑝
′

𝑔♯

There’s a lot going onwith this lens! To fill out these polyboxes, we start from the lower

box of 𝑟, go all the way right to the lower box of 𝑞, loop back left, up, and right again

to the lower box of 𝑞′, then travel left all the way back to the upper box of 𝑟.

Say we knew that 𝑔 # (𝑓 ⊳ 𝑓 ′)were equal to some other lens ℎ : 𝑟 → 𝑞 ⊳ 𝑞′:

𝑘
𝑟

𝑝

𝑝′

𝑏
𝑞

𝑏′
𝑞′

𝑓1

𝑓 ♯

𝑓 ′1

(𝑓 ′)♯

𝑔𝑝

𝑔𝑝
′

𝑔♯

𝑘
𝑟

𝑏
𝑞

𝑏′
𝑞′

ℎ𝑞

ℎ𝑞
′

ℎ♯

=

We’ve filled in the corresponding blue boxes on either side of the equation with the

same entries. So if these two sets of polyboxes really do depict the same lens, each of

the three white boxes in the domain and codomain on the left should end up with the

same entry as the corresponding white box on the right (although the intermediary

mechanics may differ). Then if we follow the arrows in order on either side, matching

up the white boxes in the domain and codomain along the way, we can read off three

equations:

𝑔𝑝 # 𝑓1 = ℎ𝑞 , 𝑓
♯
𝑔𝑝(𝑘) # 𝑔

𝑝′

𝑘
𝑓 ′1 = ℎ

𝑞′

𝑘
, and (𝑓 ′)♯

𝑔𝑝
′
(
𝑓
♯

𝑔𝑝 (𝑘)(𝑏)
) # 𝑔♯

𝑘
= ℎ

♯
𝑘
.

The converse holds as well: if the three equations above all hold, then 𝑔 # (𝑓 ⊳ 𝑓 ′) = ℎ.

We will read equations off of polyboxes like this repeatedly in the rest of the book.

Example 6.44 (Transition lenses for state systems). In Example 6.43, we saw that the

2-fold composition product 𝜑⊳ 2
of a dynamical system 𝜑 : 𝑆y𝑆 → 𝑝 can be drawn as

6.2. LENSES TO COMPOSITES 201

follows:

𝑠
1

𝑠
0

𝑆y𝑆

𝑠
2

𝑠
1

𝑆y𝑆

𝑖
1

𝑜
0

𝑝

𝑖
2

𝑜
1

𝑝

return

update

return

update

This almost models the behavior of running through the system twice, except that we

should really only have one blue box on the domain side—the one we fill with the

initial state 𝑠0. The second blue box on the domain side, the one we fill with 𝑠1, should

instead be filled automatically with the same state as the direction 𝑠1 in the white box

below it.

In fact, it would be nice if the domain were still just 𝑆y𝑆. Then we would have

a lens 𝑆y𝑆 → 𝑝 ⊳ 𝑝 that takes an initial state 𝑠0 ∈ 𝑆 and runs the original system 𝜑

twice, returning two positions and receiving two directions before stopping at the new

state 𝑠2. But we just learned how to take a composition product of lenses such as

𝜑⊳ 2
: 𝑆y𝑆 ⊳𝑆y𝑆 → 𝑝 ⊳ 𝑝 and convert its domain to a new polynomial, say 𝑆y𝑆, with only

one blue box on the domain side—just compose it with another lens 𝑆y𝑆 → 𝑆y𝑆 ⊳ 𝑆y𝑆

like so:

𝑠
2

𝑠
0

𝑆y𝑆

𝑠
1

𝑠
0

𝑆y𝑆

𝑠
2

𝑠
1

𝑆y𝑆

𝑖
1

𝑜
0

𝑝

𝑖
2

𝑜
1

𝑝

return

update

return

update

𝑠
2

𝑠
0

𝑆y𝑆

𝑖
1

𝑜
0

𝑝

𝑖
2

𝑜
1

𝑝

=

We’ll denote our new lens 𝑆y𝑆 → 𝑆y𝑆 ⊳ 𝑆y𝑆 on the far left by 𝛿. Let’s take a closer look

at how 𝛿 behaves on its own, labeling its arrows for ease of reference:

𝑠
2

𝑠
0

𝑆y𝑆

𝑠
1

𝑠
0

𝑆y𝑆

𝑠
2

𝑠
1

𝑆y𝑆

𝛿
0

𝛿
1

𝛿
2

202 CHAPTER 6. THE COMPOSITION PRODUCT

We can see from this picture that 𝛿 arises very naturally from the structure of 𝑆y𝑆;

indeed, every state system can be equipped with such a lens, just as every state system

can be equipped with a do-nothing section from Example 4.43. The bottom arrow

𝛿0 : 𝑆 → 𝑆 sending 𝑠0 ↦→ 𝑠0 is the identity on the position-set 𝑆: it sends each state to

itself. We use a double arrow to denote this equality. While the middle arrow 𝛿1 also

looks like an identity arrow, remember that we should think of it as depending on the

left blue box as well; so it is really a function 𝛿1 : 𝑆 × 𝑆→ 𝑆 sending (𝑠0 , 𝑠1), a position-
state 𝑠0 and a direction at 𝑠0 corresponding to state 𝑠1, to the new position-state 𝑠1.

Similarly, 𝛿2 : 𝑆 × 𝑆 × 𝑆→ 𝑆 sends (𝑠0 , 𝑠1 , 𝑠2), where the last coordinate is the direction

at position-state 𝑠1 corresponding to state 𝑠2, to the direction at position-state 𝑠0 that

also corresponds to state 𝑠2.

Notice the crucial role that 𝛿1 plays here: it matches up every direction at a given

state to the new state that the direction in question should point to, encoding how the

state system transitions from one state to the next. We have been labeling each direction

by the state that it points to, but we should really think of all the directions of 𝑆y𝑆 as

pairs of position-states (𝑠, 𝑡) ∈ 𝑆 × 𝑆, where (𝑠, 𝑡) is a direction at 𝑠 that represents the

transition from state 𝑠 to state 𝑡. The structure of the polynomial 𝑆y𝑆 tells us the state

that each direction transitions from, but it is 𝛿1 that tells us the new state 𝛿1(𝑠, 𝑡) = 𝑡

that (𝑠, 𝑡) transitions to. For that reason, we call 𝛿 the transition lens of the state system
𝑆y𝑆, and we call 𝛿1 : 𝑆 × 𝑆→ 𝑆 the target function, relabeling it tgt for short, indicating

where each direction leads.

This is exactly what we wanted back in Example 4.43: a way to encode which direc-

tions of a state system point to which positions in the language of Poly. Expressions in
that language are lenses such as 𝛿, and polyboxes like the ones above are the way we

write them down.

We highlighted 𝛿1 above, but the arrows 𝛿0 and 𝛿2 are no less important. As an

identity function, 𝛿0 = id𝑆 remembers the initial state 𝑠0 as we shift from its original

setting 𝑆y𝑆, where we can only move one state away from 𝑠0, to a new setting 𝑆y𝑆 ⊳𝑆y𝑆,

where we can think about all the ways to move two states away from 𝑠0. Meanwhile,

𝛿2 shifts us from the two-state setting back to the one-state setting while ensuring a

sort of transitive coherence condition: the state where we end up after moving from 𝑠0

through 𝑠1 to 𝑠2 is the same state we would end up at if we had moved from 𝑠0 directly

to 𝑠2. We will call it the run function, because it runs a sequence of two transitions

together, and because it is what keeps the system running as it tells the original state

system to actually move along one of its directions.

6.2. LENSES TO COMPOSITES 203

Here is another picture of the transition lens 𝛿 of 𝑆y𝑆 with our new arrow names:

𝑠
2

𝑠
0

𝑆y𝑆

𝑠
1

𝑠
0

𝑆y𝑆

𝑠
2

𝑠
1

𝑆y𝑆

id𝑆

tgt

run

This resolves the second issue we raised in Section 6.1.4, page 192 for the case of 𝑛 = 2,

giving us a dynamical system 𝛿 # (𝜑 ⊳ 𝜑) : 𝑆y𝑆 → 𝑝 ⊳ 𝑝 that simulates stepping through

the system 𝜑 twice. But what about more general values of 𝑛?

We already have a way of talking about the 𝑛 = 0 case: that is what the do-nothing

section 𝜖 : 𝑆y𝑆 → y models. But there is some overlap in how 𝜖 matches up state-

positions with directions and how 𝛿 does. Put another way, if 𝜖 tells us how to do

nothing, and 𝛿 tells us how to do two things, then we had better check that if one of

the two things we do is nothing, then that’s the same as doing just one thing. Can we

ensure that 𝜖 and 𝛿 agree on what they are saying about our state system?

Then for 𝑛 = 3, we would like a dynamical system 𝑆y𝑆 → 𝑝 ⊳ 𝑝 ⊳ 𝑝 that simulates

stepping through 𝜑 three times. One way to do this would be to compose 𝜑⊳ 3
with

a lens of the form 𝑆y𝑆 →
(
𝑆y𝑆

)⊳ 3

that we obtain by extending 𝛿 from modeling

two-step transitions to three-step transitions. But there are two ways to derive a lens

with codomain

(
𝑆y𝑆

)⊳ 3

from 𝛿: we could either take 𝛿 #
(
𝛿 ⊳ id𝑆y𝑆

)
, or we could take

𝛿 #
(
id𝑆y𝑆 ⊳ 𝛿

)
For larger values of 𝑛, there are even more possibilities for what we

could do. But there should really only be one dynamical system that models stepping

through 𝜑 a fixed number of times. How do we guarantee that all these different ways

of extending 𝛿 to 𝑛-step transitions end up telling us the same thing?

In summary, we need some kind of compatibility condition between 𝜖 and 𝛿, as

well as some kind of associativity condition on 𝛿 to guarantee that it can be extended

coherently. In fact, we already have all the tools we need to characterize these condi-

tions: we’ll see exactly how to state the properties we want in the next chapter. And if

this is all starting to sound suspiciously familiar, you’re not wrong—but we’ll save that

surprise for the next chapter as well.

Exercise 6.45 (Solution here). Let 𝑆 B N and 𝑝 B Ry1
, and define 𝜑 : 𝑆y𝑆 → 𝑝 to be the

dynamical system with return function 𝜑1(𝑘) B 𝑘 and update function 𝜑♯
𝑘
(1) B 𝑘 + 1.

1. Draw the polyboxes for 𝜑 and describe its dynamics: what does 1 run through

the system look like?

204 CHAPTER 6. THE COMPOSITION PRODUCT

2. Let 𝛿 : 𝑆y𝑆 → 𝑆y𝑆 ⊳ 𝑆y𝑆 be the transition lens of 𝑆y𝑆, and draw the polyboxes

for the new system 𝛿 # (𝜑 ⊳ 𝜑) : 𝑆y𝑆 → 𝑝 ⊳ 𝑝. Describe its dynamics: how does it

model 2 runs through the system? ♦

Exercise 6.46 (Solution here). As a lens whose domain is a state system, the transition

lens 𝛿 : 𝑆y𝑆 → 𝑆y𝑆 ⊳ 𝑆y𝑆 of a state system 𝑆y𝑆 can be interpreted as a standalone

dynamical system. Describe the dynamics of this system. ♦

6.3 Categorical properties of the composition product

Weconclude this chapter bydiscussing several interestingproperties of the composition

product, many of which will come in handy in the following chapters. We’ll focus

on how ⊳ interacts with other constructions on Poly that we introduced in previous

chapters.

6.3.1 Interaction with products and coproducts

It turns out that the composition product behaves well—albeit asymmetrically—with

products and coproducts.

Proposition 6.47 (Left distributivity of ⊳ over + and ×). Given a polynomial 𝑟, the

functor (−⊳𝑟) : Poly→ Poly that sends each 𝑝 ∈ Poly to 𝑝⊳𝑟 commuteswith coproducts

and products (up to natural isomorphism). That is, for any 𝑝, 𝑞 ∈ Poly, we have the

following natural isomorphisms:

(𝑝 + 𝑞) ⊳ 𝑟 � (𝑝 ⊳ 𝑟) + (𝑞 ⊳ 𝑟) (6.48)

and

𝑝𝑞 ⊳ 𝑟 � (𝑝 ⊳ 𝑟)(𝑞 ⊳ 𝑟). (6.49)

More generally, given a set 𝐴 and polynomials (𝑞𝑎)𝑎∈𝐴, we have the following natural

isomorphisms: (∑
𝑎∈𝐴

𝑞𝑎

)
⊳ 𝑟 �

∑
𝑎∈𝐴
(𝑞𝑎 ⊳ 𝑟) (6.50)

and (∏
𝑎∈𝐴

𝑞𝑎

)
⊳ 𝑟 �

∏
𝑎∈𝐴
(𝑞𝑎 ⊳ 𝑟) (6.51)

Proof. Formally, this comes down to the fact that (co)products of functors Set → Set
are computed pointwise (Proposition 1.37) and that (co)products in Poly coincide with

(co)products in SetSet
(Propositions 3.3 and 3.56). One could instead give an explicit

6.3. CATEGORICAL PROPERTIES OF THE COMPOSITION PRODUCT 205

proof using (6.6); this is done in Exercise 6.52. In fact, we will see yet another proof of

(6.51) (and thus (6.49)) in Exercise 6.70 #2. □

Exercise 6.52 (Solution here). Prove Proposition 6.47 using the explicit formula for ⊳

given in (6.6) by manipulating sums and products. ♦

Example 6.53 (Picturing the left distributivity of ⊳ over ×). We want an intuitive under-

standing of the left distributivity given by (6.49). Let 𝑝 B y, 𝑞 B y + 1, and 𝑟 B y2 + 1,
as shown here:

•

𝑝

• •

𝑞

• •

𝑟

Then 𝑝𝑞 � y2 + y can be drawn as follows, with each corolla comprised of a 𝑝-corolla

and a 𝑞-corolla with their roots glued together:

• •𝑝𝑞 �

We can therefore draw 𝑝𝑞 ⊳ 𝑟 by grafting 𝑟-corollas to leaves of 𝑝𝑞 in every way, as

follows:

•
• •

•
• •

•
• •

•
• •

•
•

•
•𝑝𝑞 ⊳ 𝑟 �

So each tree in 𝑝𝑞 ⊳ 𝑟 is obtained by grafting together the roots of a 𝑝-corolla and a

𝑞-corolla, then attaching 𝑟-corollas to each leaf.

Alternatively, we can compute 𝑝 ⊳ 𝑟 and 𝑞 ⊳ 𝑟 seperately, grafting 𝑟-corollas to leaves

of 𝑝 in every way, then to leaves of 𝑞 in every way:

•
•
•
•𝑝 ⊳ 𝑟 �

•
•
•
•
•

𝑞 ⊳ 𝑟 �

Their product is then obtained by taking each tree from 𝑝 ⊳ 𝑟 and pairing it with each

tree from 𝑞 ⊳ 𝑟 by gluing their roots together:

•
• •

•
• •

•
•

•
• •

•
• •

•
•(𝑝 ⊳ 𝑞)(𝑝 ⊳ 𝑟) �

So each tree in (𝑝 ⊳ 𝑟)(𝑞 ⊳ 𝑟) is obtained by grafting 𝑟-corollas to each leaf of a 𝑝-corolla

and a 𝑞-corolla before gluing their roots together.

206 CHAPTER 6. THE COMPOSITION PRODUCT

But it doesn’t matter if we graft 𝑟-corollas onto leaves first, or if we glue the roots of

𝑝- and 𝑞-corollas together first–the processes are equivalent. Hence the isomorphism

𝑝𝑞 ⊳ 𝑟 � (𝑝 ⊳ 𝑟)(𝑞 ⊳ 𝑟) holds.

Exercise 6.54 (Solution here). Follow Example 6.53 with coproducts (+) in place of

products (×): use pictures to give an intuitive understanding of the left distributivity

given by (6.48). ♦

Exercise 6.55 (Solution here). Show that for any set 𝐴 and polynomials 𝑝, 𝑞, we have

an isomorphism 𝐴(𝑝 ⊳ 𝑞) � (𝐴𝑝) ⊳ 𝑞. ♦

In Section 6.3.2, wewill see how to generalize the left distributivity of ⊳ over products

to arbitrary limits. But first, we observe that right distributivity does not hold.

Exercise 6.56 (Solution here). Show that the distributivities of Proposition 6.47 do not

hold on the other side:

1. Find polynomials 𝑝, 𝑞, 𝑟 such that 𝑝 ⊳ (𝑞𝑟) ̸� (𝑝 ⊳ 𝑞)(𝑝 ⊳ 𝑟).
2. Find polynomials 𝑝, 𝑞, 𝑟 such that 𝑝 ⊳ (𝑞 + 𝑟) ̸� (𝑝 ⊳ 𝑞) + (𝑝 ⊳ 𝑟). ♦

Nevertheless, there is something to be said about the relationship between 𝑝⊳𝑞, 𝑝⊳𝑟,

and 𝑝 ⊳ (𝑞𝑟). We’ll see this in action after we discuss how ⊳ preserves limits on the left.

6.3.2 Interaction with limits on the left

We saw in Theorem 5.33 that Poly has all limits, and we saw in Exercise 5.42 that these

limits coincidewith limits inSetSet
. Hence the argument in theproof of Proposition 6.47

by appealing to Proposition 1.37 can be generalized to arbitrary limits. It follows that

⊳ preserves all limits on the left. But we will present a proof of this fact from an

alternative perspective: by appealing to the left coclosure of ⊳.

Proposition 6.57 (Meyers). The composition product is left coclosed. That is, there

exists a left coclosure operation, which we denote

[−
−
]
: Polyop×Poly→ Poly, such that

there is a natural isomorphism

Poly(𝑝, 𝑟 ⊳ 𝑞) � Poly
([
𝑞

𝑝

]
, 𝑟

)
. (6.58)

In particular, the left coclosure operation sends 𝑞, 𝑝 ∈ Poly to[
𝑞

𝑝

]
B

∑
𝑖∈𝑝(1)

y𝑞(𝑝[𝑖]). (6.59)

6.3. CATEGORICAL PROPERTIES OF THE COMPOSITION PRODUCT 207

Proof. We present an argument using polyboxes; we leave it to the reader to write this

proof in more standard mathematical notation in Exercise 6.60.

As in Example 6.40, a lens 𝜑 : 𝑝 → 𝑟 ⊳ 𝑞 can be written as follows:

𝑎

𝑖
𝑝

𝑐

𝑘
𝑟

𝑏

𝑗
𝑞

𝜑𝑟

𝜑𝑞

𝜑♯

But this is equivalent to the following gadget (to visualize this equivalence, imagine

leaving the positions box for 𝑝, the arrow 𝜑𝑟 , and the polyboxes for 𝑟 untouched, while

dragging the polyboxes for 𝑞 leftward to the directions box for 𝑝, merging all the data

from 𝑞 and the arrows 𝜑𝑞
and 𝜑♯

into a single on-directions arrow and directions box):

(𝑗 , 𝜑♯)

𝑖

[
𝑞
𝑝

] 𝑐

𝑘

𝑟

𝜑𝑟

Here the on-directions function encodes the behaviors of both 𝜑𝑞
and 𝜑♯

by sending

each 𝑟[𝑘]-direction 𝑐 to both a 𝑞-position 𝑗, as 𝜑𝑞
does, and a function sending 𝑞[𝑗]-

directions to 𝑝[𝑖]-directions, as 𝜑♯
does. So the polyboxes on the left represent a

polynomial whose positions are the same as those of 𝑝, but whose directions at 𝑖 ∈ 𝑝(1)
are pairs (𝑗 , 𝜑♯) consisting of a 𝑞-position 𝑗 and a function 𝜑♯

: 𝑞[𝑗] → 𝑝[𝑖]. Such pairs

are precisely the elements of 𝑞(𝑝[𝑖]), so the polynomial represented by the polyboxes

on the left is indeed the one defined as

[
𝑞
𝑝

]
in (6.59). It follows that there is a natural

isomorphism between lenses 𝑝 → 𝑟 ⊳ 𝑞 and lenses

[
𝑞
𝑝

]
→ 𝑟. □

Exercise 6.60 (Solution here). Translate the polyboxes proof of Proposition 6.57 into

standard mathematical notation, i.e. the

∑
and

∏
notation we have been using up till

now. ♦

Remark 6.61. The proof you came up with in Exercise 6.60 may be more obviously

rigorous and concise than the one we presented in the main text. But polyboxes help

us see right on paper exactly what is going on in this adjunction: how data on the

codomain-side of a lens 𝑝 → 𝑟 ⊳ 𝑞 can be simply repackaged and transferred to the

domain-side of a new lens

[
𝑞
𝑝

]
→ 𝑟.

Exercise 6.62 (Solution here). In stating Proposition 6.57, we implicitly assumed that[−
−
]
is a functor Polyop × Poly→ Poly. Here we show that this is indeed the case.

1. Given a polynomial 𝑞 and a lens 𝜑 : 𝑝 → 𝑝′, to what lens

[
𝑞
𝑝

]
→

[
𝑞
𝑝′
]
should the

covariant functor

[
𝑞
−
]
send 𝜑? Prove that your construction is functorial.

208 CHAPTER 6. THE COMPOSITION PRODUCT

2. Given a polynomial 𝑝 and a lens 𝜓 : 𝑞′ → 𝑞, to what lens

[
𝑞
𝑝

]
→

[
𝑞′
𝑝

]
should the

contravariant functor

[−
𝑝

]
send 𝜓? Prove that your construction is functorial. ♦

Exercise 6.63 (Solution here). In personal communication, Todd Trimble noted (the in-

retrospect-obvious fact) that the left coclosure can be thought of as a left Kan extension

Set Set

Set

𝑝

𝑞
⇓
[𝑞𝑝]

Verify this. ♦

Exercise 6.64 (Solution here). Let 𝐴 and 𝐵 be sets, and let 𝑝 and 𝑞 be polynomials.

1. Prove that the following natural isomorphism holds:

Poly(𝐴y𝐵 , 𝑝) � Set(𝐴, 𝑝(𝐵)). (6.65)

2. Prove that the following natural isomorphism holds:

Poly
(
𝐴y ⊳ 𝑝 ⊳ y𝐵 , 𝑞

)
� Poly

(
𝑝, y𝐴 ⊳ 𝑞 ⊳ 𝐵𝑦

)
. (6.66)

(Hint: Break the isomorphism down into two parts. You may find (5.9) helpful.)

♦

Example 6.67 (Dynamical systems as coalgebras). Taking 𝐴 = 𝐵 = 𝑆 ∈ Set in (6.65),

we find that there is a natural isomorphism between dynamical systems 𝑆y𝑆 → 𝑝

and functions 𝑆 → 𝑝(𝑆). Such a function is known as a coalgebra for the functor 𝑝 or a

𝑝-coalgebra.6

Coalgebras as models of dynamical systems have been studied extensively in the

context of computer science, most notably by Jacobs in [Jac17]. Indeed, much of what

we developed in stems from the theory of coalgebras. The coalgebraic perspective has

the benefit of staying in the familiar category of sets; moreover, it can be generalized to

functors Set→ Set that are not polynomial, althoughmany of the interesting examples

are.

On the other hand, we have already seen that viewing dynamical systems as lenses

𝑆y𝑆 → 𝑝 rather than as functions 𝑆→ 𝑝(𝑆) has the benefit of isolating the internal state

system to the domain and the external interface to the codomain, aiding both intuition

and functionality. Plus, our adjunction lets us switch to the coalgebraic perspective

whenever we see fit: Poly lets us talk about both.

6.3. CATEGORICAL PROPERTIES OF THE COMPOSITION PRODUCT 209

Proposition 6.68 (Left preservation of limits). The operation ⊳ preserves limits on the

left (up to natural isomorphism). That is, if J is a category, 𝑝− : J→ Poly is a functor,

and 𝑞 ∈ Poly is a polynomial, then there is a natural isomorphism(
lim

𝑗∈J
𝑝 𝑗

)
⊳ 𝑞 � lim

𝑗∈J
(𝑝 𝑗 ⊳ 𝑞). (6.69)

Proof. By Proposition 6.57, the functor (− ⊳ 𝑞) : Poly→ Poly is the right adjoint of the

functor

[
𝑞
−
]
: Poly→ Poly, and right adjoints preserve limits. □

Exercise 6.70 (Solution here).
1. Complete Exercise 6.28 #3 using (6.69) and (6.50).

2. Deduce (6.51) using (6.69). ♦

6.3.3 Interaction with limits on the right

So ⊳ preserves limits on the left. How about limits on the right? We saw in Exercise 6.56

that ⊳ does not even preserve products on the right, so it certainly does not preserve all

limits. But it turns out that there is a special class of limits that ⊳ does preserve on the

right.

Definition 6.71 (Connected limit). A connected limit is one whose indexing category J

is nonempty and connected. That is, J has at least one object, and any two objects are

connected by a finite zigzag of arrows.

Example 6.72. The following categories are connected:

• •⇒ • • → • ← • • ← • ← • ← · · ·

In particular, equalizers, pullbacks, and directed limits are examples of connected

limits.

The following categories are not connected:

• • • • → •

In particular, terminal objects and products are not examples of connected limits.

6
There are two versions of coalgebras we are interested in (and more that we are not) with distinct

definitions: a coalgebra for a functor, which is the version used here, and a coalgebra for a comonad, which is a

coalgebra for a functor with extra conditions that we will introduce later in Section 7.3.3. The version we

are using will usually be clear from context—here, for example, we do not expect 𝑝 to be a comonad—but

we will try to be explicit with our terminology whenever the interpretation may be ambiguous.

210 CHAPTER 6. THE COMPOSITION PRODUCT

Connected limits are intimately related to slice categories, which we defined back

in Definition 5.66. For example, products in a slice category C/𝑐 are just pullbacks in

C, allowing us to view a non-connected limit as a connected one. By relating Poly to

its slice categories via an adjunction, we’ll be able to show that ⊳ preserves connected

limits. (An alternative proof of this fact can be found in [GK12, Proposition 1.16].)

Recall that objects in a slice category C/𝑐 are just morphisms with codomain 𝑐. For

ease of notation, we’ll often suppress the actual morphism and just write down the

name of its domain when there is a canonical choice for the morphism, or when it is

clear from context. So for example, on the left hand side of (6.74) below, 𝑝 represents

the lens 𝑓 : 𝑝 → 𝑞 ⊳ 1 and 𝑞 ⊳ 𝑟 represents the lens 𝑞 ⊳ ! : 𝑞 ⊳ 𝑟 → 𝑞 ⊳ 1, both objects in the

slice category Poly/𝑞 ⊳ 1.

Proposition 6.73. Given polynomials 𝑝, 𝑞, 𝑟 ∈ Poly and a function 𝑓 : 𝑝 → 𝑞 ⊳ 1, there
is a natural isomorphism

Poly/(𝑞 ⊳ 1)
(
𝑝, 𝑞 ⊳ 𝑟

)
� Poly

(
𝑝

𝑓
⌢ 𝑞, 𝑟

)
, (6.74)

where

𝑝
𝑓
⌢ 𝑞 B

∑
𝑖∈𝑝(1)

𝑞[𝑓 (𝑖)]y𝑝[𝑖]. (6.75)

Proof. Again, we present an argument using polyboxes; we leave it to the reader to

write this proof in more standard mathematical notation in Exercise 6.77.

Note that to consider 𝑞 ⊳ 𝑟 as an object in Poly/(𝑞 ⊳ 1), we are implicitly using the

lens 𝑞 ⊳ ! : 𝑞 ⊳ 𝑟 → 𝑞 ⊳1. By definition, morphisms from 𝑓 to 𝑞 ⊳ ! in Poly/(𝑞 ⊳1) are lenses
𝜑 : 𝑝 → 𝑞 ⊳ 𝑟 for which 𝜑 # (𝑞 ⊳ !) = 𝑓 . We can write this equation using polyboxes:

𝑖
𝑝

𝑏

𝑗

𝑞

𝑘

𝑟

𝑏

𝑗
𝑞

1

𝜑𝑞

𝜑𝑟

𝜑♯

𝑖
𝑝

𝑏

𝑓 (𝑖)
𝑞

1

𝑓

!

=

We can read off the picture that a lens 𝜑 : 𝑝 → 𝑞 ⊳ 𝑟 is a morphism from 𝑓 to 𝑞 ⊳ ! in

6.3. CATEGORICAL PROPERTIES OF THE COMPOSITION PRODUCT 211

Poly/𝑞 ⊳ 1 if and only if 𝜑𝑞 = 𝑓1. So morphisms from 𝑓 to 𝑞 ⊳ ! are equivalent to gadgets

𝑎

𝑖
𝑝

𝑏

𝑓1(𝑖)
𝑞

𝑐

𝑘

𝑟

𝑓

𝜑𝑟

𝜑♯

with 𝑓1 fixed. But this, in turn, is equivalent to the following gadget (to visualize this

equivalence, imagine leaving the polyboxes for 𝑟, the arrow 𝜑♯
, and the directions box

for 𝑝 untouched, while dragging the polyboxes for 𝑞 leftward to the positions box for

𝑝, merging the data from 𝑞 and the predetermined arrow 𝑓 into a single positions box

and adapting the arrow 𝜑𝑟 into an on-positions arrow):

𝑎

(𝑖 , 𝑏)𝑝
𝑓
⌢ 𝑞

𝑐

𝑘
𝑟

𝜑𝑟

𝜑♯

Here the user canprovide both the 𝑝-position 𝑖 and the 𝑞[𝑓 (𝑖)]-direction 𝑏 right from the

start, as they knowwhat to expect from 𝑓 ahead of time. Then the on-positions function

encodes the behavior of 𝜑𝑟 . So the polyboxes on the left represent a polynomial whose

positions are pairs (𝑖 , 𝑏) with 𝑖 ∈ 𝑝(1) and 𝑏 ∈ 𝑞[𝑓 (𝑖)], and whose directions at (𝑖 , 𝑏)
are the directions of the original polynomial 𝑝 at 𝑖. This is precisely the polynomial we

defined in (6.75), so the isomorphism holds. □

Remark 6.76. As a lens 𝑝 → 𝑞 ⊳ 1 can be identified with its on-positions function

𝑝(1) → 𝑞(1), we’ll use the notation 𝑝
𝑓
⌢ 𝑞 interchangeably for lenses 𝑓 : 𝑝 → 𝑞 ⊳ 1 and

functions 𝑓 : 𝑝(1) → 𝑞(1).

Exercise 6.77 (Solution here).
1. Translate the polyboxes proof of Proposition 6.73 into standard mathematical

notation.

2. Prove that the following natural isomorphism holds:

Poly(𝑝, 𝑞 ⊳ 𝑟) �
∑

𝑓 : 𝑝(1)→𝑞(1)
Poly

(
𝑝

𝑓
⌢ 𝑞, 𝑟

)
. (6.78)

Thus the functor (𝑞 ⊳ −) : Poly→ Poly is said to have a left multiadjoint.
♦

212 CHAPTER 6. THE COMPOSITION PRODUCT

Exercise 6.79 (Solution here). In stating Proposition 6.73, we implicitly assumed that

𝑝
𝑓
⌢ 𝑞 ∈ Poly is functorial in each variable: covariantly on the left and contravariantly

on the right. Here we show that this is indeed the case.

1. Given lenses 𝑓 : 𝑝 → 𝑞 ⊳ 1 and 𝑔 : 𝑝′ → 𝑝, to what lens 𝑝′
𝑔# 𝑓
⌢ 𝑞 → 𝑝

𝑓
⌢ 𝑞 should

the covariant functor − 𝑓
⌢ 𝑞 send 𝑔? Prove that your construction is functorial.

2. Given lenses 𝑓 : 𝑝 → 𝑞 ⊳ 1 and ℎ : 𝑞 → 𝑞′, to what lens 𝑝
𝑓 #(ℎ⊳1)
⌢ 𝑞′ → 𝑝

𝑓
⌢ 𝑞

should the contravariant functor 𝑝
𝑓
⌢ − send ℎ? Prove that your construction is

functorial. ♦

Theorem 6.80 (Preservation of connected limits). The operation ⊳ preserves connected

limits on both sides. That is, if J is a connected category, 𝑝 : J→ Poly is a functor, and

𝑞 ∈ Poly is a polynomial, then there are natural isomorphisms(
lim

𝑗∈J
𝑝 𝑗

)
⊳ 𝑞 � lim

𝑗∈J
(𝑝 𝑗 ⊳ 𝑞) and 𝑞 ⊳

(
lim

𝑗∈J
𝑝 𝑗

)
� lim

𝑗∈J
(𝑞 ⊳ 𝑝 𝑗)

Proof. The claim for the left side is just a special case of Proposition 6.68; it remains to

prove the claim on the right.

By Theorem 5.33, Poly is complete, so by [nLa19, Theorem 4.3], it suffices to show

that the functor (𝑞 ⊳ −) : Poly → Poly preserves wide pullbacks on the right. By

Proposition 6.73, the functor (𝑞 ⊳−) : Poly→ Poly/𝑞 ⊳1 is a right adjoint, so it preserves

limits, including wide pullbacks. Thus (𝑞 ⊳ −) sends a wide pullback over 𝑟 ∈ Poly to

a wide pullback over the canonical lens 𝑞 ⊳ 𝑟 → 𝑞 ⊳ 1 in Poly/𝑞 ⊳ 1, corresponding to

a limit in Poly of a diagram consisting of arrows to 𝑞 ⊳ 𝑟 and arrows to 𝑞 ⊳ 1 factoring

through 𝑞 ⊳ 𝑟. So up to isomorphism, this limit is just a wide pullback in Poly over

𝑞 ⊳ 𝑟, namely (𝑞 ⊳−) : Poly→ Poly applied to the original wide pullback. So ⊳ preserves

wide pullbacks on the right. □

Exercise 6.81 (Solution here). Use Theorem 6.80 in the following.

1. Let 𝑝 be a polynomial, thought of as a functor 𝑝 : Set → Set. Show that 𝑝

preserves connected limits (of sets).

2. Show that for any polynomials 𝑝, 𝑞, 𝑟 we have an isomorphism:

𝑝 ⊳ (𝑞𝑟) � (𝑝 ⊳ 𝑞) ×(𝑝⊳1) (𝑝 ⊳ 𝑟). (6.82)

3. Take the polynomials 𝑝, 𝑞, 𝑟 from the counterexample you found in Exercise 6.56

#1 and check that (6.82) holds. ♦

While we’re here, it will be helpful to record the following.

6.3. CATEGORICAL PROPERTIES OF THE COMPOSITION PRODUCT 213

Proposition 6.83. For any polynomial 𝑞 ∈ Poly, tensoring with 𝑞 (on either side)

preserves connected limits. That is, if J is connected and 𝑝 : J → Poly is a functor,

then there is a natural isomorphism:(
lim

𝑗∈J
𝑝 𝑗

)
⊗ 𝑞 � lim

𝑗∈J
(𝑝 𝑗 ⊗ 𝑞).

6.3.4 Interaction with parallel products

Before we get into how ⊗ interacts with ⊳, here is a warm-up exercise.

Exercise 6.84 (Solution here). Let 𝐴 and 𝐵 be arbitrary sets, and let 𝑝 be an arbitrary

polynomial. Which of the following isomorphisms always hold?

If the isomorphism does not always hold, is there still a canonical lens in one

direction or the other?

1. (𝐴y) ⊗ (𝐵y) �? (𝐴y) ⊳ (𝐵y).
2. y𝐴 ⊗ y𝐵 �? y𝐴 ⊳ y𝐵.

3. 𝐴 ⊗ 𝐵 �? 𝐴 ⊳ 𝐵.

4. 𝐵y ⊗ 𝑝 �? 𝐵y ⊳ 𝑝.

5. y𝐴 ⊗ 𝑝 �? y𝐴 ⊳ 𝑝.

6. 𝑝 ⊗ 𝐵y �? 𝑝 ⊳ 𝐵y.

7. 𝑝 ⊗ y𝐴 �? 𝑝 ⊳ y𝐴. ♦
What do all of the lenses you found in this exercise have in common (whether or not

they were isomorphisms)?

Example 6.85 (Lenses from ⊗ to ⊳). For any 𝑝 and 𝑞, there is an interesting cartesian lens

𝑜𝑝,𝑞 : 𝑝⊗ 𝑞 → 𝑝 ⊳ 𝑞 that, stated informally, “orders” the operation, taking the symmetric

monoidal product ⊗ and reinterprets it as a special case of the asymmetric monoidal

product ⊳. Defining this lens in the usual way is rather tedious and unilluminating, but

written in polyboxes, the lens looks like this (recall that positions of 𝑝 ⊗ 𝑞 are just pairs
of positions of 𝑝 and 𝑞, while directions at each such pair are pairs of directions of 𝑝

and 𝑞, one at each position in the pair; we drop the parentheses around the ordered

pair for readability):

𝑎, 𝑏

𝑖, 𝑗
𝑝 ⊗ 𝑞

𝑎

𝑖
𝑝

𝑏

𝑗
𝑞

Usually, the positions box of 𝑞 is allowed to depend on the directions box of 𝑝 in the

polyboxes for 𝑝 ⊳ 𝑞 on its own. But in the polyboxes above, 𝑗 is not allowed to depend

214 CHAPTER 6. THE COMPOSITION PRODUCT

on 𝑎 in 𝑝 ⊗ 𝑞 on the left, so the arrow from the positions box of 𝑞 to the directions box

of 𝑝 on the right doesn’t actually take 𝑎 into account at all. So the lens 𝑜𝑝,𝑞 is in some

sense the inclusion of the order-independent positions of 𝑝 ⊳ 𝑞; when drawn as trees,

the positions in its image are the ones whose upper-level corollas are all the same. And

of course we can flip the order using the symmetry 𝑞 ⊗ 𝑝 � 𝑝 ⊗ 𝑞. This is, we just as

well have a lens 𝑝 ⊗ 𝑞 → 𝑞 ⊳ 𝑝.

Both ⊗ and ⊳ have the same monoidal unit, the identity functor y, whose identity

is the unique lens y → y. In fact the lenses 𝑜𝑝,𝑞 constitute a lax monoidal functor

(Poly, y,⊗) → (Poly, y, ⊳). In particular, 𝑜𝑝,𝑞 commutes with associators and unitors.

This can be used in the following way. Lenses 𝑝 → 𝑞 ⊳ 𝑟 into composites are fairly

easy to understand (through polyboxes, for example), whereas lenses 𝑞 ⊳ 𝑟 → 𝑝 are not

so easy to think about. However, given such a lens, one may always compose it with

𝑜𝑞,𝑟 to obtain a lens 𝑞 ⊗ 𝑟 → 𝑝. This is quite a bit simpler to think about: they are our

familiar interaction patterns from Section 4.4.

It turns out that the monoidal structures ⊗ and ⊳ together satisfy an interesting

property known as duoidality. We won’t give the entire definition of what it means for

two monoidal structures to be duoidal here—there are a few commutative diagrams

to verify for technical reasons—but the key condition is that there is a natural lens

(𝑝 ⊳ 𝑝′) ⊗ (𝑞 ⊳ 𝑞′) → (𝑝 ⊗ 𝑞) ⊳ (𝑝′ ⊗ 𝑞′). (6.86)

Proposition 6.87. Themonoidal structures (y,⊗) and (y, ⊳) together comprise a duoidal

structure on Poly.

Idea of proof. The key is to give the natural lens from (6.86), as follows. A position of

𝑝 ⊳ 𝑝′ is a pair (𝑖 , 𝑖′) with 𝑖 ∈ 𝑝(1) and 𝑖′ : 𝑝[𝑖] → 𝑝′(1); similarly, a position 𝑞 ⊳ 𝑞′ is a

pair (𝑗 , 𝑗′)with 𝑗 ∈ 𝑞(1) and 𝑗′ : 𝑞[𝑗] → 𝑞′(1). So we can define the first two parts of the

lens using polyboxes, like so (again we drop parentheses around some ordered pairs

for readability):

(𝑖 , 𝑖′), (𝑗 , 𝑗′)
(𝑝 ⊳ 𝑝′) ⊗ (𝑞 ⊳ 𝑞′)

𝑎, 𝑏

𝑖, 𝑗
𝑝 ⊗ 𝑞

𝑎′, 𝑏′

𝑖′(𝑎), 𝑗′(𝑏)
𝑝′ ⊗ 𝑞′

Here (𝑎, 𝑏) is a direction of 𝑝 ⊗ 𝑞 at (𝑖 , 𝑗), with 𝑎 ∈ 𝑝[𝑖] and 𝑏 ∈ 𝑞[𝑗].
Then to fill in the remaining empty box, we need a direction of 𝑝 ⊳ 𝑝′ at (𝑖 , 𝑖′), which

can be given by the 𝑝[𝑖]-direction 𝑎 followed by a 𝑝′[𝑖′(𝑎)]-direction, namely 𝑎′. We

6.4. SUMMARY AND FURTHER READING 215

also need a direction of 𝑞 ⊳ 𝑞′, which can be obtained analogously:

(𝑎, 𝑎′), (𝑏, 𝑏′)

(𝑖 , 𝑖′), (𝑗 , 𝑗′)
(𝑝 ⊳ 𝑝′) ⊗ (𝑞 ⊳ 𝑞′)

𝑎, 𝑏

𝑖, 𝑗
𝑝 ⊗ 𝑞

𝑎′, 𝑏′

𝑖′(𝑎), 𝑗′(𝑏)
𝑝′ ⊗ 𝑞′

□

6.3.5 Interaction with vertical and cartesian lenses

We conclude this section by examining how ⊳ interacts with vertical and cartesian

lenses, as defined in Definition 5.51.

Proposition 6.88 (Preservation of cartesian lenses). If 𝜑 : 𝑝 → 𝑝′ and 𝜓 : 𝑞 → 𝑞′ are

cartesian lenses, then so is 𝜑 ⊳ 𝜓 : 𝑝 ⊳ 𝑞 → 𝑝′ ⊳ 𝑞′.

Proof. We use the third characterization of cartesian lenses given in Proposition 5.59,

as lenses whose naturality squares are pullbacks. For any sets 𝐴, 𝐵 and function

ℎ : 𝐴→ 𝐵, consider the diagram

𝑝 ⊳ 𝑞 ⊳ 𝐴 𝑝′ ⊳ 𝑞 ⊳ 𝐴 𝑝′ ⊳ 𝑞′ ⊳ 𝐴

𝑝 ⊳ 𝑞 ⊳ 𝐵 𝑝′ ⊳ 𝑞 ⊳ 𝐵 𝑝′ ⊳ 𝑞′ ⊳ 𝐵.

The square on the left is a pullback because 𝜑 : 𝑝 → 𝑝′ is cartesian. Meanwhile,

the square on the right is a pullback because 𝜓 : 𝑞 → 𝑞′ is cartesian and ⊳ preserves

pullbacks by Theorem 6.80. Hence the outer rectangle is a pullback as well, implying

that 𝜑 ⊳ 𝜓 : 𝑝 ⊳ 𝑞 → 𝑝′ ⊳ 𝑞′ is cartesian. □

Exercise 6.89 (Solution here). Let 𝜑 : 𝑝 → 𝑝′ and 𝜓 : 𝑞 → 𝑞′ be lenses.

1. Show that if 𝜑 is an isomorphism and 𝜓 is vertical, then 𝜑 ⊳ 𝜓 is vertical.

2. Find a vertical lens 𝜑 and a polynomial 𝑞 for which 𝜑 ⊳ 𝑞 : 𝑝 ⊳ 𝑞 → 𝑝′ ⊳ 𝑞 is not

vertical. ♦

6.4 Summary and further reading

In this chapter we introduced the composition (sometimes called “substitution”) prod-

uct ⊳. Given polynomials 𝑝, 𝑞 thought of as functors, their composite is again polyno-

mial and is given by 𝑝 ⊳ 𝑞. We explained how it looks in terms of algebra, e.g. how to

compute y2 ⊳ (y + 1); in terms of sets, e.g. as a sum-product-sum-product

∑∏∑∏
,

216 CHAPTER 6. THE COMPOSITION PRODUCT

which can be reduced to a single

∑∏
; in terms of trees, by stacking corollas on top

of corollas; and in terms of polyboxes. We paid particular attention to lenses into a

composite 𝑝 → 𝑞 ⊳ 𝑟.

This allowed us to explain how to think of dynamical systems 𝑆y𝑆 → 𝑝 ⊳ 𝑞 with

composite interfaces as multi-step machines: each state produces a 𝑝-position 𝑖, and

then for every 𝑝[𝑖]-direction produces a 𝑞-position 𝑗, and finally for every 𝑞[𝑗]-direction
returns an updated state in 𝑆.

Finally, we discussed some facts of the composition product. For example, we

showed that − ⊳ 𝑞 has a left adjoint
[
𝑞
−
]
and that 𝑞 ⊳− has a left multi-adjoint − ⌢ 𝑞. We

also explained that 𝑝 ⊳ 𝑞 preserves all with limits in the variable 𝑝 and all connected

limits in the variable 𝑞. We also explained the duoidal interaction between ⊗ and ⊳, i.e.

the natural lens ⊳ ⊗ ⊳→ ⊗ ⊳ ⊗, and how ⊳ interacts with cartesian lenses.

Polynomial substitution is one of the best known aspects of polynomial functors.

Again, see [GK12] for more on this. We learned of the left coclosure (see Proposi-

tion 6.57) from Josh Meyers, though it may have already been known in the containers

community.

6.5 Exercise solutions
Solution to Exercise 6.8.

We are given 𝑝 B y2 + y1
and 𝑞 B y3 + 1.

1. By standard polynomial multiplication, we have that y2 ⊳ 𝑞 � 𝑞 × 𝑞 � y6 + 2y3 + 1.
2. We have that y1 ⊳ 𝑞 � 𝑞 � y3 + 1.
3. Combining the previous parts, we have that (y2 + y1) ⊳ 𝑞 � 𝑞 × 𝑞 + 𝑞 � y6 + 3y3 + 2.
4. Since 𝑝[1] � 2 and 𝑞(1) � 2, there are 2

2 = 4 functions 𝑝[1] → 𝑞(1).
5. When 𝑗

1
: 𝑝[1] → 𝑞(1) is one of the two possible bĳections, we have that∑

𝑎∈𝑝[1]
𝑞[𝑗

1
(𝑎)] � 𝑞[1] + 𝑞[2] � 3 + 0 � 3.

When 𝑗
1

: 𝑝[1] → 𝑞(1) sends everything to 1 ∈ 𝑞(1), we have that∑
𝑎∈𝑝[1]

𝑞[𝑗
1
(𝑎)] � 𝑞[1] + 𝑞[1] � 3 + 3 � 6.

Finally, when 𝑗
1

: 𝑝[1] → 𝑞(1) sends everything to 2 ∈ 𝑞(1), we have that∑
𝑎∈𝑝[1]

𝑞[𝑗
1
(𝑎)] � 𝑞[2] + 𝑞[2] � 0 + 0 � 0.

6. Since 𝑝[2] � 1 and 𝑞(1) � 2, there are 2
1 = 2 functions 𝑝[2] → 𝑞(1).

7. When 𝑗
2

: 𝑝[2] → 𝑞(1) maps to 1 ∈ 𝑞(1), we have that

∑
𝑎∈𝑝[2] 𝑞[𝑗2(𝑎)] � 𝑞[1] � 3, and when

𝑗
2

: 𝑝[2] → 𝑞(1)maps to 2 ∈ 𝑞(1), we have that

∑
𝑎∈𝑝[2] 𝑞[𝑗2(𝑎)] � 𝑞[2] � 0.

8. From the previous parts, we have that∑
𝑖∈𝑝(1)

∑
𝑗 : 𝑝[𝑖]→𝑞(1)

y
∑
𝑎∈𝑝[𝑖] 𝑞[𝑗𝑖 (𝑎)] � (2y3 + y6 + y0) + (y3 + y0) � y6 + 3y3 + 2,

which agrees with what 𝑝 ⊳ 𝑞 should be.

6.5. EXERCISE SOLUTIONS 217

Solution to Exercise 6.9.
1. Given representable polynomials 𝑝 B y𝐴 and 𝑞 B y𝐵, we have that 𝑝 ⊳ 𝑞 �

(
y𝐵

)𝐴
� y𝐴𝐵, which

is also representable.

2. Given linear polynomials 𝑝 B 𝐴y and 𝑞 B 𝐵y, we have that 𝑝 ⊳ 𝑞 � 𝐴(𝐵y) � 𝐴𝐵y, which is also

linear.

3. Given constant polynomials 𝑝 B 𝐴 and 𝑞 B 𝐵, we have that 𝑝 ⊳ 𝑞 � 𝐴, which is also constant

(see also Exercise 6.28).

Solution to Exercise 6.10.
Given 𝐴 ∈ Set and 𝑞 ∈ Poly, we have

y𝐴 ⊳ 𝑞 �
∑

𝑗 : 𝐴→𝑞(1)
y
∑
𝑎∈𝐴 𝑞[𝑗(𝑎)]

(6.7)

�
∑

𝜑 : 𝐴y→𝑞

y
∑
𝑎∈𝐴 𝑞[𝜑1(𝑎)]

� [𝐴y, 𝑞], (4.79)

for a lens 𝜑 : 𝐴y → 𝑞 has an on-positions function 𝐴 → 𝑞(1) and uniquely determined on-directions

functions.

Solution to Exercise 6.13.
We wish to show that (6.14) could replace (6.12) in Definition 6.11. We claim that (6.12) and (6.14) are

in fact the same function; that is, that the following square commutes:

𝑝(𝑞(𝑋)) 𝑝′(𝑞(𝑋))

𝑝(𝑞′(𝑋)) 𝑝′(𝑞′(𝑋))

𝑓𝑞(𝑋)

𝑝(𝑔𝑋) 𝑝′(𝑔𝑋)

𝑓𝑞′(𝑋)

Indeed it does, by the naturality of 𝑓 .

Solution to Exercise 6.18.
1. The instructions associated with a polynomial 𝑝 ⊳ 𝑝 ⊳ 𝑝 are:

1. choose a 𝑝-position 𝑖;

2. for each 𝑝[𝑖]-direction 𝑎:
2.1. choose a 𝑝-position 𝑖′;
2.2. for each 𝑝[𝑖′]-direction 𝑎′:
2.2.1. choose a 𝑝-position 𝑖′′;
2.2.2. for each 𝑝[𝑖′′]-direction 𝑎′′:
2.2.2.1. choose a future.

2. To choose an element of 𝑝 ⊳ 𝑝 ⊳ 1:
1. choose a 𝑝-position 𝑖;

2. for each 𝑝[𝑖]-direction 𝑎:
2.1. choose a 𝑝-position 𝑖′;
2.2. for each 𝑝[𝑖′]-direction 𝑎′:
2.2.1. done.

Solution to Exercise 6.19.
We have lenses 𝑓 : 𝑝 → 𝑝′ and 𝑔 : 𝑞 → 𝑞′.

1. By Proposition 3.44, the 𝑞(𝑋)-component of 𝑓 is a function 𝑓𝑞(𝑋) : 𝑝(𝑞(𝑋)) → 𝑝′(𝑞(𝑋)) that sends
every (𝑖 , ℎ) with 𝑖 ∈ 𝑝(1) and ℎ : 𝑝[𝑖] → 𝑞(𝑋) to (𝑓1(𝑖), 𝑓 ♯𝑖 # ℎ). We can think of the function

218 CHAPTER 6. THE COMPOSITION PRODUCT

ℎ : 𝑝[𝑖] → 𝑞(𝑋) equivalently as a function 𝑗 𝑖 : 𝑝[𝑖] → 𝑞(1) and, for each 𝑎 ∈ 𝑝[𝑖], a function

ℎ𝑎 : 𝑞[𝑗 𝑖(𝑎)] → 𝑋. So 𝑓𝑞(𝑋) : (𝑝 ⊳ 𝑞)(𝑋) → (𝑝′ ⊳ 𝑞)(𝑋) sends

(𝑖 , 𝑗 𝑖 , (ℎ𝑎)𝑎∈𝑝[𝑖]) ↦→
(
𝑓1(𝑖), 𝑓 ♯𝑖 # 𝑗 𝑖 ,

(
ℎ
𝑓
♯
𝑖
(𝑎′)

)
𝑎′∈𝑝′[𝑓1(𝑖)]

)
.

2. By Proposition 3.44, the 𝑋-component of 𝑔 is a function 𝑔𝑋 : 𝑞(𝑋) → 𝑞′(𝑋) that sends every (𝑗 , 𝑘)
with 𝑗 ∈ 𝑞(1) and 𝑘 : 𝑞[𝑗] → 𝑋 to (𝑔1(𝑗), 𝑔♯𝑗 # 𝑘) in 𝑞′(𝑋). Then by Proposition 2.10, applying 𝑝′ to

this 𝑋-component yields a function 𝑝′(𝑞(𝑋)) → 𝑝′(𝑞′(𝑋)) that sends every (𝑖′, 𝑗′𝑖′ , (ℎ′𝑎′)𝑎′∈𝑝′[𝑖′])
with 𝑖′ ∈ 𝑝′(1) as well as 𝑗′𝑖′ : 𝑝

′[𝑖′] → 𝑞(1) and ℎ′𝑎′ : 𝑞[𝑗′𝑖′(𝑎′)] → 𝑋 to(
𝑖′, 𝑗′𝑖′ # 𝑔1 ,

(
𝑔♯
𝑗′ 𝑖′ (𝑎′)

ℎ′𝑎′

)
𝑎′∈𝑝′[𝑖′]

)
.

3. ByDefinition 6.11, the horizontal composite of 𝑓 and 𝑔 is the natural transformation 𝑓 ⊳𝑔 : 𝑝⊳𝑝′→
𝑞 ⊳ 𝑞′ whose 𝑋-component is the composite of the answers to #1 and #2, sending

(𝑖 , 𝑗 𝑖 , (ℎ𝑎)𝑎∈𝑝[𝑖]) ↦→
(
𝑓1(𝑖), 𝑓 ♯𝑖 # 𝑗 𝑖 ,

(
ℎ
𝑓
♯
𝑖
(𝑎′)

)
𝑎′∈𝑝′[𝑓1(𝑖)]

)
↦→

(
𝑓1(𝑖), 𝑓 ♯𝑖 # 𝑗 𝑖 # 𝑔1 ,

(
𝑔♯
𝑗 𝑖 (𝑓

♯
𝑖
(𝑎′))

ℎ
𝑓
♯
𝑖
(𝑎′)

)
𝑎′∈𝑝′[𝑓1(𝑖)]

)
.

4. We use Corollary 3.47 to translate the answer to #3 into a lens 𝑓 ⊳ 𝑔 : 𝑝 ⊳ 𝑞 → 𝑝′ ⊳ 𝑞′, as follows.

Its on-positions function is the 1-component (𝑓 ⊳ 𝑔)1, which sends every (𝑖 , 𝑗 𝑖) with 𝑖 ∈ 𝑝(1) and
𝑗 𝑖 : 𝑝[𝑖] → 𝑞(1) to

(𝑓1(𝑖), 𝑓 ♯𝑖 # 𝑗 𝑖 # 𝑔1).

Then for each such (𝑖 , 𝑗 𝑖), if we apply the (𝑝 ⊳ 𝑞)[(𝑖 , 𝑗 𝑖)]-component of 𝑓 ⊳ 𝑔 to the element

(𝑖 , 𝑗 𝑖 , (𝜄𝑑)𝑎∈𝑝[𝑖]), where 𝜄𝑑 : 𝑞[𝑗 𝑖(𝑎)] → (𝑝 ⊳ 𝑞)[(𝑖 , 𝑗 𝑖)] �
∑
𝑎∈𝑝[𝑖] 𝑞[𝑗 𝑖(𝑎)] is the canonical inclusion,

then take the last coordinate of the result, we obtain for each 𝑎′ ∈ 𝑝′[𝑓1(𝑖)] the function

𝑞′[𝑔1(𝑗 𝑖(𝑓
♯
𝑖
(𝑎′)))]

𝑔♯

𝑗𝑖 (𝑓
♯
𝑖
(𝑎′))

−−−−−−−→ 𝑞[𝑗 𝑖(𝑓
♯
𝑖
(𝑎′))]

𝜄
𝑓
♯
𝑖
(𝑎′)

−−−−→
∑
𝑎∈𝑝[𝑖]

𝑞[𝑗 𝑖(𝑎)] � (𝑝 ⊳ 𝑞)[(𝑖 , 𝑗 𝑖)].

These can equivalently be thought of as a single function from∑
𝑎′∈𝑝′[𝑓1(𝑖)]

𝑞′[𝑔1(𝑗 𝑖(𝑓
♯
𝑖
(𝑎′)))] � (𝑝′ ⊳ 𝑞′)[(𝑓 ⊳ 𝑔)1(𝑖 , 𝑗 𝑖)]

which Corollary 3.47 tells us is the on-directions function of 𝑓 ⊳𝑔 at (𝑖 , 𝑗 𝑖), that sends every (𝑎′, 𝑏′)
with 𝑎′ ∈ 𝑝′[𝑓1(𝑖)] and 𝑏′ ∈ 𝑞′[𝑔1(𝑗 𝑖(𝑓

♯
𝑖
(𝑎′)))] to(
𝑓
♯
𝑖
(𝑎′), 𝑔♯

𝑗 𝑖 (𝑓
♯
𝑖
(𝑎′))
(𝑏′)

)
.

Solution to Exercise 6.26.
We have 𝑝 B y2 + y and 𝑞 B y3 + 1 as in (6.22).

1. Here is a picture of 𝑞 ⊳ 𝑝, where each tree is obtained by taking a 𝑞-corolla and grafting 𝑝-corollas

to every leaf:

•
• • •

•
• • •

•
• • •

•
• • •

•
• • •

•
• • •

•
• • •

•
• • •

•

6.5. EXERCISE SOLUTIONS 219

2. Here is a picture of 𝑝 ⊳ 𝑝:

•
• •

•
• •

•
• •

•
• •

•
•

•
•

3. To obtain a picture of 𝑝 ⊳ 𝑝 ⊳ 1, we take our picture of 𝑝 ⊳ 𝑝 and graft the single, leafless 1-root
onto every (height-2) leaf:

•
•
• •

•
• •

•
•
• •

•
•

•
•
•

•
• •

•
•
•

•
•

•
•
• •

•
•
•

Now 𝑟 B 2y + 1. Before we draw the composites, here’s a picture of 𝑟 itself, with different colors to

distinguish the different positions:

• • •

4. Here is a picture of 𝑟 ⊳ 𝑟:

•
•
•
•
•
•
•
•
•
•
•
•
•

5. Here is a picture of 𝑟 ⊳ 𝑟 ⊳ 𝑟:

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

Solution to Exercise 6.28.
1. We pick the list polynomial, 𝑝 B 1 + y + y2 + y3 + · · · , drawn as follows:

• • • • · · ·

Then here is a picture of 𝑝 ⊳ 1:

• •
•
•
• •

•
• • •

· · ·

Below, 𝑋 is a set and 𝑝 is a polynomial.

2. A constant functor composed with any functor is still the same constant functor, so 𝑋 ⊳ 𝑝 � 𝑋.

We can also verify this using (6.6):

𝑋 ⊳ 𝑝 �
∑
𝑖∈𝑋

∏
𝑎∈∅

∑
𝑗∈𝑝(1)

∏
𝑏∈𝑝[𝑗]

y �
∑
𝑖∈𝑋

1 � 𝑋.

3. When viewed as functors, it is easy to see that 𝑝 ⊳ 𝑋 � 𝑝(𝑋). We can also verify this using (6.6):

𝑝 ⊳ 𝑋 �
∑
𝑖∈𝑝(1)

∏
𝑎∈𝑝[𝑖]

∑
𝑗∈𝑋

∏
𝑏∈∅

y �
∑
𝑖∈𝑝(1)

∏
𝑎∈𝑝[𝑖]

∑
𝑗∈𝑋

1 �
∑
𝑖∈𝑝(1)

∏
𝑎∈𝑝[𝑖]

𝑋 �
∑
𝑖∈𝑝(1)

𝑋𝑝[𝑖] � 𝑝(𝑋).

Solution to Exercise 6.29.
Let 𝜑 : 𝑝 → 𝑞 be a lens and 𝑋 be a set viewed as a constant polynomial. Note that every component of

the identity natural transformation on 𝑋 as a constant functor is just the identity function id𝑋 : 𝑋 → 𝑋

220 CHAPTER 6. THE COMPOSITION PRODUCT

on 𝑋 as a set. Then by Definition 6.11, any component of the composition product 𝜑 ⊳ 𝑋 viewed as a

natural transformation is given by the composite function

𝑝(𝑋)
𝜑𝑋−−→ 𝑞(𝑋)

𝑞(id𝑋)−−−−−→ 𝑞(𝑋).

By functoriality, 𝑞(id𝑋) is itself an identity function, so every component of 𝜑 ⊳ 𝑋 is the 𝑋-component

of 𝜑. Therefore 𝜑 ⊳ 𝑋 as a function can be identified with the 𝑋-component of 𝜑, as desired.

Solution to Exercise 6.30.
1. The polynomial y is the identity functor on Set.
2. Composing any functor with the identity functor yields the original functor, so 𝑝 ⊳ y � 𝑝 � y ⊳ 𝑝.

3. Before we draw y ⊳ 𝑝 and 𝑝 ⊳ y, here are pictures of 𝑝 and y individually as corolla forests:

• • •

𝑝

•

y

Now here is a picture of 𝑝 ⊳ y, obtained by grafting the one-leaf y-corolla to all the leaves of each

𝑝-corolla in turn:

•
• • •

•
•
•

𝑝 ⊳ y

This is just 𝑝 with every direction extended up one level, so it is still a picture of 𝑝.

And here is a picture of y ⊳ 𝑝, obtained by grafting each 𝑝-corolla to the single leaf of y:

•
•
•
•
•
•

y ⊳ 𝑝

Solution to Exercise 6.32.
Using the definitions, instructions, and style from Example 6.31, we draw 𝜓 ⊳ 𝜑 : 𝑞 ⊳ 𝑝 → 𝑞′ ⊳ 𝑝′:

•
• •

•
• •

•
• •

•
• •

•
•

•
•

•
•

•
•

•
•

•
•

• •

Solution to Exercise 6.33.
Given arbitrary polynomials 𝑝, 𝑞, 𝑟 and lenses 𝜑 : 𝑞 → 𝑝 ⊳ 𝑞 and 𝜓 : 𝑞 → 𝑞 ⊳ 𝑟, it is not necessarily the

case that 𝜑 # (𝑝 ⊳ 𝜓) = 𝜓 # (𝜑 ⊳ 𝑟)! After all, we can let 𝑝 B y and 𝑞 B 2 so that 𝜑 is a lens 2→ y ⊳ 2 � 2
(see Exercise 6.30) and 𝜓 is a lens 2→ 2 ⊳ 𝑟 � 2 (see Exercise 6.28). Then by following the instructions

for interpreting a composition product of lenses from either Exercise 6.19 or Example 6.31, we can

verify that 𝑝 ⊳ 𝜓 = y ⊳ 𝜓 is a lens 2 � y ⊳ 2 → y ⊳ 2 ⊳ 𝑟 � 2 equivalent to the lens 𝜓, while 𝜑 ⊳ 𝑟 is

a lens 2 � 2 ⊳ 𝑟 → y ⊳ 2 ⊳ 𝑟 � 2 equivalent to the lens 𝜑. If, say, we let 𝜑 : 2 → 2 be the function

sending everything to 1 ∈ 2 and 𝜓 : 2→ 2 be the function sending everything to 2 ∈ 2, then in this case

𝜑 # (𝑝 ⊳ 𝜓) = 𝜑 # 𝜓 ≠ 𝜓 # 𝜑 = 𝜓 # (𝜑 ⊳ 𝑟).

6.5. EXERCISE SOLUTIONS 221

Solution to Exercise 6.45.
Given 𝑆 B N and 𝑝 B Ry1

, we have a dynamical system 𝜑 : 𝑆y𝑆 → 𝑝 given by 𝜑1(𝑘) B 𝑘 and

𝜑♯
𝑘
(1) B 𝑘 + 1.

1. Here is the polybox picture for 𝜑 (recall that we shade the upper box of a linear polynomial gray,

as there is only one option to place there):

𝑘 + 1

𝑘
𝑆y𝑆

𝑘
𝑝

A single run through the system returns the current state 𝑘 ∈ N, then increases that state by 1.

2. Here is the polybox picture for 𝛿 # (𝜑 ⊳ 𝜑) : 𝑆y𝑆 → 𝑝 ⊳ 𝑝:

𝑘 + 2

𝑘
𝑆y𝑆

𝑘 + 1

𝑘

𝑆y𝑆

𝑘 + 2

𝑘 + 1

𝑆y𝑆

𝑘
𝑝

𝑘 + 1

𝑝

The new system has 𝑝 ⊳ 𝑝 � Ry ⊳ Ry � R2y as its interface. Indeed, we see that it returns two

numbers at once: the current state 𝑘 (what the first run through 𝜑 would return) as well as the

increased state 𝑘 + 1 (what the second run through 𝜑 would return). We update the current state

from 𝑘 to 𝑘 + 1 in one run, and from 𝑘 + 1 to 𝑘 + 2 in the next—thus increasing the current state

by 2 overall.

Solution to Exercise 6.46.
We give two reasonable (and of course equivalent) ways to interpret the transition lens 𝛿 : 𝑆y𝑆 →
𝑆y𝑆 ⊳ 𝑆y𝑆 .

One way is to first evaluate its interface as 𝑆y𝑆 ⊳ 𝑆y𝑆 � 𝑆
(
𝑆y𝑆

)𝑆
�

(
𝑆 × 𝑆𝑆

)
y𝑆×𝑆 . Then we see that if

the current state is 𝑠
0
∈ 𝑆, the system returns a position consisting of that current state 𝑠

0
along with a

function 𝑆→ 𝑆, namely the identity function 𝑠
1
↦→ 𝑠

1
. The system then takes in a pair (𝑠

1
, 𝑠

2
) ∈ 𝑆 × 𝑆,

discarding 𝑠
1
and setting its new state to be 𝑠

2
.

Alternatively, we can draw from Example 6.41 to interpret 𝛿 as a dynamical system that behaves as

follows. Each run through the system is a 2-step process: first, the current state 𝑠
0
∈ 𝑆 is returned, and

a new state 𝑠
1
∈ 𝑆 is received. Then this new state 𝑠

1
is immediately returned, and an ever newer state

𝑠
2
∈ 𝑆 is received. Then the current state is updated to the newer state 𝑠

2
.

Solution to Exercise 6.52.
To prove Proposition 6.47, it suffices to verify (6.50) and (6.51), as (6.48) and (6.49) follow directly when

𝐴 B 2.
Given polynomials (𝑞𝑎)𝑎∈𝐴, recall that the position-set of the sum

∑
𝑎∈𝐴 𝑞𝑎 is

∑
𝑎∈𝐴 𝑞𝑎(1), while the

direction-set at each position (𝑎, 𝑗)with 𝑎 ∈ 𝐴 and 𝑗 ∈ 𝑞𝑎(1) is 𝑞𝑎[𝑗]. So by (6.6), we have that(∑
𝑎∈𝐴

𝑞𝑎

)
⊳ 𝑟 �

∑
𝑎∈𝐴,
𝑗∈𝑞𝑎 (1)

∏
𝑏∈𝑞𝑎 [𝑗]

∑
𝑘∈𝑟(1)

∏
𝑐∈𝑟[𝑘]

y

�
∑
𝑎∈𝐴

∑
𝑗∈𝑞𝑎 (1)

∏
𝑏∈𝑞𝑎 [𝑗]

∑
𝑘∈𝑟(1)

∏
𝑐∈𝑟[𝑘]

y

222 CHAPTER 6. THE COMPOSITION PRODUCT

�
∑
𝑎∈𝐴
(𝑞𝑎 ⊳ 𝑟).

We can also recall that the position-set of the product

∏
𝑎∈𝐴 𝑞𝑎 is

∏
𝑎∈𝐴 𝑞𝑎(1), while the direction-set at

each position 𝑗 : (𝑎 ∈ 𝐴) → 𝑞𝑎(1) is
∑
𝑎∈𝐴 𝑞𝑎[𝑗(𝑎)]. So by (6.6), we have that(∏

𝑎∈𝐴
𝑞𝑎

)
⊳ 𝑟 �

∑
𝑗∈∏𝑎∈𝐴 𝑞𝑎 (1)

∏
𝑎∈𝐴,

𝑏∈𝑞𝑎 [𝑗(𝑎)]

∑
𝑘∈𝑟(1)

∏
𝑐∈𝑟[𝑗]

y

�
∏
𝑎∈𝐴

∑
𝑗∈𝑞𝑎 (1)

∏
𝑏∈𝑞𝑎 [𝑗]

∑
𝑘∈𝑟(1)

∏
𝑐∈𝑟[𝑘]

y (1.32)

�
∏
𝑎∈𝐴
(𝑞𝑎 ⊳ 𝑟).

Solution to Exercise 6.54.
We want an intuitive understanding of the left distributivity of ⊳ over +. Let 𝑝 B y2

, 𝑞 B y + 1, and
𝑟 B y2 + 1, as shown here:

•

𝑝

• •

𝑞

• •

𝑟

Then 𝑝 + 𝑞 � y2 + y + 1 can be drawn as follows, consisting of every 𝑝-corolla and every 𝑞-corolla:

• • •
𝑝 + 𝑞 �

We can therefore draw (𝑝 + 𝑞) ⊳ 𝑟 by grafting 𝑟-corollas to leaves of 𝑝 + 𝑞 in every way, as follows:

•
• •

•
• •

•
• •

•
• •

•
•

•
•

•
(𝑝 + 𝑞) ⊳ 𝑟 �

So each tree in (𝑝 + 𝑞) ⊳ 𝑟 is obtained by taking either a 𝑝-corolla or a 𝑞-corolla, then attaching an

𝑟-corolla to each leaf.

Alternatively, we can compute 𝑝 ⊳ 𝑟 and 𝑞 ⊳ 𝑟 separately, grafting 𝑟-corollas to leaves of 𝑝 in every way,

then to leaves of 𝑞 in every way:

•
• •

•
• •

•
• •

•
• •𝑝 ⊳ 𝑟 �

•
•
•
•
•

𝑞 ⊳ 𝑟 �

Their coproduct then consists of all the trees from 𝑝 ⊳ 𝑟 and all the trees from 𝑞 ⊳ 𝑟:

•
• •

•
• •

•
• •

•
• •

•
•

•
•

•
𝑝 ⊳ 𝑟 + 𝑞 ⊳ 𝑟 �

So each tree in 𝑝 ⊳ 𝑟 + 𝑞 ⊳ 𝑟 is either a 𝑝-corolla with an 𝑟-corolla attached to each leaf, or a 𝑞-corolla with

an 𝑟-corolla attached to each leaf.

But it doesn’t matter whether we graft 𝑟-corollas onto leaves first, or if we pool together corollas from

𝑝 and 𝑞 first–the processes are equivalent. Hence the isomorphism (𝑝 + 𝑞) ⊳ 𝑟 � 𝑝 ⊳ 𝑟 + 𝑞 ⊳ 𝑟 holds.

Solution to Exercise 6.55.
Given a set 𝐴 and polynomials 𝑝, 𝑞, the left distributivity of ⊳ over products from (6.51) implies that

(𝐴𝑝) ⊳ 𝑞 � (𝐴 ⊳ 𝑞)(𝑝 ⊳ 𝑞), while Exercise 6.28 #3 implies that 𝐴 ⊳ 𝑞 � 𝐴. So (𝐴𝑝) ⊳ 𝑞 � 𝐴(𝑝 ⊳ 𝑞).

6.5. EXERCISE SOLUTIONS 223

Solution to Exercise 6.56.
1. Let 𝑝 B y + 1, 𝑞 B 1, and 𝑟 B 0. Then 𝑝 ⊳ (𝑞𝑟) � (y + 1) ⊳ 0 � 1, while (𝑝 ⊳ 𝑞)(𝑝 ⊳ 𝑟) �
((y + 1) ⊳ 1)((y + 1) ⊳ 0) � 2 × 1 � 2.

2. Again let 𝑝 B y + 1, 𝑞 B 1, and 𝑟 B 0. Then 𝑝 ⊳ (𝑞 + 𝑟) � (y + 1) ⊳ 1 � 2, while (𝑝 ⊳ 𝑞) + (𝑝 ⊳ 𝑟) �
((y + 1) ⊳ 1) + ((y + 1) ⊳ 0) � 2 + 1 � 3.

Solution to Exercise 6.60.
We prove Proposition 6.57 by observing that

Poly(𝑝, 𝑟 ⊳ 𝑞) �
∏
𝑖∈𝑝(1)

𝑟(𝑞(𝑝[𝑖])) (3.7)

� Poly ©­«
∑
𝑖∈𝑝(1)

y𝑞(𝑝[𝑖]) , 𝑟ª®¬ (3.7)

� Poly
([
𝑞

𝑝

]
, 𝑟

)
. (6.59)

Solution to Exercise 6.62.
1. Given a polynomial 𝑞 and a lens 𝜑 : 𝑝 → 𝑝′, the functor

[
𝑞
−
]
should send 𝜑 to a lens

[
𝑞
𝑝

]
→

[𝑞
𝑝′
]
;

by (6.59), this is a lens [
𝑞

𝜑

]
:

∑
𝑖∈𝑝(1)

y𝑞(𝑝[𝑖]) →
∑

𝑖′∈𝑝′(1)
y𝑞(𝑝

′[𝑖′]).

We give

[
𝑞
𝜑

]
the same on-positions function 𝑝(1) → 𝑝′(1) that 𝜑 has. Then viewing 𝑞 as a functor,

we define the on-directions function

[
𝑞
𝜑

] ♯
𝑖
: 𝑞(𝑝′[𝜑1(𝑖)]) → 𝑞(𝑝[𝑖]) for each 𝑖 ∈ 𝑝(1) to be the

function obtained by applying 𝑞 to the corresponding on-directions function 𝜑♯
𝑖
: 𝑝′[𝜑1(𝑖)] →

𝑝[𝑖]. Functoriality follows trivially on positions and by the functoriality of 𝑞 itself on directions.

2. Given a polynomial 𝑝 and a lens 𝜓 : 𝑞′ → 𝑞, the functor
[−
𝑝

]
should send 𝜓 to a lens

[
𝑞
𝑝

]
→

[
𝑞′
𝑝

]
;

by (6.59), this is a lens [
𝜓
𝑝

]
:

∑
𝑖∈𝑝(1)

y𝑞(𝑝[𝑖]) →
∑
𝑖∈𝑝(1)

y𝑞
′(𝑝[𝑖]).

We let the on-positions function of

[𝜓
𝑝

]
be the identity on 𝑝(1). Then viewing 𝜓 as a natural

transformation, we define the on-directions function

[𝜓
𝑝

] ♯
𝑖
: 𝑞′(𝑝[𝑖]) → 𝑞(𝑝[𝑖]) for each 𝑖 ∈ 𝑝(1)

to be the 𝑝[𝑖]-component of 𝜓. Functoriality follows trivially on positions and because natural

transformations compose componentwise on directions.

Solution to Exercise 6.3.2.
In order for

[
𝑞
𝑝

]
to be a left Kan extension of 𝑝 along 𝑞, we need to first provide a natural transformation

𝑝 →
[
𝑞
𝑝

]
⊳ 𝑞, and second show that it is universal. But this is exactly the content of Proposition 6.57:

the adjunction (6.58) provides a unit 𝑝 →
[
𝑞
𝑝

]
⊳ 𝑞 that is universal in the appropriate way.

Solution to Exercise 6.64.
We are given 𝐴, 𝐵 ∈ Set and 𝑝, 𝑞 ∈ Poly

1. By (6.59), [
𝐵

𝐴

]
=

∑
𝑖∈𝐴

y𝐵 � 𝐴y𝐵 ,

so by (6.58),

Poly(𝐴y𝐵 , 𝑝) � Poly(𝐴, 𝑝 ⊳ 𝐵).
But 𝐴 and 𝑝 ⊳ 𝐵 � 𝑝(𝐵) are both constants, so a lens 𝐴 → 𝑝 ⊳ 𝐵 is just a function 𝐴 → 𝑝(𝐵) on
positions. Hence (6.65) follows.

224 CHAPTER 6. THE COMPOSITION PRODUCT

2. We prove (6.66) in two parts: that

Poly
(
𝐴y ⊳ 𝑝, 𝑞

)
� Poly

(
𝑝, y𝐴 ⊳ 𝑞

)
(6.90)

and that

Poly
(
𝑝 ⊳ y𝐵 , 𝑞

)
� Poly

(
𝑝, 𝑞 ⊳ 𝐵y

)
. (6.91)

We have that 𝐴y ⊳ 𝑝 � 𝐴𝑝 and y𝐴 ⊳ 𝑞 � 𝑞𝐴, so (6.90) follows from (5.9). Meanwhile, for (6.91), we

have by (6.59) that [
𝐵y

𝑝

]
=

∑
𝑖∈𝑝(1)

y𝐵𝑝[𝑖] � 𝑝 ⊳ y𝐵 ,

so (6.66) follows from (6.58). Then combining (6.90) and (6.91) yields

Poly
(
𝐴y ⊳ 𝑝 ⊳ y𝐵 , 𝑞

)
� Poly

(
𝑝 ⊳ y𝐵 , y𝐴 ⊳ 𝑞

)
� Poly

(
𝑝, y𝐴 ⊳ 𝑞 ⊳ 𝐵y

)
.

Solution to Exercise 6.70.
1. We wish to solve Exercise 6.28 #3 using (6.69) and (6.50). If we set J in (6.69) to be the empty

category, then the limit of the functor fromJ is just the terminal object. It follows that 1⊳𝑝 � 1. In
other words, since ⊳ preserves limits on the left, and since terminal objects are limits, ⊳ preserves

terminal objects on the left.

Then a set 𝑋 can be written as a sum

∑
𝑥∈𝑋 1, so by (6.50),

𝑋 ⊳ 𝑝 �

(∑
𝑥∈𝑋

1

)
⊳ 𝑝 �

∑
𝑥∈𝑋
(1 ⊳ 𝑝) �

∑
𝑥∈𝑋

1 � 𝑋.

2. If we set J in (6.69) to be the discrete category on the set 𝐴, then the limit of a functor from J is

just an 𝐴-fold product, so (6.51) follows. In other words, since ⊳ preserves limits on the left, and

since products are limits, ⊳ preserves products on the left.

Solution to Exercise 6.77.
1. Note that Poly(𝑝, 𝑞 ⊳ 1) � Set(𝑝(1), 𝑞(1)). A lens 𝑝 → 𝑞 ⊳ 𝑟 is an element of∏

𝑖∈𝑝(1)

∑
𝑗∈𝑞(1)

∏
𝑏∈𝑞[𝑗]

∑
𝑘∈𝑟(1)

∏
𝑐∈𝑟[𝑘]

𝑝[𝑖] �
∑

𝑓 : 𝑝(1)→𝑞(1)

∏
𝑖 ∈ 𝑝(1)

∏
𝑏∈𝑞[𝑗]

∑
𝑘∈𝑟(1)

∏
𝑐∈𝑟[𝑘]

𝑝[𝑖]

Fixing the function 𝑓 : 𝑝(1) → 𝑞(1) as implicit in 𝑝, we get

Poly/(𝑞 ⊳ 1)
(
𝑝, 𝑞 ⊳ 𝑟

)
�

∏
𝑖 ∈ 𝑝(1)

∏
𝑏∈𝑞[𝑗]

∑
𝑘∈𝑟(1)

∏
𝑐∈𝑟[𝑘]

𝑝[𝑖]

� Poly
(
𝑝

𝑓
⌢ 𝑞, 𝑟

)
,

2. This follows from the first isomorphism above.

Solution to Exercise 6.79.
1. Given lenses 𝑓 : 𝑝 → 𝑞 ⊳ 1 and 𝑔 : 𝑝′ → 𝑝, the functor −

𝑓
⌢ 𝑞 should send 𝑔 to a lens 𝑝′

𝑔# 𝑓
⌢ 𝑞 →

𝑝
𝑓
⌢ 𝑞; by (6.75), this is a lens

𝑔
𝑓
⌢ 𝑞 :

∑
𝑖′∈𝑝′(1)

𝑞[𝑓1(𝑔1(𝑖′))]y𝑝
′[𝑖′] →

∑
𝑖∈𝑝(1)

𝑞[𝑓1(𝑖)]y𝑝[𝑖].

We give 𝑔
𝑓
⌢ 𝑞 an on-positions function that is the on-positions function 𝑝′(1) → 𝑝(1) of 𝑔

on the first coordinate 𝑖′ ∈ 𝑝′(1) and the identity on 𝑞[𝑓1(𝑔1(𝑖′))] on the second. Then we let

the on-directions function at every position with first coordinate 𝑖′ ∈ 𝑝′(1) be the on-directions

function 𝑔♯
𝑖′ : 𝑝[𝑔1(𝑖′)] → 𝑝′[𝑖′]. Functoriality follows trivially on both positions and directions.

6.5. EXERCISE SOLUTIONS 225

2. Given a polynomial 𝑝 and lenses 𝑓 : 𝑝 → 𝑞 ⊳ 1 and ℎ : 𝑞 → 𝑞′, the functor 𝑝
𝑓
⌢ − should send ℎ

to a lens 𝑝
𝑓 #(ℎ⊳1)
⌢ 𝑞′→ 𝑝

𝑓
⌢ 𝑞; by (6.75), this is a lens

𝑝
𝑓
⌢ ℎ :

∑
𝑖∈𝑝(1)

𝑞′[ℎ1(𝑓1(𝑖))]y𝑝[𝑖] →
∑
𝑖∈𝑝(1)

𝑞[𝑓1(𝑖)]y𝑝[𝑖].

We let the on-positions function of 𝑝
𝑓
⌢ ℎ be the identity on the first coordinate 𝑖 ∈ 𝑝(1)

and the on-directions function ℎ
♯
𝑓1(𝑖) : 𝑞

′[ℎ1(𝑓1(𝑖))] → 𝑞[𝑓1(𝑖)] on the second. Then we let the

on-directions function at every position with first coordinate 𝑖 ∈ 𝑝(1) be the identity on 𝑝[𝑖].
Functoriality follows trivially on both positions and directions.

Solution to Exercise 6.81.
1. Given a polynomial functor 𝑝 : Set→ Set, we wish to show that 𝑝 preserves connected limits of

sets; that is, for a connected category J and a functor 𝑋 : J→ Set, we have

𝑝

(
lim

𝑗∈J
𝑋𝑗

)
� lim

𝑗∈J
𝑝(𝑋𝑗).

But we can identify Set with the full subcategory of constant functors in Poly and instead view 𝑋

as a functor into Poly. Then by Exercise 6.28 #3, the left hand side of the isomorphism we seek is

isomorphic to 𝑝 ⊳
(
lim𝑗∈J 𝑋𝑗

)
, while the right hand side is isomorphic to lim𝑗∈J

(
𝑝 ⊳ 𝑋𝑗

)
. These

are isomorphic by Theorem 6.80.

2. Given 𝑝, 𝑞, 𝑟 ∈ Poly, wewish to show that (6.82) holds. As 1 is terminal inPoly, the product 𝑞𝑟 can
also be written as the pullback 𝑞 ×1 𝑟. While products are not connected limits, pullbacks are, so

by Theorem 6.80, they are preserved by precomposition with 𝑝. Hence the desired isomorphism

follows.

3. We’ll show that (6.82) holds for 𝑝 B y+1, 𝑞 B 1, and 𝑟 B 0. We have 𝑝 ⊳ 𝑞 = 𝑝 ⊳1 � (y+1)⊳1 � 2
and 𝑝 ⊳ 𝑟 � (y + 1) ⊳ 0 � 1, so (𝑝 ⊳ 𝑞) ×(𝑝⊳1) (𝑝 ⊳ 𝑟) � 2 ×2 1. We saw in Example 5.38 that

the position-set of a pullback in Poly is just the pullback of the position-sets in Set, while the

direction-sets are given by a pushout of direction-sets in Set. As our polynomials have empty

direction-sets, their pullback must have an empty direction-set as well, so this pullback is just a

pullback of sets: (𝑝 ⊳ 𝑞) ×(𝑝⊳1) (𝑝 ⊳ 𝑟) � 2 ×2 1 � 1. And indeed we have 𝑝 ⊳ (𝑞𝑟) � (y + 1) ⊳ 0 � 1
as well.

Solution to Exercise 6.84.
Here 𝐴 and 𝐵 are sets and 𝑝 is a polynomial.

1. The isomorphism always holds: we have that (𝐴y) ⊗ (𝐵y) � 𝐴𝐵y � (𝐴y) ⊳ (𝐵y).
2. The isomorphism always holds: we have that y𝐴 ⊗ y𝐵 � y𝐴𝐵 � y𝐴 ⊳ y𝐵.

3. The isomorphism does not always hold: while 𝐴 ⊗ 𝐵 � 𝐴𝐵, we have that 𝐴 ⊳ 𝐵 � 𝐴. There is,

however, always a canonical projection 𝐴𝐵→ 𝐵; but there is not always a canonical lens 𝐵→ 𝐴𝐵

(for example, take 𝐴 = 0 ≠ 𝐵).

4. The isomorphism always holds: we have that 𝐵y⊗ 𝑝 � ∑
𝑖∈𝑝(1) 𝐵y⊗y𝑝[𝑖] �

∑
𝑖∈𝑝(1) 𝐵y𝑝[𝑖] � 𝐵𝑝 �

𝐵y ⊳ 𝑝.

5. The isomorphism does not always hold: if, say, 𝑝 = 𝐵, then y𝐴 ⊗ 𝐵 � 𝐵, while y𝐴 ⊳ 𝐵 � 𝐵𝐴.

If 𝐴 = 𝐵 = 0, then 𝐵𝐴 � 1, so there is not always a canonical lens from right to left, either.

There is, however, always a canonical lens from left to right: y𝐴 ⊗ 𝑝 � ∑
𝑖∈𝑝(1) y𝐴𝑝[𝑖] while

y𝐴 ⊳ 𝑝 �
∑
𝑖 : 𝐴→𝑝(1) y

∑
𝑎∈𝐴 𝑝[𝑖(𝑎)]. So there is a lens from left to right whose on-positions function

sends 𝑖 ∈ 𝑝(1) to the constant function 𝐴 → 𝑝(1) that always evaluates to 𝑖; and whose on-

directions function at 𝑖 is the identity on 𝐴𝑝[𝑖].
6. The isomorphism does not always hold: if, say, 𝑝 = y𝐴, then y𝐴 ⊗ 𝐵y � 𝐵y𝐴, while y𝐴 ⊗ 𝐵y �
(𝐵y)𝐴 � 𝐵𝐴y𝐴. If 𝐴 = 𝐵 = 0, then 𝐵y𝐴 � 0 while 𝐵𝐴y𝐴 � 00y0 � 1, so there is not always a

226 CHAPTER 6. THE COMPOSITION PRODUCT

canonical lens from right to left, either. There is, however, always a canonical lens from left to

right: 𝑝 ⊗ 𝐵y � 𝐵𝑝 while 𝑝 ⊳ 𝐵y �
∑
𝑖∈𝑝(1)

∑
𝑏 : 𝑝[𝑖]→𝐵 y

∑
𝑎∈𝑝[𝑖] 1 �

∑
𝑖∈𝑝(1) 𝐵𝑝[𝑖]y𝑝[𝑖]. So there is a

lens from left to right whose on-positions function sends (𝑏, 𝑖) ∈ 𝐵𝑝(1) to (𝑖 , 𝑐𝑏) ∈
∑
𝑖∈𝑝(1) 𝐵𝑝[𝑖],

where 𝑐𝑏 : 𝑝[𝑖] → 𝐵 is the constant function that always evaluates to 𝑏; and whose on-directions

function at (𝑏, 𝑖) is the identity on 𝑝[𝑖].
7. The isomorphism always holds: we have that 𝑝 ⊗ y𝐴 �

∑
𝑖∈𝑝(1) y𝐴𝑝[𝑖] � 𝑝 ⊳ y𝐴.

Every on-directions function of every lens we found in this exercise are isomorphisms, so every lens

we found in this exercise is cartesian.

Solution to Exercise 6.89.
Here 𝜑 : 𝑝 → 𝑝′ and 𝜓 : 𝑞 → 𝑞′ are lenses.

1. If 𝜑 is an isomorphism and 𝜓 is vertical, then 𝜓 ⊳ 1 : 𝑞 ⊳ 1 → 𝑞′ ⊳ 1 is an isomorphism, so

𝜑 ⊳ 𝜓 ⊳ 1 : 𝑝 ⊳ 𝑞 ⊳ 1→ 𝑝′ ⊳ 𝑞′ ⊳ 1 is an isomorphism as well. Thus 𝜑 ⊳ 𝜓 is vertical.

2. If 𝜑 is the unique lens y→ 1 and 𝑞 = 0, then 𝜑 is vertical, but since y ⊳ 0 � 0 and 1 ⊳ 0 � 1, the
lens 𝜑 ⊳ 0 : 0→ 1 is not.

Chapter 7

Polynomial comonoids and
retrofunctors

Imagine a realm where there are various positions you can be in. From every position, there are
a number of moves you can make, possibly infinitely many. But whatever move you make,

you’ll end up in a new position. Well, technically it counts as a move to simply stay where you
are, so you might end up in the same position. But wherever you move to, you can move again,

and any number of moves from the original position counts as a single move. What sort of
realm is this?

The most surprising aspects of Poly really begin with its comonoids. In 2018, re-

searchersDanielAhman andTarmoUustalu presented a characterization of comonoids

in (Poly, y, ⊳) as a surprisingly familiar construct. For us, this story will emerge nat-

urally as we continue to expand our understanding of the humble state system of a

dependent dynamical system.

7.1 State systems, categorically

Since defining dependent dynamical systems in Definition 4.18, we have evolved our

understanding of their state systems over the course of the last few chapters. Let’s take

this moment to review what we know about these state systems so far.

Our original definition of a state system was as a monomial 𝑆y𝑆 for some set 𝑆. But

in Example 4.43, we noted that this formulation requires us to discuss the positions

and directions of a state system at the level of sets rather than in the language of Poly.
Instead, let’s take an arbitrary polynomial 𝔰 ∈ Poly and attempt to characterize what it

means for 𝔰 to be a state system using only the categorical machinery of Poly. We will

continue to refer to the positions of 𝔰 as states, but we will shift from thinking of the

directions of 𝔰 as states to thinking of them as transitions from one state to another.

227

228 CHAPTER 7. POLYNOMIAL COMONOIDS AND RETROFUNCTORS

7.1.1 The do-nothing section

In Example 4.43, we saw that every state system 𝔰 is equipped with a do-nothing section:
a lens 𝜖 : 𝔰→ y that picks out a direction at each state that we would like to interpret

as “doing nothing” and remaining at that state.

We drew 𝜖 in polyboxes in Example 4.45, but that waswhenwe let ourselves assume

that the position-set of a state system was equal to each of its direction-sets. Now all

we know is that for each state 𝑠 ∈ 𝔰(1), the do-nothing section chooses an 𝔰[𝑠]-direction
to signify staying at the same state; it doesn’t make sense to say that this direction is

literally equal to 𝑠. So we need a different name for the 𝔰[𝑠]-direction that 𝜖 identifies:

call it id𝑠 , because it behaves like a sort of identity operation on the state 𝑠.

So the revised polyboxes for the do-nothing section 𝜖 : 𝔰→ y are as follows:

id𝑠

𝑠
𝔰 𝜖

(7.1)

Exercise 7.2 (Solution here). Say I have a polynomial 𝔰 ∈ Poly, and I tell you that there

is a lens 𝜖 : 𝔰→ y. What can you say about the polynomial 𝔰? ♦

Example 7.3 (The do-nothing section in tree pictures). We have seen the do-nothing

section drawn in polyboxes, but let’s see what it looks like in our tree pictures. We’ll

take 𝔰 B {•, •, •}y{•,•,•}, drawn as follows:

• • •𝔰 B

Then the do-nothing section 𝜖 : 𝔰→ y can be drawn like any one of the following three

possibilities:

• • • • • •

It picks out one direction at each position, namely the one of the same color.

There is not much else we can say about the do-nothing section on its own, so let us

revisit the other lens that every state system is equipped with before considering the

relationship between the two.

7.1. STATE SYSTEMS, CATEGORICALLY 229

7.1.2 The transition lens

We saw in Example 6.44 that 𝔰 also comes equipped with a transition lens: a lens

𝛿 : 𝔰→ 𝔰 ⊳ 𝔰, which we can draw as

𝑎′
2

𝑠
0

𝔰

𝑎
1

𝑠
0

𝔰

𝑎
2

𝑠
1

𝔰

tgt

run

The arrow labeled tgt is the target function: given a state 𝑠0 and a direction 𝑎1 at that

state, tgt(𝑠0 , 𝑎1) tells us the new state 𝑠1 that following 𝑎1 from 𝑠0 will lead to. We know

that when 𝑠0 is fixed, the target function on the second component 𝑎1 should be an

isomorphism 𝔰[𝑠0] → 𝔰(1); that is, there is exactly one direction at 𝑠0 that leads to each

state of 𝔰. But this property is a little tricky to state in the language of Poly; in fact,

we won’t attempt to do so just yet. Instead, we’ll use it to make a notational choice:

given 𝑠, 𝑡 ∈ 𝔰, we will let 𝑠 → 𝑡 denote the unique direction at 𝑠 that leads to 𝑡, so that

tgt(𝑠, 𝑠 → 𝑡) = 𝑡. So we can redraw our transition lens as

𝑠
0
→ 𝑠

2

𝑠
0

𝔰

𝑠
0
→ 𝑠

1

𝑠
0

𝔰

𝑠
1
→ 𝑠

2

𝑠
1

𝔰

tgt

run

(7.4)

In addition to the fact that tgt(𝑠0 , 𝑠0 → 𝑠1) = 𝑠1 as intended, this picture tells us two

more properties of 𝛿.

The first is that the bottom arrow is the identity on 𝔰(1). This is something we

would like to be able to express categorically in the language of Poly. We’ll see that

this property falls out naturally when we express how the transition lens plays nicely

with the do-nothing section in Section 7.1.3.

The second is that the run arrow,which runs the transition 𝑠0 → 𝑠1 and the transition

𝑠1 → 𝑠2 together into a transition starting at 𝑠0, should have the same target as tfhe

second transition it follows: in this case, 𝑠2. Equationally, writing the left and right

hand sides only in terms of the contents of the blue boxes, we have that

tgt(𝑠0 , run(𝑠0 , 𝑠0 → 𝑠1 , 𝑠1 → 𝑠2)) = 𝑠2 = tgt(tgt(𝑠0 , 𝑠0 → 𝑠1), 𝑠1 → 𝑠2). (7.5)

We’ll see that this property arises naturally when we we generalize the transition lens

to more than two steps in Section 7.1.4.

230 CHAPTER 7. POLYNOMIAL COMONOIDS AND RETROFUNCTORS

Example 7.6 (The transition lens in tree pictures). Continuing from Example 7.3, we

draw the transition lens 𝛿 : 𝔰→ 𝔰 ⊳ 𝔰 of 𝔰 B 3y3 � {•, •, •}y{•,•,•} (where directions are

labeled with their targets) in tree pictures as well, recalling that the trees of 𝔰 ⊳ 𝔰 are

obtained by taking an 𝔰-corolla and grafting more 𝔰-corollas to each of its leaves:

• •
• • •

• •
• • •

• •
• • •

On positions, the target function of 𝛿 tells us which root of 𝔰 to graft onto each leaf of

𝔰. Then on directions, the run function of 𝛿 tells us how to collapse the height-2 leaves

of the trees we obtain in 𝔰 ⊳ 𝔰 down to the original height-1 leaves of the corollas of 𝔰.

We can drawwhat the target function is doingmore compactly by taking the corollas

of 𝔰 and “bending the arrows” so that they point to their targets, like so:

So the target function of 𝛿 turns our corolla picture of 𝔰 into a complete graph on its

roots! Then the run function takes any two arrows that form a path in the graph and

collapses them down to a single arrow that starts (and, according to (7.5), ends) at the

same vertex as the two-arrow path.

If this all sounds suspiciously familiar to you, you’re on the right track—hang tight.

7.1.3 The do-nothing section coheres with the transition lens

For each state 𝑠 ∈ 𝔰(1), the do-nothing section 𝜖 : 𝔰→ y picks out the 𝔰[𝑠]-direction id𝑠

that “does nothing” and keeps the system in the same state 𝑠. But it is the transition

lens 𝛿 : 𝔰→ 𝔰 ⊳ 𝔰 that actually sets our state system in motion, specifying the target of

each direction and how two directions run together. Either of these directions could

be our do-nothing direction id𝑠 , so let’s try to figure out what should happen when we

set each one in turn to id𝑠 .

We can draw in polyboxes what happens when we set id𝑠 , as specified by 𝜖, to be

7.1. STATE SYSTEMS, CATEGORICALLY 231

the first direction that 𝛿 runs together like this:

𝑠
𝔰

id𝑠

𝑠

𝔰

tgt(𝑠, id𝑠) → 𝑡

tgt(𝑠, id𝑠)

𝔰

𝜖

tgt

run

Reading this picture from left to right, we see that it depicts the polyboxes of the

composite lens 𝛿 # (𝜖 ⊳ 𝔰) : 𝔰 → y ⊳ 𝔰 � 𝔰 (recall that we sometimes denote the identity

lens on 𝔰 also by 𝔰). To make this interpretation more transparent, we could be a little

more verbose with our polybox picture if we wanted to (omitting the contents of the

boxes for clarity):

𝔰

𝔰

𝔰

𝜖

tgt

run

𝔰

𝔰

𝔰

𝔰

𝔰

𝜖1

𝜖♯
tgt

run

=

Now what should tgt(id𝑠) be, and what should go in the direction box on the left?

If following the direction id𝑠 from the state 𝑠 is really the same as doing nothing,

then its target state should be the same state 𝑠 that it emerged from. Moreover, running

together id𝑠 with any other direction 𝑠 → 𝑡 from 𝑠 should be no different from the

direction 𝑠 → 𝑡 on its own. So

tgt(𝑠, id𝑠) = 𝑠 and run(𝑠, id𝑠 , 𝑠 → 𝑡) = 𝑠 → 𝑡.

In fact, id𝑠 should really just be the direction 𝑠 → 𝑠. Pictorially, we have the equation

𝑠
𝔰

id𝑠

𝑠

𝔰

tgt(𝑠, id𝑠) → 𝑡

tgt(𝑠, id𝑠)

𝔰

𝜖

tgt

run

𝑠 → 𝑡

𝑠
𝔰

𝑠 → 𝑡

𝑠
𝔰=

232 CHAPTER 7. POLYNOMIAL COMONOIDS AND RETROFUNCTORS

Or, if you prefer, we might say that 𝛿 # (𝜖 ⊳ 𝔰) = id𝔰, or that the following diagram

commutes:

y ⊳ 𝔰 𝔰

𝔰 ⊳ 𝔰

𝛿
𝜖 ⊳ 𝔰

This commutative diagram captures one way in which 𝜖 and 𝛿 always relate—and it’s

written entirely in the language of Poly, without having to talk about individual sets!

What about setting the second direction that 𝛿 runs together to what is specified

by 𝜖, rather than the first? To answer this, we should look at the composite lens

𝛿 # (𝔰 ⊳ 𝜖) : 𝔰→ 𝔰 ⊳ y � 𝔰 instead. But the do-nothing direction should still do nothing,

so here’s what the polybox picture should look like:

𝑠 → 𝑡

𝑠
𝔰

𝑠 → 𝑡

𝑠

𝔰

id𝑡

𝑡

𝔰

tgt

𝜖
run

𝑠 → 𝑡

𝑠
𝔰

𝑠 → 𝑡

𝑠
𝔰=

The lens depicted on the right hand side of the equation is again the identity lens on 𝔰.

If we match up the two white boxes on the right hand side of the equation with the

corresponding white boxes on the left, we can actually read two equations off of this

polybox picture. Matching up positions in the codomain tells us that the bottom arrow

of 𝛿 on the left must send 𝑠 to itself: it is the identity function on 𝔰(1). Indeed, this is
exactly what we wanted to say about that arrow in Section 7.1.2.

Meanwhile, matching up directions in the domain tells us that

run(𝑠, 𝑠 → 𝑡 , id𝑡) = 𝑠 → 𝑡 ,

as we would expect: id𝑡 is just be the direction 𝑡 → 𝑡.

More concisely, we can express both these facts inPolyvia the equation 𝛿#(𝔰⊳𝜖) = id𝔰.

The corresponding commutative diagram is as follows:

𝔰 𝔰 ⊳ y

𝔰 ⊳ 𝔰.

𝛿
𝔰 ⊳ 𝜖

We can combine this with our previous commutative diagram to say that the relation-

ship between the do-nothing section 𝜖 : 𝔰→ y and the transition lens 𝛿 : 𝔰→ 𝔰 ⊳ 𝔰 of a

7.1. STATE SYSTEMS, CATEGORICALLY 233

state system 𝔰 is captured in Poly by the following commutative diagram:

y ⊳ 𝔰 𝔰 𝔰 ⊳ y

𝔰 ⊳ 𝔰.

𝛿
𝜖 ⊳ 𝔰 𝔰 ⊳ 𝜖

(7.7)

7.1.4 The transition lens is coassociative

Toward the end of Example 6.44, we noted that while the transition lens 𝛿 : 𝔰 → 𝔰 ⊳ 𝔰

gives us a canonical way to model two steps of a dynamical system with state system

𝔰, we have a choice of how to model three steps through the same system: we could

obtain a lens 𝔰 → 𝔰⊳ 3
that runs three directions together by taking either one of the

composite lenses 𝛿 # (𝛿 ⊳ 𝔰) or 𝛿 # (𝔰 ⊳ 𝛿). That presents a problem for us: which one

should we choose?

Happily, it turns out this choice is a false one. If we write out the two composite

lenses in polyboxes, with 𝛿 # (𝛿 ⊳ 𝔰) on the left and 𝛿 # (𝔰 ⊳ 𝛿) on the right, we find that

they are equal:

𝑠0 → 𝑠3

𝑠0
𝔰

𝑠0 → 𝑠2

𝑠0

𝔰

𝑠2 → 𝑠3

𝑠2

𝔰

𝑠0 → 𝑠1

𝑠0
𝔰

𝑠1 → 𝑠2

𝑠1
𝔰

𝑠2 → 𝑠3

𝑠2
𝔰

tgt

r
u
n

tgt

r
u
n

𝑠0 → 𝑠3

𝑠0
𝔰

𝑠0 → 𝑠1

𝑠0

𝔰

𝑠1 → 𝑠3

𝑠1

𝔰

𝑠0 → 𝑠1

𝑠0
𝔰

𝑠1 → 𝑠2

𝑠1
𝔰

𝑠2 → 𝑠3

𝑠2
𝔰

tgt

r
u
n

tgt

r
u
n

=

(7.8)

Remember: the way to read these polyboxes is to start at the lower blue square on the

left and follow the path counter clockwise around the diagram; and if you reach a box

with no arrows leading out of it, go up to the blue box above it and continue to follow

the arrows from there.

There’s a lot going on here, so let’s break it down—we’ll focus on the run functions

first. On the left hand side, we run together 𝑠0 → 𝑠1 and 𝑠1 → 𝑠2 to obtain 𝑠0 → 𝑠2,

before running that together with 𝑠2 → 𝑠3 to obtain 𝑠0 → 𝑠3, as we see in the upper

left box. Meanwhile, on the right, we run together 𝑠1 → 𝑠2 and 𝑠2 → 𝑠3 to obtain

𝑠1 → 𝑠3, before running 𝑠0 → 𝑠1 together with our newly obtained 𝑠1 → 𝑠3 to again

obtain 𝑠0 → 𝑠3 in the upper left box. We could write this all out equationally, but all

this is saying is that “running together” the directions of a state system is an associative

operation. When running together three directions, it doesn’t matter whether we run

the first two together or the last two together to start. Not only is this guaranteed by

the way in which we constructed 𝛿, it also makes intuitive sense.

234 CHAPTER 7. POLYNOMIAL COMONOIDS AND RETROFUNCTORS

Exercise 7.9 (Solution here). Using only the contents of the blue boxes and the target

and run functions, write down the equation that we can read off of (7.8) expressing the

associativity of the “running together” operation. ♦

This associative property is what we get by matching up the white direction boxes

on each domain side, but there are three more white position boxes on each codomain

side that we can match up as well. The fact that the lower two of these pairs coincide is

a consequence of the fact that the bottom arrow of 𝛿 is the identity, which we already

knew from Section 7.1.3; so we don’t learn anything new there. On the other hand, the

fact that both the upper position boxes in the codomain contain 𝑠2 implies that

tgt(𝑠0 , run(𝑠0 , 𝑠0 → 𝑠1 , 𝑠1 → 𝑠2)) = tgt(𝑠0 , 𝑠0 → 𝑠2)
= 𝑠2

= tgt(𝑠1 , 𝑠1 → 𝑠2)
= tgt(tgt(𝑠0 , 𝑠0 → 𝑠1), 𝑠1 → 𝑠2),

which is exactly what we wanted in (7.5). In English, this says that when we run

together 𝑠0 → 𝑠1 and 𝑠1 → 𝑠2, the new direction’s target is the same as the direction

of 𝑠1 → 𝑠2, the latter of the two directions that we ran together. Again, this coincides

with our intuition: if we follow two directions in order, we should end up at wherever

the latter direction leads us.

Hence both the associativity of running directions together and the relationship

between the target and run functions from (7.5) are captured by the equality of lenses

𝛿 # (𝛿 ⊳ 𝔰) = 𝛿 # (𝔰 ⊳ 𝛿). Equivalently, the following diagram in Poly commutes:

𝔰 𝔰 ⊳ 𝔰

𝔰 ⊳ 𝔰 𝔰 ⊳ 𝔰 ⊳ 𝔰.

𝛿

𝛿 𝔰 ⊳ 𝛿

𝛿 ⊳ 𝔰

(7.10)

Another way to say this is that 𝛿 is coassociative: while 𝛿 is only a lens 𝔰 → 𝔰⊳ 2
as

defined, the commutativity of (7.10) tells us that the two ways of getting a lens 𝔰→ 𝔰⊳ 3

out of 𝛿 are actually the same. (This is dual to an associative operation, which is a binary

operation that gives rise to two identical ternary operations.)

So 𝛿 induces a canonical lens 𝔰→ 𝔰⊳ 3
, which wewill call 𝛿(3), as it has 3 copies of 𝔰 in

its codomain. Armed with this new lens, we can model three steps through a system

𝜑 : 𝔰→ 𝑝 with interface 𝑝 ∈ Poly as the composite lens

𝔰
𝛿(3)−−→ 𝔰⊳ 3

𝜑⊳ 3

−−→ 𝑝⊳ 3.

In fact, coassociativity guarantees that 𝛿 induces a canonical lens 𝛿(𝑛) : 𝔰 → 𝔰⊳ 𝑛 for

every integer 𝑛 ≥ 2, starting with 𝛿(2) B 𝛿.1 For concreteness, we could then define

1
Perhaps this notation seems a little unnatural, but it helps to think of the original 𝛿 : 𝔰→ 𝔰 ⊳ 𝔰 as the

𝑛 = 2 case of a generalized transition lens modeling 𝑛 steps through the state system.

7.1. STATE SYSTEMS, CATEGORICALLY 235

𝛿(𝑛) for 𝑛 > 2 inductively by 𝛿(𝑛) B 𝛿 # (𝛿(𝑛−1) ⊳ 𝔰), or just as well by 𝛿(𝑛) B 𝛿 # (𝔰 ⊳ 𝛿(𝑛−1))
or even 𝛿(𝑛) B 𝛿 # (𝛿(ℓ) ⊳ 𝛿(𝑚)) for some pair of integers ℓ , 𝑚 > 1 satisfying ℓ + 𝑚 = 𝑛.

Regardless, the coassociativity of 𝛿 means that it doesn’t matter how we build a lens

𝔰 → 𝔰⊳ (𝑛+1)
out of 𝛿, #, ⊳, and identity lenses: we’ll always end up with the same lens.

We will state this in more generality in Proposition 7.20, but here’s some practice with

the 𝑛 = 4 case for a taste of what’s to come.

Exercise 7.11 (Solution here).
1. Say we know nothing about 𝔰 or 𝛿 apart from the fact that 𝔰 ∈ Poly and that 𝛿 is

a lens 𝔰 → 𝔰 ⊳ 𝔰. List all the ways to obtain a lens 𝔰 → 𝔰⊳ 4
using only copies of

𝛿, id𝔰, ⊳, and #. (You may write 𝔰 for id𝔰.)

2. Now assume that (7.10) commutes. Show that all the lenses on your list are equal.

(Hint: Use the fact that (𝑓 # 𝑔) ⊳ (ℎ # 𝑘) = (𝑓 ⊳ ℎ) # (𝑔 ⊳ 𝑘) for lenses 𝑓 , 𝑔 , ℎ, 𝑘). ♦

7.1.5 Running dynamical systems

Finally, we are ready to fulfill our promise fromway back in Example 4.43 by using the

language of Poly to describe stepping through a dynamical system 𝑛 times for arbitrary

𝑛 ∈ N. Given a dynamical system 𝜑 : 𝔰→ 𝑝 with interface 𝑝 ∈ Poly, we can construct

a new dynamical system that we call Run𝑛(𝜑), with the same state system 𝔰 but a new

interface 𝑝⊳ 𝑛 , by defining Run𝑛(𝜑) B 𝛿(𝑛) # 𝜑⊳ 𝑛
. Visually, we define Run𝑛(𝜑) so that

the following diagram commutes:

𝔰 𝔰⊳ 𝑛 𝑝⊳ 𝑛
𝛿(𝑛)

Run𝑛(𝜑)

𝜑⊳ 𝑛

One way to think of this is that Run𝑛(𝜑) is a sped-up version of 𝜑: one step through

Run𝑛(𝜑) is equivalent to 𝑛 steps through 𝜑. But this is just because a single interaction

with the interface 𝑝⊳ 𝑛 models a sequence of 𝑛 interactions with the interface 𝑝, as

detailed in Section 6.1.4 and Example 6.43. So Run𝑛(𝜑) repackages 𝑛 cycles through 𝜑

into a single step. Crucially, 𝛿(𝑛) is what tells us how to sequence all 𝑛 of these steps

together on the state system side. We illustrated how 𝛿 does this for the 𝑛 = 2 case in

Example 6.44, and here’s a polybox picture for the 𝑛 = 3 case:

𝔰 𝑝𝜑 𝔰

𝑝

𝑝

𝑝

𝛿(3)

𝜑

𝜑

𝜑

obtain Run3(𝜑):Given 𝜑 : 𝔰→ 𝑝,

236 CHAPTER 7. POLYNOMIAL COMONOIDS AND RETROFUNCTORS

Notice that we have only defined 𝛿(𝑛), and thus Run𝑛(𝜑), for integers 𝑛 ≥ 2. But 𝑛 = 0

runs through 𝑛 is doing nothing, modeled by the do-nothing section 𝜖 : 𝔰 → y, while

𝑛 = 1 run through 𝜑 is modeled by 𝜑 : 𝔰 → 𝔰 itself. So we want Run0(𝜑) = 𝜖 and

Run1(𝜑) = 𝜑; we can achieve this by setting 𝛿(0) B 𝜖 and 𝛿(1) B id𝔰. Here we should

think of the do-nothing section 𝛿(0) as the transition lens modeling 0 steps through our

state system, and the identity 𝛿(1) as the transition lens modeling a single step.

Exercise 7.12 (Solution here). Verify that when 𝛿(0) = 𝜖 and 𝛿(1) = id𝔰, if Run𝑛(𝜑) is
defined as 𝛿(𝑛) # 𝜑⊳ 𝑛

for all 𝑛 ∈ N, then Run0(𝜑) = 𝜖 and Run1(𝜑) = id𝔰. ♦

Example 7.13 (Returning every other position). In Exercise 4.65, we built a dynamical

system 𝜑 : 𝑆y𝑆 → Ny that returns natural numbers—specifically digits, alternating

between 0’s and the base-10 digits of 1/7 after the decimal point like so:

0, 1, 0, 4, 0, 2, 0, 8, 0, 5, 0, 7, 0, 1, 0, 4, 0, 2, 0, 8, 0, 5, 0, 7, 0, 1, 0, 4, 0, 2, 0, 8, 0, 5, 0, 7, . . .

Say we only wanted the system to return the digits of 1/7 after the decimal point; we’d

like to do away with all these 0’s. In other words, we want a new system 𝑆y𝑆 → Ny

that acts like 𝜑, except that it only returns every other position that 𝜑 returns.

We could build such a system fromscratch—orwe can simply start from𝜑 and apply

Run2, yielding a system Run2(𝜑) : 𝑆y𝑆 → Ny ⊳ Ny � N2y that returns the positions of

𝜑 two at a time:

(0, 1), (0, 4), (0, 2), (0, 8), (0, 5), (0, 7), (0, 1), (0, 4), (0, 2), (0, 8), (0, 5), (0, 7), . . .

Then we just need to compose Run2(𝜑) with a lens 𝜋2 : N2y → Ny equal to the sec-

ond coordinate projection on positions (and the identity on directions) to extract the

positions we want. The new system 𝑆y𝑆 → Ny that skips over every position of 𝜑 is

therefore the following composite:

𝑆y𝑆 𝑆y𝑆 ⊳ 𝑆y𝑆 Ny ⊳Ny � N2y Ny.
𝛿(2)

Run2(𝜑)

𝜑⊳ 2 𝜋2

We can apply this technique in general to skip (or otherwise act on) the positions of a

dynamical system at regular intervals.

One drawback of the Run𝑛(−) operation is that we need to keep track of a separate

morphism𝑆y𝑆 → 𝑝⊳ 𝑛 for every 𝑛 ∈ N, aswell as variousways to relate thesemorphisms

7.1. STATE SYSTEMS, CATEGORICALLY 237

for different values of 𝑛. Is there a way to package all this information into a single

morphism that can model arbitrarily long runs through the system? We will answer

this question in Chapter 8; but for now, let us investigate what’s really going on with

our state systems algebraically.

7.1.6 State systems as comonoids

It turns out that objects equipped with morphisms like those in Sections 7.1.1 and 7.1.2

that satisfy the commutative diagrams from Sections 7.1.3 and 7.1.4 are well-known to

category theorists.

Definition 7.14 (Comonoid). In a monoidal category (C, y, ⊳), a comonoid C B (𝔠, 𝜖, 𝛿)
consists of

• an object 𝔠 ∈ C, called the carrier;
• a morphism 𝜖 : 𝔠→ y in C, called the eraser (or the counit); and
• a morphism 𝛿 : 𝔠→ 𝔠 ⊳ 𝔠 in C, called the duplicator (or the comultiplication);

such that the following diagrams, collectively known as the comonoid laws, commute:

y ⊳ 𝔠 𝔠 𝔠 ⊳ y

𝔠 ⊳ 𝔠,

𝛿
𝜖 ⊳ 𝔠 𝔠 ⊳ 𝜖

(7.15)

where the left triangle is known as the left erasure (or counit) law and the right triangle

is known as the right erasure (or counit) law; and

𝔠 𝔠 ⊳ 𝔠

𝔠 ⊳ 𝔠 𝔠 ⊳ 𝔠 ⊳ 𝔠,

𝛿

𝛿 𝔠 ⊳ 𝛿

𝛿 ⊳ 𝔠

(7.16)

known as the coassociative law.

We may also say that the eraser and duplicator morphisms comprise a comonoid
structure on the carrier, or we may identify a comonoid with its carrier if the eraser and

duplicator can be inferred from context.

We refer to a comonoid C in (Poly, y, ⊳) as a polynomial comonoid.

Remark 7.17. The concept of a comonoid in amonoidal category is dual to that of amonoid,
which may be more familiar. Monoids come with unit and multiplication morphisms

that point the other way, so named because they generalize the unit and multiplication

operations of a monoid in Set. (We’ll talk more about monoids in Set in Example 7.40.)

Prepending ‘co-’ to each term yields the corresponding terms for comonoids.

The alternative names eraser for the counit and duplicator for the comultiplication
are less standard, but we will favor them to avoid confusion between the counit of a

238 CHAPTER 7. POLYNOMIAL COMONOIDS AND RETROFUNCTORS

comonoid and the counit of an adjunction—and so that their names match up with the

Greek letters 𝜖 and 𝛿 that we will so often use to label them. The word “duplicator”

comes from the fact that 𝛿 : 𝔠→ 𝔠 ⊳ 𝔠 effectively turns one 𝔠 into two, while the “eraser”

𝜖 : 𝔠→ y erases the 𝔠 altogether, leaving only themonoidal unit y. Still, it can be helpful

to think of comonoids as having a coassociative comultiplication along with a counit

satisfying left and right counit laws.

Remark 7.18. Comonoids in a functor category with respect to the composition product

are generally known as comonads. So it would be a little more precise and familiar to

refer to our polynomial comonoids as polynomial comonads. But since we think of our

polynomials more often in terms of positions and directions than as functors, we’ll

favor the term comonoid over comonad.

Example 7.19 (State systems are polynomial comonoids). Nearly all our work on state

systems up until now can be summarized thusly:

every state system is a polynomial comonoid,
whose eraser is the do-nothing section

and whose duplicator is the transition lens.

The comonoid structure on a state system 𝔰 is what allows us to write canonical lenses

𝔰 → 𝔰⊳ 𝑛 for any 𝑛 ∈ N. We can then model 𝑛 steps through a dynamical system

𝜑 : 𝔰→ 𝑝 with interface 𝑝 ∈ Poly by composing this canonical lens with 𝜑⊳ 𝑛
to obtain

a “sped-up” dynamical system Run𝑛(𝜑). This new system has the same state system 𝔰,

but its interface is now 𝑝⊳ 𝑛 .

The canonicity of 𝔰→ 𝔰⊳ 𝑛 is due to the following standard result about comonoids,

which can be proved inductively.

Proposition 7.20 (Defining 𝛿(𝑛)). Given a comonoid (𝔠, 𝜖, 𝛿), let 𝛿(𝑛) : 𝔠→ 𝔠⊳ 𝑛 be given

as follows. Let 𝛿(0) B 𝜖 and inductively define 𝛿(𝑛+1) B 𝛿 #
(
𝛿(𝑛) ⊳ 𝔠

)
for all 𝑛 ∈ N. Then

we have the following:

(a) 𝛿(𝑛) is a morphism 𝔠→ 𝔠⊳ 𝑛 for all 𝑛 ∈ N;

(b) 𝛿(1) = 𝔠 = id𝔠;

(c) 𝛿(2) = 𝛿; and

(d) 𝛿(𝑛) = 𝛿 #
(
𝛿(𝑘) ⊳ 𝛿(𝑛−𝑘)

)
for all 𝑘, 𝑛 ∈ N with 𝑘 ≤ 𝑛, so our choice of morphism

𝔠→ 𝔠⊳ (𝑛+1)
is canonical.

Proof. We leave parts (a), (b), and (c) for Exercise 7.21. Part (d) amounts to coassocia-

tivity. □

We’ll continue touse thenotation introducedhere throughout for general comonoids.

7.1. STATE SYSTEMS, CATEGORICALLY 239

Exercise 7.21 (Solution here). Prove the first three parts of Proposition 7.20.

1. Prove part (a).

2. Prove part (b).

3. Prove part (c). ♦

Example 7.22 (Not all polynomial comonoids are state systems). At this point, a natural
question to ask is whether everything we know about a state system 𝔰 is captured by

the fact that state systems are polynomial comonoids. In other words, are state systems

the only polynomial comonoids there are?

The answer turns out to be no. After all, there is one fact about state systems from

Section 7.1.2 that we did not encode in Poly: for a fixed state 𝑠 ∈ 𝔰(1), the target function
𝔰[𝑠] → 𝔰(1) sending directions at 𝑠 to their target states is a bĳection.

Nothing in our comonoid laws guarantees this bĳectivity. An arbitrary polynomial

comonoid might send different directions at 𝑠 to the same target—given a second state

𝑡, there may be multiple ways to get from 𝑠 to 𝑡. It might even send no directions at 𝑠 to
a target 𝑡, making it impossible to get from 𝑠 to 𝑡. (We’ll give an explicit example of a

comonoid that is not a state system in Example 7.23.) State systems as we have defined

them are just the polynomial comonoids that do not allow either of these variations,

for which the bĳective property holds.

We consider this a feature, not a bug. After all, it is an abstraction to say that there

is exactly one way to get from any one state in a system to another. It is perfectly

plausible that the inner workings of a state system do not permit traveling between

some states and differentiate ways of traveling between others. We won’t formally

introduce this idea into our theory of dependent dynamical systems, but we will often

think of polynomial comonoids as a sort of generalized state system throughout the

rest of the book.

Example 7.23 (A comonoid that is not a state system). The polynomial y2 + y is not a

state system: one of its direction-sets has one fewer element than its position-set. But it

can still be given a comonoid structure. We describe that structure here, but we will go

a little quickly, because we’ll soon discover a much more familiar way to think about

comonoids.

Define 𝔞 B {𝑠}y{id𝑠 ,𝑎} + {𝑡}y{id𝑡} � y2 + y. Here is its tree picture:

•
𝑠

•
𝑡

id𝑠 id𝑡
𝑎

𝔞 B

Notice that we have drawn one direction out of each position—id𝑠 and id𝑡—with a

double bar. We let these be the directions that the eraser 𝜖 : 𝔞 → y picks out. The

240 CHAPTER 7. POLYNOMIAL COMONOIDS AND RETROFUNCTORS

double bar is meant to evoke an equals sign from the root position to the eventual

target position, which is appropriate, as these two positions should be equal for every

direction that the eraser selects. We can draw the selections that 𝜖 makes like so:

• • • •

Now we need a duplicator 𝛿 : 𝔞 → 𝔞 ⊳ 𝔞. Before we define it, let’s draw out 𝔞 ⊳ 𝔞 to

see what it looks like. Remember that we need to graft corollas of 𝔞 onto leaves of 𝔞 in

every possible way:

•
• •

•
• •

•
• •

•
• •

•
•
•
•𝔞 ⊳ 𝔞 =

Each of these trees gives a way to match directions out of one position to positions

they could lead to. On positions, 𝛿 will decide which matchings to pick by sending the

red 𝑠 to one of the four positions on the left and the blue 𝑡 to one of the two positions

on the right. We want the double-barred directions that the eraser picked out to have

the same position on either end (in fact, the erasure laws guarantee this). So the only

choice to be made is whether we want the other direction 𝑎 at 𝑠 to point to 𝑠 or to 𝑡.

Let’s pick 𝑡 for the time being, so that on positions, 𝛿 looks like this:

• •
• •

• •
•

As in Example 7.6, we can interpret this as telling us how to “bend” the arrows of 𝔞 so

that they point to other positions:

(7.24)

Meanwhile, on directions, 𝛿 should tell us how to run two directions together into

one. Fortunately, there’s not much for us to do here—we know that if one of the two

directions 𝛿 runs together is one of the double-barred directions that the eraser picked

out, then 𝛿 should ignore that “do-nothing” direction and yield the other direction

(again, the erasure laws ensure this). Here’s what that looks like:

• •
• •

• •
•

(7.25)

7.2. POLYNOMIAL COMONOIDS ARE CATEGORIES 241

And that’s all we need to specify the triple (𝔞, 𝜖, 𝛿).
Here are 𝜖 : 𝔞→ y and 𝛿 : 𝔞→ 𝔞 ⊳ 𝔞 again, in terms of polyboxes.

id𝑠

𝑠
𝔞 𝜖

id𝑡

𝑡
𝔞 𝜖

id𝑠

𝑠
𝔞

id𝑠

𝑠

𝔞

id𝑠

𝑠

𝔞

𝛿
𝑎

𝑠
𝔞

id𝑠

𝑠

𝔞

𝑎

𝑠

𝔞

𝛿 𝑎

𝑠
𝔞

𝑎

𝑠

𝔞

id𝑡

𝑡

𝔞

𝛿
id𝑡

𝑡
𝔞

id𝑡

𝑡

𝔞

id𝑡

𝑡

𝔞

𝛿

Of course, we have yet to check that (𝔞, 𝜖, 𝛿) really is a comonoid, i.e. that the

diagrams in (7.15) and (7.16) commute. We leave that for Exercise 7.26.

Exercise 7.26 (Solution here). Verify that (𝔞, 𝜖, 𝛿) as defined in Example 7.23 obeys the

erasure laws in (7.15) and the coassociative law in (7.16). ♦

Exercise 7.27 (Solution here). Show that if 𝐵 is a set, then there exists a unique

comonoid structure on the linear polynomial 𝐵y. ♦

Once you know that state systems are comonoids in Poly, but not the only ones,

the natural question to ask is “what are all the other comonoids in Poly?” Or perhaps,

as we led you through this case study of 𝔰, you have already suspected the truth: a

polynomial comonoid—what with its directions leading from one position to another,

directions that can be run together associatively among which there are directions at

every position that do nothing—is just another name for a category.

7.2 Polynomial comonoids are categories

What Ahman and Uustalu showed was that polynomial comonoids can be identified

with categories. Every category in the usual sense is a comonoid in Poly, and every

comonoid in Poly is a category. We find their revelation to be truly shocking, and it

suggests some very different ways to think about categories. But let’s go over their

result first.

Theorem 7.28 (Ahman-Uustalu). There is a one-to-one isomorphism-preserving cor-

respondence between polynomial comonoids and (small) categories.

242 CHAPTER 7. POLYNOMIAL COMONOIDS AND RETROFUNCTORS

Our goal is to spell out this correspondence so that we can justly proclaim:

Comonoids in Poly are precisely categories!

7.2.1 Translating between polynomial comonoids and categories

First, we describe how to translate between the carrier 𝔠 of a comonoid C B (𝔠, 𝛿, 𝜖)
and the objects and morphisms of the corresponding category C. The idea is pretty

simple, and you may have already guessed it: positions are objects and directions are

morphisms.

Positions as objects, directions as morphisms

More precisely, the positions of 𝔠 are the objects of C:

𝔠(1) = ObC. (7.29)

Then for each such position or object 𝑖, the 𝔠[𝑖]-directions are the morphisms of C with

domain 𝑖:

𝔠[𝑖] =
∑
𝑗∈ObC

C(𝑖 , 𝑗). (7.30)

The right hand side above is a little clumsier than the left; this is because while we are

used to thinking of hom-sets of categories such as C(𝑖 , 𝑗), consisting of all morphisms

inCwith a fixed domain and codomain, we aren’t used to thinking about the collection

of all morphisms in C with a fixed domain and an arbitrary codomain quite as often.
2

On the other hand, the carrier only encodes which morphisms have each object as its

domain, i.e. which directions are at each position. Codomains will be encoded in the

data of the comonoid elsewhere.

This is the key difference in perspective between the polynomial comonoid per-

spective of categories, in contrast to our usual hom-set perspective: the polynomial

perspective is in a sense domain-centric, as highlighted by the following definition.

Definition 7.31 (Polynomial carrier). LetC be a category. For every object 𝑖 inC, denote

the morphisms in C with domain 𝑖 by C[𝑖], so that
3

C[𝑖] B
∑
𝑗∈ObC

C(𝑖 , 𝑗).

Then the polynomial carrier, or simply carrier, of C is the polynomial∑
𝑖∈ObC

yC[𝑖].

2
Except, perhaps, in the context of coslice categories.

7.2. POLYNOMIAL COMONOIDS ARE CATEGORIES 243

So everything we have said so far about the correspondence from Theorem 7.28 can

be summarized by saying that it preserves carriers: the carrier of the category C is the

carrier 𝔠 of the comonoid C , so that ObC = 𝔠(1) and C[𝑖] = 𝔠[𝑖].
Remark 7.32. If we take the perspective that categories are equal if and only if their ob-

jects andmorphisms are equal and obey the same laws, and similarly that polynomials

are equal if and only if their position-sets and direction-sets are equal sets, then (7.29)

and (7.30) really can be just strict equalities. This is why we are comfortable naming

a “one-to-one correspondence” in Theorem 7.28 rather than just, say, some form of

equivalence. Since the positions and directions of our polynomials always form sets,
however, the categories we obtain under this correspondence are also necessarily small:
their objects form a set, as do all of their morphisms. But we won’t worry too much

about size issues beyond this.

Exercise 7.33 (Solution here). What is the carrier of each of the following categories

(up to isomorphism)?

1. The category

𝐴
𝑓
−−→ 𝐵

where we have drawn every morphism except for the identity morphisms.

2. The category

𝐵
𝑔
−→ 𝐴

ℎ←− 𝐶

where we have drawn every morphism except for the identity morphisms.

3. The empty category.

4. A category with exactly 1 object and a morphism 𝑖, for which every morphism

can be written uniquely as the 𝑛-fold composite of 𝑖 for some 𝑛 ∈ N.

5. The category

0→ 1→ 2→ 3→ · · ·

where there is a unique morphism 𝑚 → 𝑛 if 𝑚 ≤ 𝑛 (and no other morphisms).

6. The category

0← 1← 2← 3← · · ·

where there is a uniquemorphism𝑚 ← 𝑛 if𝑚 ≤ 𝑛 (and no othermorphisms). ♦

But a category C is more than its carrier polynomial, just as a comonoid C is

more than its carrier 𝔠. In particular, we have said nothing about the codomains of

morphisms in C, nor anything about identity morphisms, composition, or how the

3
We may also write 𝑓 : 𝑖 → _ to denote an arbitrary morphism 𝑓 ∈ C[𝑖], i.e. a morphism 𝑓 in C with

domain 𝑖 and an unspecified codomain.

244 CHAPTER 7. POLYNOMIAL COMONOIDS AND RETROFUNCTORS

laws of a category are satisfied. Similarly, we have said nothing about the eraser 𝜖 or

the duplicator 𝛿 of C , nor anything about how the comonoid laws are satisfied. It turns

out that all of these constituents and laws correspond to one another, as summarized by

the following table. Here each item in the comonoid column—either a polynomial, a

lens, or a lens equation—spans two rows, with the top row corresponding to positions

and the bottom row corresponding to directions.

Comonoid C = (𝔠, 𝜖, 𝛿) Category C

carrier

𝑖 ∈ 𝔠(1) objects 𝑖 ∈ ObC

𝑓 ∈ c[𝑖] morphisms 𝑓 : 𝑖 → _

eraser

𝜖1 : 𝔠(1) → 1 — —

𝜖♯
𝑖
: 1→ 𝔠[𝑖] identities id𝑖 : 𝑖 → _

duplicator

𝛿1 : 𝔠(1) → (𝔠 ⊳ 𝔠)(1) codomains* cod: C[𝑖] → ObC

𝛿♯
𝑖
: (𝔠 ⊳ 𝔠)[𝛿1(𝑖)] → 𝔠[𝑖] composition* #

right erasure law

∗
right identity law

left erasure law

codomains of identities cod id𝑖 = 𝑖

left identity law

coassociative law

codomains of composites cod(𝑓 # 𝑔) = cod 𝑔

associative law of composition

Note that the on-positions function of 𝜖, being a function into the terminal set, encodes

no actual data. The asterisk ∗ indicates that the right erasure law on positions works

together with the duplicator to ensure that codomains and composites are properly

specified.

We have already covered the correspondence between the first two rows, so let us

consider each of the following rows in turn. In some sense, we have already seen

each piece of this correspondence in action for state systems in Section 7.1, so we’ll go

through it a little faster this time for the general case.

The eraser assigns identities

We know that the eraser 𝜖 : 𝔠 → y can be identified with a dependent function (𝑖 ∈
𝔠(1)) → [𝑖], sending each position 𝑖 ∈ (1) to a [𝑖]-direction. In terms of our category C,

the eraser sends each object 𝑖 ∈ ObC to a morphism 𝑖 → _. But this is exactly what we

need to specify identity morphisms—a morphism out of each object. So the eraser of

𝔠 specifies the identity morphisms of the corresponding category C. We can interpret

the polybox picture for 𝜖 like so:

id𝑖

𝑖
𝔠 idy

7.2. POLYNOMIAL COMONOIDS ARE CATEGORIES 245

Here we have given the label idy to the arrow sending objects to their identity mor-

phisms.

Keep inmind that from the domain-centric polynomial perspective, we have not yet

specified that the codomain of an identity morphism is equal to its domain; that comes

later.

The right erasure law on positions: a bit of bookkeeping

Keeping our label idy for the arrow in 𝜖, the right erasure law 𝛿 # (𝔠 ⊳ 𝜖) = id𝔠 from (7.15)

can be drawn in polyboxes like so:

𝑖
𝔠

𝑖

𝔠

𝔠

𝛿

idy

𝑖
𝔠

𝑖
𝔠=

We have only filled in a few of the boxes, but that is enough to interpret what the right

erasure law tells us on positions: that the bottom arrow of the duplicator must be the

identity function on 𝔠(1). Equipped with this knowledge, we can focus our attention

on the other two arrows of 𝛿.

The duplicator assigns codomains and composites

In fact, in the polybox picture for 𝛿 : 𝔠 → 𝔠 ⊳ 𝔠, the middle arrow specifies codomains,

and the top arrow specifies composition. We therefore label these arrows as follows:
4

𝔠

𝔠

𝔠

cod

#

To check that this makes sense, we fill in the boxes:

𝑓 # 𝑔

𝑖
𝔠

𝑓

𝑖
𝔠

𝑔

cod 𝑓
𝔠

cod

#

4
Compare these labels to the names “target” and “run” that we gave to the arrows of a state system’s

transition lens.

246 CHAPTER 7. POLYNOMIAL COMONOIDS AND RETROFUNCTORS

Remember: each position box contains an object ofC, while each direction box contains

a morphism of C emanating from the object below. So 𝛿 takes an object 𝑖 ∈ ObC and a

morphism 𝑓 : 𝑖 → _ in C and assigns another object cod 𝑓 ∈ ObC to be the codomain

of 𝑓 . It then takes another morphism 𝑔 : cod 𝑓 → _ in C and assigns a morphism

𝑓 # 𝑔 : 𝑖 → _ to be the composite of 𝑓 and 𝑔. In this way, every morphism gets a

codomain, and every pair of morphisms that can be composed (i.e. the codomain of

one matches the domain of the other) is assigned a composite. As with the identity

morphism, we don’t know what the codomain of this composite morphism is yet; but

we do know that the domain of 𝑓 # 𝑔 matches the domain of 𝑓 , as it should.

The left erasure law on positions: codomains of identities

As with the right erasure law, we can partially fill in the polyboxes for the left erasure

law 𝛿 # (𝜖 ⊳ 𝔠) = id𝔠 from (7.15) to read what it says on positions:

𝑖
𝔠

id𝑖

𝑖

𝔠

cod id𝑖

𝔠

idy

cod

#

𝑖
𝔠

𝑖
𝔠=

So the left erasure law on positions guarantees that cod id𝑖 = 𝑖 for all 𝑖 ∈ ObC. It

makes sense that we would find this here: the eraser assigns identities, while the du-

plicator assigns codomains, so a statement about codomains of identities is a coherence

condition between the eraser and the duplicator.

The erasure laws on directions are the identity laws

Let us finish filling in the polyboxes for the left and right erasure laws to see what they

have to say on directions. In the picture below, the left equality depicts the left erasure

law (to conserve space, we’ll substitute 𝑖 for cod id𝑖 on the left, which we now know

we can do), while the right equality depicts the right erasure law:

id𝑖 # 𝑓

𝑖
𝔠

id𝑖

𝑖

𝔠

𝑓

𝑖

𝔠

idy

cod

#

𝑓

𝑖
𝔠

𝑓

𝑖
𝔠

𝑓 # id
cod 𝑓

𝑖

𝔠

𝑓

𝑖

𝔠

id
cod 𝑓

cod 𝑓

𝔠

cod

idy
#

= =

7.2. POLYNOMIAL COMONOIDS ARE CATEGORIES 247

We find that on directions, the erasure laws state that for every object 𝑖 ∈ ObC and

morphism 𝑓 : 𝑖 → _ in C,

id𝑖 # 𝑓 = 𝑓 = 𝑓 # idcod 𝑓 .

But these are precisely the identity laws of the category C.

The coassociative law on positions: codomains of composites

It remains to consider the comonoid’s coassociative law (7.16), 𝛿 # (𝛿 ⊳ 𝔰) = 𝛿 # (𝔰 ⊳ 𝛿). To
read what it says on positions, we draw the polyboxes and fill them in, stopping just

short of the uppermost direction box of the codomain:

𝑖
𝔰

𝑓 # 𝑔

𝑖

𝔰

cod(𝑓 # 𝑔)

𝔰

𝑓

𝑖
𝔰

𝑔

cod 𝑓
𝔰

cod(𝑓 # 𝑔)
𝔰

cod

#

cod

#

𝑖
𝔰

𝑓

𝑖

𝔰

cod 𝑓

𝔰

𝑓

𝑖
𝔰

𝑔

cod 𝑓
𝔰

cod 𝑔
𝔰

cod

#
cod

#

=

So on positions, the coassociative law states that given an object 𝑖 ∈ ObC and mor-

phisms 𝑓 : 𝑖 → _ and 𝑔 : cod 𝑓 → _ in C,

cod(𝑓 # 𝑔) = cod 𝑔.

Hence composites are assigned the proper codomains.

The coassociative law on directions is the associative law of composition

Finally, let us fill in the remaining polyboxes for the coassociative law (we’ll substitute

cod 𝑔 for cod(𝑓 # 𝑔) on the left, which we now know we can do):

(𝑓 # 𝑔) # ℎ

𝑖
𝔰

𝑓 # 𝑔

𝑖

𝔰

ℎ

cod 𝑔

𝔰

𝑓

𝑖
𝔰

𝑔

cod 𝑓
𝔰

ℎ

cod 𝑔
𝔰

cod

#

cod

𝑓 # (𝑔 # ℎ)

𝑖
𝔰

𝑓

𝑖

𝔰

𝑔 # ℎ

cod 𝑓

𝔰

𝑓

𝑖
𝔰

𝑔

cod 𝑓
𝔰

ℎ

cod 𝑔
𝔰

cod

#
cod

#

=

Thus, on directions, the coassociative law states that given an object 𝑖 ∈ ObC and

morphisms 𝑓 : 𝑖 → _, 𝑔 : cod 𝑓 → _, and ℎ : cod 𝑔 → _ in C,

(𝑓 # 𝑔) # ℎ = 𝑓 # (𝑔 # ℎ).

248 CHAPTER 7. POLYNOMIAL COMONOIDS AND RETROFUNCTORS

But this is precisely the associative law of composition in a category.

We’ve seen that thedata and equations of polynomial comonoids correspond exactly

to the data and equations of categories. This proves Theorem 7.28.

Generalized duplicators as unbiased composition

Before we move onto examples, one more note about the theory: notice that both sides

of our coassociative law are given by 𝛿(3) : 𝔠→ 𝔠⊳ 3
, as defined in Proposition 7.20. On

directions, 𝛿(3) tells us how to compose three morphisms 𝑖
𝑓
−→ _

𝑔
−→ _

ℎ−→ _ in C all at

once to obtain 𝑖
𝑓 # 𝑔 # ℎ
−−−−−→ _, and (co)associativity ensures this is well-defined.

In general, 𝛿(𝑛) : 𝔠 → 𝔠⊳ 𝑛 on directions tells us how to compose 𝑛 morphisms in

C for each 𝑛 ∈ N. After all, we have already seen that 𝛿(2) = 𝛿 performs binary

composition, that 𝛿(1) = id𝔠 performs “unary” composition (the “unary composite” of

a single morphism 𝑓 is just 𝑓 itself), and that 𝛿(0) = 𝜖 performs “nullary” composition

(the “nullary composite” at any object is just its identity). The directions of 𝔠⊳ 𝑛 at

positions in the image of 𝛿(𝑛) are exactly the sequences of composable morphisms of

length 𝑛, and 𝛿(𝑛) sends each sequence to the single direction that is its composite.

7.2.2 Examples of categories as comonoids

Now that we know that polynomial comonoids are just categories, let’s review some

simple examples of categories and see how they may be interpreted as comonoids. As

we go through these examples, pay attention to how the polynomial perspective causes

us to view these familiar categories somewhat differently than usual.

Preorders

A preorder (or thin category) is a category in which every morphism 𝑓 : 𝑐 → 𝑑 is the

only morphism 𝑐 → 𝑑.5 Composition in preorders is easy to describe, because the

composite of 𝑐 → 𝑑 and 𝑑 → 𝑒 is always just the unique arrow 𝑐 → 𝑒. As such,

preorders are some of the simplest examples of categories to consider—we already saw

several in Exercise 7.33—so let us interpret these as comonoids first.

Example 7.34. Let us revisit Example 7.23, where we first wrote down a comonoid

that was not a state system. We defined 𝔞 B {𝑠}y{id𝑠 ,𝑎} + {𝑡}y{id𝑡} � y2 + y and gave

it a comonoid structure, with eraser 𝜖 : 𝔞 → y specifying directions id𝑠 and id𝑡 and

duplicator 𝛿 : 𝔞→ 𝔞 ⊳ 𝔞 pointing the direction 𝑎 at 𝑡.

Looking at the picture we drew of the comonoid in (7.24), it should come as no

surprise that the corresponding category A is the walking arrow category, which is a

5
Sometimes these are also called posets, short for partially ordered sets, but strictly speaking the only

isomorphisms in a poset are its identities, while a preorder allows objects to be isomorphic without being

equal.

7.2. POLYNOMIAL COMONOIDS ARE CATEGORIES 249

preorder with two objects and one morphism between them:

A B 𝑠
𝑎−−→ 𝑡

Here we omit the identity morphisms from our picture, but we know that they exist.

The category A has two objects, the 𝔞-positions 𝑠 and 𝑡. It has two morphisms

with domain 𝑠, the 𝔞[𝑠]-directions id𝑠 and 𝑎; and one morphism with domain 𝑡, the

𝔞[𝑡]-direction id𝑡 . The morphisms id𝑠 and id𝑡 picked out by the erasure are the identity

morphisms, and theduplicator assigns themcodomains that are equal to their domains.

The duplicator also assigns 𝑎 the codomain 𝑡; and as A is then a preorder, composites

are determined automatically.

Exercise 7.35 (Solution here). Let (𝔠, 𝜖, 𝛿) be the comonoid corresponding to the pre-

order depicted as follows (identity morphisms omitted):

𝐵
𝑓
←− 𝐴

𝑔
−→ 𝐶

1. What is the carrier 𝔠?

2. Characterize the eraser 𝜖.

3. Characterize the duplicator 𝛿. ♦

Exercise 7.36 (Solution here). We showed in Exercise 7.27 that for any set 𝐵, the linear

polynomial 𝐵y has a unique comonoid structure. Towhat category does this comonoid

correspond? ♦

Exercise 7.37 (Solution here).
1. Find a comonoid structure for the polynomial 𝑝 B yn+1 + ny whose correspond-

ing category is a preorder. (It is enough to fully describe the category that it

corresponds to.)

2. Would you call your category “star-shaped”? ♦

Example 7.38 (State systems as categories). We know that every state system 𝔰 � 𝑆y𝑆

with its do-nothing section 𝜖 : 𝔰→ y and its transition lens 𝛿 : 𝔰→ 𝔰 ⊳ 𝔰 is a comonoid,

so what category S does (𝔰, 𝜖, 𝛿) correspond to?

Recall from Example 7.22 that state systems are exactly those comonoids whose

codomain (i.e. “target”) functions cod: 𝔰[𝑠] → 𝔰(1) for 𝑠 ∈ 𝔰(1) are bĳections. That is,

from every object 𝑠 ∈ ObS = 𝔰(1), there is exactly 1 morphism to every object 𝑡 ∈ ObS.

So not only is S a preorder, it is the codiscrete preorder on 𝔰(1), where there is always a

morphism between every pair of objects.

250 CHAPTER 7. POLYNOMIAL COMONOIDS AND RETROFUNCTORS

Let’s redraw the polyboxes for the do-nothing section of 𝔰 from (7.1) and the transi-

tion lens of 𝔰 from (7.4), this time with our new arrow labels, as a sanity check:

id𝑠

𝑠
𝔰 idy

𝑠
0
→ 𝑠

2

𝑠
0

𝔰

𝑠
0
→ 𝑠

1

𝑠
0

𝔰

𝑠
1
→ 𝑠

2

𝑠
1

𝔰

cod

#

Indeed, we had already been writing the directions of 𝔰 as arrows 𝑠 → 𝑡, knowing that

each was uniquely specified by its source 𝑠 and its target 𝑡 in 𝔰(1). And in Section 7.1.3,

we had already noted that id𝑠 was just the arrow 𝑠 → 𝑠. So state systems have been

categories with exactly one morphism between every pair of objects all along.

Other names for this category include the indiscrete preorder and the codiscrete or

indiscrete category. These names highlight the fact that every object of this category is

isomorphic to every other object: in fact, every arrow 𝑠 → 𝑡 is an isomorphism with

inverse 𝑡 → 𝑠, for these compose as id𝑠 : 𝑠 → 𝑠 in one direction and id𝑡 : 𝑡 → 𝑡 in the

other. Thus this category is also a groupoid, and it may be called the codiscrete, indiscrete,
or contractible groupoid. . . but we will call it the state category on 𝑆, where 𝑆 is the set of

positions of 𝔰 or objects of S.

Here are the state categories on 3 and on 15, with all maps (even identities) drawn:

1

2

3

1

2

34

5

6

7

8

9

10

11
12

13

14

15

The picture on the left should look familiar: it’s what we drew in Example 7.6 when

took the corolla picture for 3y3
and bent the arrows to point at their targets according

to its transition lens. Notice that the graphs we obtain in this way are always complete.

7.2. POLYNOMIAL COMONOIDS ARE CATEGORIES 251

Exercise 7.39 (Solution here). Let 𝑆 be a set. Is there any comonoid structure on 𝑆y𝑆

other than that of the state category? ♦

Not only does Example 7.38 finally explainwhat our state systems really are (they’re

just special categories!), it illustrates two important features of our story. One is that

on positions, the duplicator 𝛿 : 𝔠→ 𝔠 ⊳ 𝔠 of a comonoid takes the corolla picture of 𝔠 and

“bends the arrows” so that they point to other roots, yielding the underlying graph

of a category. Then 𝛿 on directions collapses two-arrow paths in the graph down

to individual arrows, while the eraser 𝜖 : 𝔠 → y identifies empty paths with identity

arrows.

Another important point is thatwe can viewany category as a generalized state system:

its objects as states, and its morphisms as transitions between states. The polynomial

comonoid perspective is particularly suited for thinking about categories in this way:

each object is a position that we could be in, and each morphism out of that object is a

direction that we might take. What is special about a comonoid is that each direction

will always have another position at the end of it, making it reasonable to think of these

directions as transitions between different states; and any sequence of transitions that

we can follow is itself a transition.

Comparing these ideas, we see that they say the same thing: the first from the

perspective of trees and graphs, the second from the perspective of dynamics. We

might say that

a comonoid structure on a corolla forest turns
roots into vertices and

leaves into composable arrows between vertices;

or that

a comonoid structure on an polynomial turns
positions into states and

directions into composable transitions between states.

Monoids and monoid actions

Here we use monoid to refer to a monoid in the monoidal category (Set, 1,×). We

denote such a monoid by (𝑀, 𝑒, ∗), where 𝑀 is the underlying set, 𝑒 ∈ 𝑀 is the unit,

and ∗ : 𝑀 ×𝑀 → 𝑀 is the binary operation.

Example 7.40 (Monoids as representable comonoids). Recall that everymonoid (𝑀, 𝑒, ∗)
can be identified with a 1-object categoryM with a single hom-set𝑀, a single identity

morphism 𝑒, and composition given by ∗. Now we know that a 1-object category M

is also a polynomial comonoid (𝔪, 𝜖, 𝛿) whose carrier has 1 position, with all of the

252 CHAPTER 7. POLYNOMIAL COMONOIDS AND RETROFUNCTORS

morphisms of M becoming its directions. So the carrier of M is the representable

polynomial y𝑀 .

Then the eraser 𝜖 : y𝑀 → y picks out the identity morphism 𝑒 ∈ 𝑀 on directions,

while the duplicator 𝛿 : y𝑀 → y𝑀 ⊳ y𝑀 � y𝑀×𝑀 can be identified with the binary

operation ∗ : 𝑀 × 𝑀 → 𝑀. (We don’t have to worry about codomains, since there’s

only one possible codomain to choose from.) In this way, every monoid (𝑀, 𝑒, ∗) in Set
gives rise to a representable comonoid (y𝑀 , 𝜖, 𝛿) in Poly. We can just as easily invert

this construction, obtaining a monoid for every representable comonoid by taking the

underlying set to be the carrier’s set of directions, the unit to be the direction picked out

by the erasure, and the binary operation to be the duplicator’s on-directions function.

Exercise 7.41 (Solution here). Verify Example 7.40 by showing that (𝑀, 𝑒, ∗) satisfies the
unitality andassociativity requirements of amonoid in (Set, 1,×) if andonly if (y𝑀 , 𝜖, 𝛿)
satisfies the erasure and coassociativity requirements of a comonoid in (Poly, y, ⊳). ♦

Example 7.42 (Cyclic lists). For any 𝑛 ∈ N, consider Z/𝑛Z, the cyclic group of order 𝑛,

viewed as a monoid or, equivalently, a 1-object category. Its carrier is yZ/𝑛Z.

As a polynomial functor, yZ/𝑛Z sends each set 𝑋 to the set of length-𝑛 tuples in 𝑋.

But the comonoid structure lets us think of these tuples as cyclic lists: once we reach

the last element, we can loop back around to the first element. Indeed, as a natural

transformation, 𝜖 : yZ/𝑛Z → y picks out the “current” element via its 𝑋-component

𝜖 ⊳ 𝑋 : yZ/𝑛Z ⊳ 𝑋 → y ⊳ 𝑋, which is just a function 𝜖𝑋 : 𝑋Z/𝑛Z → 𝑋; and 𝛿 lets us move

around the list.

We will see later that comonoids are closed under coproducts, so

∑
𝑛∈N yZ/𝑛Z is also

a comonoid.

Example 7.43 (Monoid actions). Suppose that (𝑀, 𝑒, ∗) is a monoid, 𝑆 is a set, and

𝛼 : 𝑆 × 𝑀 → 𝑆 is a (right) monoid action. That is, for all 𝑠 ∈ 𝑆 we have 𝛼(𝑠, 𝑒) = 𝑠 and

𝛼(𝑠, 𝑚 ∗ 𝑛) = 𝛼(𝛼(𝑠, 𝑚), 𝑛) for 𝑚, 𝑛 ∈ 𝑀; equivalently, the diagrams

𝑆 × 1 𝑆 ×𝑀

𝑆

𝑆 × 𝑒

𝛼 and

𝑆 ×𝑀 ×𝑀 𝑆 ×𝑀

𝑆 ×𝑀 𝑆

𝑆 × ∗

𝛼 ×𝑀 𝛼

𝛼

commute.

Then there is an associated category MA with objects in 𝑆 and morphisms 𝑠
𝑚−→

𝛼(𝑠, 𝑚) for each 𝑠 ∈ 𝑆 and𝑚 ∈ 𝑀. This, in turn, corresponds to a comonoid (𝑆y𝑀 , 𝜖, 𝛿),
as we will see in the next exercise.

7.2. POLYNOMIAL COMONOIDS ARE CATEGORIES 253

Exercise 7.44 (Solution here). With notation as in Example 7.43, characterize the

comonoid structure on 𝑆y𝑀 .

1. How can we define the erasure 𝜖?

2. How can we define the duplicator 𝛿?

3. Verify that the erasure laws hold.

4. Verify that the coassociative law holds.

5. Describe the corresponding categoryMA. In particular, what are themorphisms

between any fixed pair of objects, what are the identity morphisms, and how do

morphisms compose?

6. 𝑀 always acts on itself by multiplication. Is the associated comonoid structure

on 𝑀y𝑀 the same or different from the one coming from Example 7.38? ♦

Example 7.45 (The category of 𝐵-streams). Fix a set 𝐵. The set 𝐵N consists of countable

sequences of elements in 𝐵, which we will call 𝐵-streams. We can write an 𝐵-stream

𝑏 ∈ 𝐵N as

𝑏 B (𝑏0 → 𝑏1 → 𝑏2 → 𝑏3 → · · ·),

with 𝑏𝑛 ∈ 𝐵 for each 𝑛 ∈ N.

Then there is a monoid action 𝜏 : 𝐵N ×N→ 𝐵N for which

𝜏(𝑏, 𝑛) B (𝑏𝑛 → 𝑏𝑛+1 → 𝑏𝑛+2 → 𝑏𝑛+3 → · · ·).

Roughly speaking, N acts on 𝐵-streams by shifting them forward by a natural number

of steps. We can check that this is a monoid action by observing that 𝜏(𝑏, 0) = 𝑏 and

that 𝜏(𝑏, 𝑚 + 𝑛) = 𝜏(𝜏(𝑏, 𝑚), 𝑛).
So by Example 7.43, the corresponding comonoid is carried by 𝐵NyN. Each 𝐵-stream

𝑏 is a position, and each 𝑛 ∈ N is a direction at 𝑏 that can be visualized as the sequence

of 𝑛 arrows starting from 𝑏0 and ending at 𝑏𝑛 . Then at the end of the direction 𝑛 is a

new 𝐵-stream: the rest of 𝑏 starting at 𝑏𝑛 . Indeed, this 𝐵-stream is exactly 𝜏(𝑏, 𝑛), the
codomain assigned to the direction 𝑛 at 𝑏.

Alternatively, if we shift from the domain-centric perspective to the usual hom-set

perspective, this comonoid corresponds to a category whose objects are 𝐵-streams

and whose morphisms 𝑏 → 𝑏′ consist of every way in which 𝑏′ can be viewed as a

continguous substream of 𝑏: that is, there is a morphism 𝑛 : 𝑏 → 𝑏′ for each 𝑛 ∈ N
satisfying

(𝑏𝑛 → 𝑏𝑛+1 → · · ·) = (𝑏′
0
→ 𝑏′

1
→ · · ·).

The identity on 𝑏 is given by 0: 𝑏 → 𝑏; and the composite of two morphisms is the

sum of the corresponding natural numbers, as a substream of a substream of 𝑏 is just

a substream of 𝑏 shifted by the appropriate amount.

We will see this category again in Example 8.38.

254 CHAPTER 7. POLYNOMIAL COMONOIDS AND RETROFUNCTORS

Exercise 7.46 (Solution here). Let R/Z � [0, 1) be the quotient of R by the Z-action
sending (𝑟, 𝑛) ↦→ 𝑟 + 𝑛. More concretely, it is the set of real numbers between 0 and 1,

including 0 but not 1.

1. Find a comonoid structure on (R/Z)yR.
2. Is the corresponding category a groupoid? ♦

The degree of an object

We could continue to list examples of polynomial comonoids, but of course any list

of small categories is already a list of such comonoids. So instead, we conclude this

section with some terminology that the polynomial perspective on a category affords.

Definition 7.47 (Degree, linear). Let C be a category and 𝑐 ∈ ObC an object. The degree
of 𝑐, denoted deg(𝑐), is the set of arrows in C that emanate from 𝑐.

If deg(𝑐) � 1, we say that 𝑐 is linear. If deg(𝑐) � n for 𝑛 ∈ N, we say 𝑐 has degree 𝑛.

Exercise 7.48 (Solution here).
1. If every object in C is linear, what can we say about C?

2. Is it possible for an object in C to have degree 0?

3. Find a category that has an object of degree N.

4. Up to isomorphism, how many categories are there that have just one linear and

one quadratic (degree 2) object?

5. Is the above the same as asking how many comonoid structures on y2 + y there

are? ♦

7.3 Morphisms of polynomial comonoids are retrofunctors

Now that we have characterized the comonoids of Poly, let us consider the morphisms

between them. These turn out to correspond to a rather odd kind of map between

categories known as a retrofunctor. 6

7.3.1 Introducing comonoid morphisms and retrofunctors

First, let us define morphisms of comonoids in the most general setting. If you’ve seen

the definition of a monoid homomorphism (or even a group homomorphism), then

this definition may look familiar.

6
Many authors have referred to these as cofunctors, including ourselves in other work and in early

versions of this book. However, the prefix co in category theory is very special—having to do with taking

opposites—andwewill see inRemark 7.59 that comonoid homomorphisms are not just opposite-functors..

Thus to keep the prefix co more pristine, and in solidarity with other researchers, we have decided to use

the term retrofunctor, which is an appropriate usage of the term defined by Bob Paré [Par23].

7.3. MORPHISMS OF POLYNOMIAL COMONOIDS ARE RETROFUNCTORS 255

Definition 7.49 (Comonoid morphism). Given a monoidal category (C, y, ⊳) with

comonoids C B (𝔠, 𝜖, 𝛿) and C ′ B (𝔠′, 𝜖′, 𝛿′), a comonoid morphism (or morphism of
comonoids) C → C ′ is a morphism 𝐹 : 𝔠 → 𝔠′ in C for which the following diagrams

commute:

𝔠 𝔠′

y y,

𝐹

𝜖 𝜖′ (7.50)

called the eraser preservation law (we say 𝐹 preserves erasure); and

𝔠 𝔠′

𝔠 ⊳ 𝔠 𝔠′ ⊳ 𝔠′

𝐹

𝛿 𝛿′

𝐹 ⊳ 𝐹

(7.51)

called the duplicator preservation law (we say 𝐹 preserves duplication). We may also say

that 𝐹 preserves the comonoid structure.
When themonoidal structure onC can be inferred, we letComon(C)denote the sub-

category of C whose objects are comonoids in C and whose morphisms are comonoid

morphisms.

So when our monoidal category of interest is (Poly, y, ⊳), a morphism between

polynomial comonoids is just a special kind of lens between their carriers that preserves

erasure and duplication.

Exercise 7.52 (Solution here). There is something to be proved in the definition above:

that comonoids and comonoidmorphisms reallydo formacategory. Using thenotation

from Definition 7.49, verify the following:

1. The identity morphism on a comonoid is a comonoid morphism.

2. The composite of two comonoid morphisms is a comonoid morphism.

This will show that Comon(C) is indeed a subcategory of C. ♦

Notice that we were very careful in howwe stated Theorem 7.28: while we asserted

the existence of an isomorphism-preserving one-to-one correspondence between the

objects ofComon(Poly) andCat, we never claimed that these two categories are isomor-

phic or even equivalent. The strange truth of thematter is that they are not: polynomial

comonoid morphisms correspond not to functors, but to different maps of categories

called retrofunctors.

How exactly do these maps behave? If we specify Definition 7.49 to the case of

256 CHAPTER 7. POLYNOMIAL COMONOIDS AND RETROFUNCTORS

(Poly, y, ⊳), we can write the eraser preservation law (7.50) in polyboxes as

𝑐

𝔠

idy

𝑐

𝔠 𝔠′

idy𝐹=

(7.53)

and the duplicator preservation law (7.51) in polyboxes as

𝑐

𝔠

𝔠

𝔠

𝑔

𝔠′

ℎ

𝔠′

𝐹

𝐹

cod

#

𝑐

𝔠 𝔠′

𝑔

𝔠′

ℎ

𝔠′

𝐹 cod

#

=

(7.54)

If we read off the equations from these polyboxes, interpreting polynomial comonoids

as categories, we derive the following definition of a retrofunctor. (Here (7.56) is

equivalent to (7.53), while (7.57) and (7.58) are together equivalent to (7.54).)

Definition 7.55 (Retrofunctor). Let C and C′ be (small) categories. A retrofunctor
𝐹 : C ↛ C′ consists of

• a function 𝐹 : ObC→ ObC′ forward on objects7 and
• a function 𝐹

♯
𝑐 : C′[𝐹𝑐] → C[𝑐] backward on morphisms for each 𝑐 ∈ ObC,

satisfying the following conditions, collectively known as the retrofunctor laws:
i. 𝐹 preserves identities:

𝐹
♯
𝑐 id𝐹𝑐 = id𝑐 (7.56)

for each 𝑐 ∈ ObC;

ii. 𝐹 preserves codomains:
𝐹 cod 𝐹

♯
𝑐𝑔 = cod 𝑔 (7.57)

for each 𝑐 ∈ ObC and 𝑔 ∈ C′[𝐹𝑐];
iii. 𝐹 preserves composites:8

𝐹
♯
𝑐𝑔 # 𝐹♯

cod 𝐹
♯
𝑐𝑔
ℎ = 𝐹

♯
𝑐

(
𝑔 # ℎ

)
(7.58)

for each 𝑐 ∈ ObC, 𝑔 ∈ C′[𝐹𝑐], and ℎ ∈ C′[cod 𝑔].
We letCat♯ � Comon(Poly)denote the category of (small) categories and retrofunctors.

7
In keeping with standard functor notation, we omit the usual subscript 1 that we include for on-

positions (in this case, on-objects) functions. We often omit parentheses when applying these functions

as well.

8
In particular, the codomains of either side of (7.58) are equal. This isn’t actually guaranteed by the

other laws, so it is worth noting on its own; see for example the proof of Proposition 7.61.

7.3. MORPHISMS OF POLYNOMIAL COMONOIDS ARE RETROFUNCTORS 257

Remark 7.59. For experts, we explain the term retrofunctor from Definition 7.55. Let

C,C′ be categories, and consider them as monads in Span. A functor between them

consists of a function 𝐹Ob : Ob(C) → Ob(C′) and a 2-cell, as shown left

Ob(C) Ob(C)

Ob(C′) Ob(C′)

Mor(C)

𝐹
Ob

𝐹
Ob

Mor(C′)

𝐹Mor
Ob(C) Ob(C)

Mor(C)

}𝐹
Ob

#Mor(C′)#𝐹
Ob

𝐹Mor

satisfying the properties of a monad homomorphism.

In [Par23, Definition 6.1], Paré defines retromorphism of monads in double categories

like Span. We will not discuss the more general definition here, but in a framed

bicategory (equipment), where we have companions
q𝑓 and conjoints 𝑓̂ of tight maps 𝑓 ,

it is easy to check thatmonads lift along tightmorphisms in the sense that the horizontal

cell

(
}𝐹Ob

Mor(C′) # 𝐹Ob

)
: Ob(C) Ob(C) is a monad if Mor(C′) is. Hence, a functor

is equivalently given by a function 𝐹Ob : Ob(C) → Ob(C′) such that the 2-cell shown

above right is a monad homomorphism.

A retromorphism of monads—in our case, a retrofunctor—is simply a monad map

going the other way:
9

Ob(C) Ob(C)

Mor(C)

}𝐹
Ob

#Mor(C′)#𝐹
Ob

Henceforthwewill identify the categoryCat♯ with the isomorphic categoryComon(Poly),
eliding the difference between comonoids in Poly and categories.

Since each retrofunctor includes a lens between its carrier polynomials, retrofunctors

compose the way lenses do.

Exercise 7.60 (Solutionhere). LetC,D , E be categories, and let 𝐹 : C ↛ D and𝐺 : D ↛ E

be retrofunctors between them.

1. Characterize the behavior of the identity retrofunctor idD on D. Where does it

send each object? Where does it send each morphism?

2. Characterize the behavior of the composite retrofunctor 𝐹 #𝐺. Where does it send

each object and morphism? ♦

On the surface, functors and retrofunctors have much in common: both send ob-

jects to objects and morphisms to morphisms in a way that preserves domains and

codomains as well as identities and composites. The main difference is that functors

9
As a hint to the connection in terms of the (yet-undefined) double category Cat♯ , note that when the

monads in question are left adjoints, their right adjoints will automatically be comonads, and amorphism

between these comonads will be a retromorphism between the monads.

258 CHAPTER 7. POLYNOMIAL COMONOIDS AND RETROFUNCTORS

send morphisms forward, while retrofunctors send morphisms backward. As we work

with retrofunctors, it will be helpful to remember the following:

A retrofunctor 𝐹 goes forward on objects and backward on morphisms.
Codomains are objects, so 𝐹 preserves them going forward.

Identities and composites are morphisms, so 𝐹 preserves them going backward.

Before we explore just how different functors and retrofunctors can be, let us note

a few more similarities that these two kinds of maps between categories share. For

example, retrofunctors, like functors, preserve isomorphisms.

Proposition 7.61. Let 𝐹 : C ↛ D be a retrofunctor, 𝑐 ∈ C be an object, and 𝑔 : 𝐹𝑐 → _

be an isomorphism in D. Then 𝐹
♯
𝑐𝑔 is also an isomorphism in C.

Proof. Let 𝑐′ B cod 𝐹
♯
𝑐𝑔, so that 𝐹𝑐′ = cod 𝑔 by (7.57), and let 𝑔−1

: 𝐹𝑐′ → 𝐹𝑐 be the

inverse of 𝑔. Then

id𝑐 = 𝐹
♯
𝑐 id𝐹𝑐 (7.56)

= 𝐹
♯
𝑐

(
𝑔 # 𝑔−1

)
= 𝐹

♯
𝑐𝑔 # 𝐹♯𝑐′

(
𝑔−1

)
, (7.58)

so in particular 𝑐 = cod id𝑐 = cod 𝐹
♯
𝑐′

(
𝑔−1

)
, and

id𝑐′ = 𝐹
♯
𝑐′ id𝐹𝑐′ (7.56)

= 𝐹
♯
𝑐′

(
𝑔−1 # 𝑔

)
= 𝐹

♯
𝑐′

(
𝑔−1

)
𝐹♯

cod 𝐹
♯
𝑐′(𝑔−1)

𝑔 (7.58)

= 𝐹
♯
𝑐′

(
𝑔−1

)
𝐹♯𝑐𝑔.

Hence 𝐹
♯
𝑐𝑔 and 𝐹

♯
𝑐′

(
𝑔−1

)
are inverses, and the result follows. □

Moreover, isomorphisms in Cat correspond to isomorphisms in Cat♯.

Exercise 7.62 (Solution here). We’ve justified the “isomorphism-preserving” part of

Theorem 7.28 implicitly, but let’s make it explicit.

Recall that two categories C and D are isomorphic in Cat if there exist functors

𝐹 : C → D and 𝐺 : D → C that are mutually inverse, i.e. 𝐹 # 𝐺 and 𝐺 # 𝐹 are identity

functors on C and D. Similarly, C and D are isomorphic in Cat♯ if there exist retro-

functors 𝐻 : C ↛ D and 𝐾 : D ↛ C that are mutually inverse, i.e. 𝐻 # 𝐾 and 𝐾 # 𝐻 are

identity retrofunctors on C and D. Show that C and D are isomorphic in Cat if and
only if they are isomorphic in Cat♯. ♦

But while isomorphisms in Cat♯ are the same as those in Cat, the non-isomorphisms

can be very different. We’ll see this in the examples to come.

7.3. MORPHISMS OF POLYNOMIAL COMONOIDS ARE RETROFUNCTORS 259

7.3.2 Examples of retrofunctors

From a realm where functors reign supreme, the back-and-forth behavior of retrofunc-

tors can seem foreign and counterintuitive. Whereas a functor C→ D can be thought

of as a diagram—a picture in the shape of C, drawn with the objects and arrows of

D—retrofunctors are much more like the dynamical systems of Chapter 4.
10

That is, a retrofunctor 𝐹 : C ↛ D is a way of interacting with the states (objects) and

transitions (morphisms) within C by way ofD. Imagine the retrofunctor as a box, with

C on the inside and D on the outside. Some 𝑐 ∈ C may be the current state inside the

box, but all anyone outside the box can see is the object 𝐹𝑐 ∈ D that the box chooses to

display in lieu of 𝑐. Still, any transition 𝑔 out of 𝐹𝑐 can be selected from the outside;

the box guarantees that whatever 𝑐 is on the inside, there is a corresponding transition

𝐹
♯
𝑐𝑔 out of that 𝑐. As 𝑔 is followed from 𝐹𝑐 to cod 𝑔 on the outside, 𝐹

♯
𝑐𝑔 is followed from

𝑐 to cod 𝐹
♯
𝑐𝑔 on the inside. But codomain preservation guarantees that the new state

cod 𝑔 on the outside is equal to what the box would want to display in lieu of the new

state cod 𝐹
♯
𝑐𝑔 on the inside, as cod 𝑔 = 𝐹 cod 𝐹

♯
𝑐𝑔, Then the process repeats in a manner

compatible with identities and composition.

Here we give a variety of examples of retrofunctors to get a better handle on them.

Often we will denote a category by its carrier when its comonoid structure can be

inferred from context, and C will be a category throughout with carrier 𝔠.

Retrofunctors to preorders

Given a retrofunctor fromC to a preorderP, we can think ofP as providing a simplified

model or abstraction of the states and transitions possible in C, picking canonical

transitions in C along the way to exhibit the model. While the transitions in a general

category may be more complex, all that a preorder tells you is whether you can get

from one state to another or not. Let’s see some examples.

Example 7.63 (Retrofunctors to discrete categories). The discrete category on a set 𝑆

is the category with objects in 𝑆 and only identity morphisms; its carrier is 𝑆y. So a

retrofunctor 𝐹 : C ↛ 𝑆y is completely determinedby its behavior on objects: to preserve

identities, it can only send the morphisms in 𝑆y back to the identity morphisms in C.

We can identify 𝐹 with a function ObC → 𝑆, assigning each state in C a label in 𝑆

without revealing anything about the transitions between them.

Exercise 7.64 (Solution here).
1. Show that y has a unique comonoid structure.

2. Show that y with its comonoid structure is terminal in Cat♯.
3. Explain why y is terminal using the language of states and transitions. ♦

10
In fact, we will see in Chapter 8 that retrofunctors generalize our dynamical systems.

260 CHAPTER 7. POLYNOMIAL COMONOIDS AND RETROFUNCTORS

Example 7.65 (Retrofunctors to the walking arrow). Consider a retrofunctor 𝐹 : C ↛ A,

where A is the walking arrow category

A B 𝑠
𝑎−−→ 𝑡

from Example 7.34. On objects, 𝐹 is a function ObC → {𝑠, 𝑡}, so each object of C lies

in either C𝑠 B 𝐹−1𝑠 or C𝑡 B 𝐹−1𝑡 (but not both). Then on morphisms, preservation

of identities determines where 𝐹♯ sends id𝑠 and id𝑡 , while preservation of codomains

ensures that for each 𝑐 ∈ C𝑠 , the morphism 𝐹
♯
𝑐 𝑎 : 𝑎 → _ that 𝐹♯ sends 𝑎 back to must

satisfy

𝐹 cod 𝐹
♯
𝑐 𝑎 = cod 𝑎 = 𝑡

and thus cod 𝐹
♯
𝑐 𝑎 ∈ C𝑡 . In particular, for every object 𝑐 ∈ C that 𝐹 sends to 𝑠, there

must be at least one morphism from 𝑐 to an object that 𝐹 sends to 𝑡, so that one of those

morphisms can be 𝐹
♯
𝑐 𝑎. As there are no nontrivial composites in A, the retrofunctor 𝐹

automatically preserves composites.

In summary, a retrofunctor 𝐹 : C ↛ A divides the objects of C between C𝑠 and C𝑡

and fixes a morphism from each object in C𝑠 to some object in C𝑡 . We can think of 𝐹

as separating the states of C into source states and target states, modeled by the 𝑠 state

and the 𝑡 state inA, respectively; then every source state is assigned a target state and

a way of getting to that target state via a transition in C.

Given a retrofunctor 𝐹 : C ↛ D and an object 𝑑 ∈ D, we will continue to use the

notation C𝑑 B 𝐹−1𝑑 to denote the set of objects in C that 𝐹 sends to 𝑑.

Exercise 7.66 (Solution here). Let 𝐹 : C ↛ A be a retrofunctor from C to the walking

arrow category A, as in Example 7.65. If 𝐹𝑐 = 𝑠 for all 𝑐 ∈ C, what can we say about

C? ♦

Exercise 7.67 (Solution here).
1. Recall the star-shaped category yn+1 + ny from Exercise 7.37. Describe retrofunc-

tors to it.

2. Describe retrofunctors to the preorder (N,≤), viewed as a category: its objects

are natural numbers, and there is a morphism 𝑚 → 𝑛 if and only if 𝑚 ≤ 𝑛.
3. Describe retrofunctors to the preorder (N,≥): its objects are natural numbers,

and there is a morphism 𝑛 → 𝑚 if and only if 𝑛 ≥ 𝑚. ♦

Example 7.68 (Retrofunctors to thewalking commutative square). Consider a retrofunc-
tor 𝐹 : C ↛ CS, where CS is the walking commutative square category

7.3. MORPHISMS OF POLYNOMIAL COMONOIDS ARE RETROFUNCTORS 261

CS B

𝑤 𝑦

𝑥 𝑧

𝑓

ℎ

𝑘

𝑔

𝑓 # 𝑔 = ℎ # 𝑘

On objects, 𝐹 is a function ObC→ {𝑤, 𝑥, 𝑦, 𝑧}, so each object of C lies in exactly one of

C𝑤 ,C𝑥 ,C𝑦 , andC𝑧 . Then onmorphisms, out of every object𝑋 ∈ C𝑥 there is amorphism

𝐹
♯
𝑋
𝑔 : 𝑋 → _ to an object in C𝑧 , and out of every object 𝑌 ∈ C𝑦 there is a morphism

𝐹
♯
𝑌
𝑘 : 𝑌 → _ also to an object in C𝑧 . Finally, out of every object 𝑊 ∈ C𝑤 there is a

morphism 𝐹
♯
𝑊
𝑓 : 𝑊 → 𝑋𝑊 to an object 𝑋𝑊 ∈ C𝑥 and a morphism 𝐹

♯
𝑊
ℎ : 𝑊 → 𝑌𝑊 to an

object in 𝑌𝑊 ∈ C𝑦 . As 𝐹 preserves composites, these must all then satisfy

𝐹
♯
𝑊
𝑓 # 𝐹♯

𝑋𝑊
𝑔 = 𝐹♯(𝑓 # 𝑔) = 𝐹♯(ℎ # 𝑘) = 𝐹

♯
𝑊
ℎ # 𝐹♯

𝑌𝑊
𝑘;

in particular, 𝐹
♯
𝑋𝑊

𝑔 and 𝐹
♯
𝑌𝑊
𝑘 must share a common codomain 𝑍𝑊 ∈ C𝑧 , yielding the

following commutative square in C:

𝑊 𝑌𝑊

𝑋𝑊 𝑍𝑊 .

𝐹
♯
𝑊
𝑓

𝐹
♯
𝑊
ℎ

𝐹
♯
𝑌𝑊

𝑘

𝐹
♯
𝑋𝑊

𝑔

Exercise 7.69 (Solution here). Let A denote the walking arrow category, as in Exam-

ple 7.65, and let CS denote the walking commutative square category, as in Exam-

ple 7.68.

1. List the retrofunctors CS ↛ A.

2. List the retrofunctorsA ↛ CS. ♦

Exercise 7.70 (Solution here).
1. What does a retrofunctor from y to a poset represent?

2. Consider the chain poset [𝑛] � ∑𝑛
𝑖=0

y𝑖+1
. Howmany retrofunctors are there from

[𝑚] → [𝑛] for all 𝑚 ≤ 𝑛? ♦

Retrofunctors to monoids

When a monoid (𝑀, 𝑒, ∗), viewed as a 1-object category y𝑀 , is the codomain of a

retrofunctor C ↛ y𝑀 , it plays the role of a joystick: an “input device” that “reports

262 CHAPTER 7. POLYNOMIAL COMONOIDS AND RETROFUNCTORS

its. . . direction to thedevice it is controlling.”
11

Like a joystick, y𝑀 stays inone “place”—

a single state—but has a number of directions it can take that are reported back to C,

controlling the way it moves through its transitions. As we string together a sequence

of directions in 𝑀, we chart a course through the transitions of C. We make this

analogy concrete in the following examples.

Example 7.71 (Arrow fields). Consider the monoid (N, 0,+) viewed as a category yN.

Retrofunctors C ↛ yN have been called admissible sections [Agu97]. We prefer to call

them arrow fields (on C), for they turn out to resemble vector fields—but with arrows

in C instead of vectors.
12

We’ll have more to say about these in Theorem 8.59, but our

goal here is simply to unpack the definition.

To specify a retrofunctor 𝐴 : C ↛ yN, we first say what it does on objects, but this is

already decided: there is only one object in yN, so every object of C is sent to it. This

also means that codomains are automatically preserved. So as will be the case for all

retrofunctors to monoids, 𝐴 is characterized by its behavior on morphisms: for each

object 𝑐 ∈ C, the retrofunctor assigns each 𝑛 ∈ N a morphism 𝐴
♯
𝑐𝑛 of C emanating from

𝑐. That’s a lot of data, but we still have two retrofunctor laws to pare it down:

𝐴
♯
𝑐0 = id𝑐 and 𝐴

♯
𝑐(𝑚 + 𝑛) = 𝐴

♯
𝑐𝑚 # 𝐴♯

cod𝐴
♯
𝑐𝑚
𝑛.

Then for each 𝑐 ∈ C, since every 𝑛 ∈ N is a sum of 1’s, the morphism 𝐴
♯
𝑖
𝑛 can be

decomposed into 𝑛 copies of 𝐴
♯
𝑐 𝑗1 for objects 𝑐0 B 𝑐, 𝑐1 , . . . , 𝑐𝑛 ∈ C, as follows:

𝑐 = 𝑐0

𝐴
♯
𝑐
0

1

−−−→ 𝑐1

𝐴
♯
𝑐
1

1

−−−→ · · ·
𝐴
♯
𝑐𝑛−1

1

−−−−−→ 𝑐𝑛 . (7.72)

Here each 𝑐 𝑗+1 B cod𝐴
♯
𝑐 𝑗1.

Thus an arrow field of C is given by independently choosing a morphism emanting

from each 𝑐 ∈ C to be 𝐴
♯
𝑐1: an arrow (morphism) out of each object, like how a vector

field has a vector out of each point. Indeed, any such choice uniquely determines the

retrofunctor 𝐴 : C ↛ yN: as every object is assigned an arrow coming out of it, we can

follow the arrow out of 𝑐 to an object 𝑐1, then following the arrow out of 𝑐1 to an object

𝑐2, and so on until we have followed the 𝑛 arrows in (7.72), which then compose to

yield 𝐴
♯
𝑐𝑛. With our joystick analogy, a single flick sends us from a state 𝑐 ∈ C along

its assigned arrow 𝐴
♯
𝑐1, while 𝑛 flicks send us through 𝑛 arrows along the arrow field.

11
Description fromWikipedia.

7.3. MORPHISMS OF POLYNOMIAL COMONOIDS ARE RETROFUNCTORS 263

Here is an example of an arrow field on the product of preorders (N,≤) × (N,≤):

•

•

•

•

•

•

•

•

•

•

•

•

Every object has been assigned an emanating morphism drawn in blue, but there need

not be any rhyme or reason to our choice.

Exercise 7.73 (Solution here). How many arrow fields on the category • → • are

there? ♦

We will see later in Proposition 8.60 that the arrow fields on a category form a

monoid, and that this operation Cat♯ →Monop
is functorial and in fact an adjoint.

Exercise 7.74 (Solution here). Consider the monoid of integers (Z, 0,+) as a 1-object

category yZ, and let yN be the monoid of natural numbers (N, 0,+) viewed as a 1-object

category as above.

1. Describe the data of a retrofunctor C ↛ yZ.

2. What would you say is the canonical retrofunctor yZ ↛ yN? ♦

Exercise 7.75 (Solution here).
1. Suppose that 𝑀, 𝑁 are monoids (each is a category with one object). Are retro-

functors between them related to monoid homomorphisms? If so, how?

2. Suppose C and D are categories and 𝐹 : C ↛ D is a retrofunctor. Does there

necessarily exist a retrofunctor Cop ↛ Dop
that acts the same as 𝐹 on objects? ♦

Exercise 7.76 (Monoid actions; solution here). Recall from Example 7.43 that every

monoid action 𝛼 : 𝑆 ×𝑀 → 𝑆, where 𝑆 is a set and (𝑀, 𝑒, ∗) is a monoid, gives rise to a

category carried by 𝑆y𝑀 . Show that the projection 𝑆y𝑀 → y𝑀 is a retrofunctor. ♦

Example 7.77. Let (𝐺, 𝑒, ∗) be a group and (y𝐺 , 𝜖, 𝛿) the corresponding comonoid. There

12
After all, a vector field is a section of a vector bundle. Our arrow fields will be sections of C’s carrier,

viewed as a bundle of directions over positions.

264 CHAPTER 7. POLYNOMIAL COMONOIDS AND RETROFUNCTORS

is a retrofunctor 𝐺y𝐺 ↛ y𝐺 given by

𝑔
1
∗ 𝑔

2

𝑔
1

𝑔
2

To see this is a retrofunctor, we check that identities, codomains, and compositions

are preserved. For any 𝑔1, the identity 𝑒 is passed back to 𝑔1 ∗ 𝑒 = 𝑔1, and this is the

identity on 𝑔1 in 𝐺y
𝐺
. Codomains are preserved because there is only one object in y𝐺.

Composites are preserved because for any 𝑔2 , 𝑔3, we have 𝑔1 ∗ (𝑔2 ∗ 𝑔3) = (𝑔1 ∗ 𝑔2) ∗ 𝑔3.

Exercise 7.78 (Solution here). Does the idea of Example 7.77 work when 𝐺 is merely

a monoid, or does something go subtly wrong somehow? ♦

Proposition 7.79. There is a fully faithful functorMonop → Cat♯, whose image consists

of all categories whose carriers are representable.

Proof. Given a monoid (𝑀, 𝑒, ∗), we think of it as a category with one object; its carrier

y𝑀 is representable. A retrofunctor between such categories carries no data in its

on-objects part, and codomains are automatically preserved. Retrofunctors y𝑀 → y𝑁

simply carry elements of 𝑁 to elements of 𝑀, preserving identity and composition,

exactly the description of monoid homomorphisms. □

Proposition 7.80. There is an adjunction

Cat♯(C, 𝐴y) � Set(ObC, 𝐴)

for C ∈ Cat♯ and 𝐴 ∈ Set.

Proof. In the solution to Exercise 7.36, we saw that a category is discrete iff its carrier

is a linear polynomial: this occurs when the only arrow emanating from each object

is its identity. Thus 𝐴y corresponds to a discrete category. A retrofunctor from any

category to a discrete category needs to say what happens on objects, but the rest of

the data is determined because identities need to be sent back to identities. This is the

content of the proposition. □

Exercise 7.81 (Continuous arrowfields; solutionhere). Supposewe say that a continuous
arrow field on C is a retrofunctor C ↛ yR, viewing yR as the monoid of real numbers

with addition.

Describe continuous arrow fields in C using elementary terms, i.e. to someone who

7.3. MORPHISMS OF POLYNOMIAL COMONOIDS ARE RETROFUNCTORS 265

doesn’t know what a retrofunctor is and isn’t yet ready to learn. ♦

Example 7.82 (Systems of ODEs). A system of ordinary differential equations (ODEs)

in 𝑛 variables, e.g.

¤𝑥1 = 𝑓1(𝑥1 , . . . , 𝑥𝑛)
¤𝑥2 = 𝑓2(𝑥1 , . . . , 𝑥𝑛)

...

¤𝑥𝑛 = 𝑓𝑛(𝑥1 , . . . , 𝑥𝑛),

can be understood as a vector field on R𝑛 . We are often interested in integrating

this vector field to get flow lines, or integral curves. In other words, for each 𝑥 =

(𝑥1 , . . . , 𝑥𝑛) ∈ R𝑛 , viewed as a point, and each 𝑡 ∈ R, viewed as a quantity of time, we

can begin at 𝑥 and move along the vector field for time 𝑡, arriving at a new point 𝑥+𝑡 .

These satisfy the equations

𝑥+0 = 𝑥 and 𝑥+𝑡1+𝑡2 = (𝑥+𝑡1)+𝑡2 . (7.83)

Let’s call such things differentiable dynamical systems with time domain (𝑇, 0,+); above,
we used 𝑇 B R, but any monoid will do.

Dynamical systems in the above sense are retrofunctors 𝐹 : R𝑛yR
𝑛
↛ y𝑇 . In order

to say this, we first need to say how both C := R𝑛yR
𝑛
and y𝑇 are being considered as

categories. The category C has objects R𝑛 , and for each object 𝑥 ∈ R𝑛 and outgoing

arrow 𝑣 ∈ R𝑛 , the codomain of 𝑣 is 𝑥 + 𝑣; in other words, 𝑣 is a vector emanating from

𝑥. The identity is 𝑣 = 0, and composition is given by addition. The category y𝑇 is the

monoid 𝑇 considered as a category with one object, •.
The retrofunctor assigns to every object 𝑥 ∈ R𝑛 the unique object 𝐹(𝑥) = •, and to

each element 𝑡 ∈ 𝑇 the morphism 𝐹♯(𝑥, 𝑡) = 𝑥+𝑡 − 𝑥 ∈ R𝑛 , which can be interpreted as a

vector emanating from 𝑥. Its codomain is cod 𝐹♯(𝑥, 𝑡) = 𝑥+𝑡 , and we will see that (7.83)

ensures the retrofunctoriality properties.

The codomain law ii is vacuously true, since y𝑇 only has one object. Law i follows

because 𝐹♯(𝑥, 0) = 𝑥+0 − 𝑥 = 0, and law iii follows as

𝐹♯(𝑥+𝑡1 , 𝑡2) + 𝐹♯(𝑥, 𝑡1) = (𝑥+𝑡1)+𝑡2 − 𝑥+𝑡1 + 𝑥+𝑡1 − 𝑥 = 𝑥+𝑡1+𝑡2 − 𝑥 = 𝐹♯(𝑥, 𝑡1 + 𝑡2).

Retrofunctors from state categories

By now we should be very familiar with lenses from state categories, which are our

original dynamical systems. A retrofunctor from a state category, then, is just a dy-

namical system that satisfies the retrofunctor laws. It turns out that retrofunctors from

state categories are particularly noteworthy: just as a polynomial comonoid C can be

identified with a category, a retrofunctor out of C can be identified with a number of

266 CHAPTER 7. POLYNOMIAL COMONOIDS AND RETROFUNCTORS

equivalent categorical constructions on C, perhaps the most familiar being a functor

C→ Set. But these equivalences deserve their own subsection to examine in full; we’ll

defer them to Section 7.3.3. For now, let’s look at some examples of retrofunctors out

of state categories.

Example 7.84 (Retrofunctors from state categories to C are C-coalgebras). Recall from

Example 6.67 that for a set 𝑆, lenses 𝑆y𝑆 → 𝑝 correspond to functions 𝑆→ 𝑝(𝑆) known

as coalgebras for the functor 𝑝. As a retrofunctor 𝑆y𝑆 ↛ C is just a special kind of

lens from 𝑆y𝑆 to 𝔠, the carrier of C, it should correspond to a special kind of coalgebra

𝑆→ 𝔠(𝑆) for the functor 𝔠.
Taking 𝐴 = 𝐵 = 𝑆 ∈ Set in (6.65), we find that there is a natural isomorphism

between dynamical systems 𝑆y𝑆 → 𝑝 and functions 𝑆→ 𝑝(𝑆), also known as a coalgebra
for the functor 𝑝 or a 𝑝-coalgebra.13

Example 7.85 (Retrofunctors between state categories are very well-behaved lenses).
Our familiar state category on 𝑆 from Example 7.38 is the category with objects in 𝑆

and exactly 1 morphism between every pair of objects; when we label each morphism

with its codomain, its carrier is 𝑆y𝑆, the identity of 𝑠 ∈ 𝑆 is 𝑠, and (disregarding

domains) 𝑠 # 𝑠′ = 𝑠′ for composable 𝑠, 𝑠′ ∈ 𝑆.
Then a retrofunctor 𝑆y𝑆 ↛ 𝑇y𝑇 between two state categories corresponds to what

is known to functional programmers as a very well-behaved lens. We actually defined

this way back in Example 3.43, where we called the on-objects (on-positions) function

of such a retrofunctor get : 𝑆 → 𝑇, and the on-morphisms (on-directions) function

put : 𝑆 × 𝑇 → 𝑆.14 Then the retrofunctor laws are as follows:

1. Preservation of identities (7.56) becomes

put(𝑠, get(𝑠)) = 𝑠,

for all 𝑠 ∈ 𝑆, known as the get-put law (named in diagrammatic order: we apply

get before we apply put).

2. Preservation of codomains (7.57) becomes

get(put(𝑠, 𝑡)) = 𝑡 ,

for all 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇, known as the put-get law.

3. Preservation of composition becomes

put(put(𝑠, 𝑡), 𝑡′) = put(𝑠, 𝑡′)

13
There are two versions of coalgebras we are interested in (and more that we are not) with distinct

definitions: a coalgebra for a functor, which is the version used here, and a coalgebra for a comonad, which is

a coalgebra for a functor with extra conditions that we will introduce later.

7.3. MORPHISMS OF POLYNOMIAL COMONOIDS ARE RETROFUNCTORS 267

for all 𝑠 ∈ 𝑆 and 𝑡 , 𝑡′ ∈ 𝑇, known as the put-put law.

In fact, it turns out that these laws can be satisfied if and only if get is a product

projection! For example, if the cardinalities |𝑆| and |𝑇| of 𝑆 and 𝑇 are finite and |𝑆| is
not divisible by |𝑇|, then there are no retrofunctors 𝑆y𝑆 ↛ 𝑇y𝑇 . A stringent condition,

no? We’ll explore it in Exercise 7.87 below.

Let’s explorewhy retrofunctors between state categories are just product projections.

A product projection 𝐴 × 𝐵 → 𝐴 always has a second factor 𝐵; if every retrofunctor

between state categories is a product projection, what is the second factor? It turns out

to be

𝑈 B {𝑢 : 𝑇 → 𝑆 | ∀𝑡 , 𝑡′ ∈ 𝑇, get(𝑢(𝑡)) = 𝑡 and put(𝑢(𝑡), 𝑡′) = 𝑢(𝑡′)}.

In other words, we will show that if (get, put) defines a retrofunctor 𝑆y𝑆 ↛ 𝑇y𝑇 , then

there is a bĳection 𝑆 � 𝑇 ×𝑈 making get : 𝑆→ 𝑇 a product projection. We then prove

the converse in Exercise 7.86.

Assume (get, put) : 𝑆y𝑆 ↛ 𝑇y𝑇 is a retrofunctor, so that it satisfies the enumerated

laws. First, we define a function 𝛼 : 𝑆 → 𝑇 ×𝑈 as follows. Given 𝑠 ∈ 𝑆, the function

𝑢𝑠 : 𝑇 → 𝑆 defined by

𝑢𝑠(𝑡) = put(𝑠, 𝑡)

lies in𝑈 : we check that it satisfies

get(𝑢𝑠(𝑡)) = get(put(𝑠, 𝑡)) = 𝑡

by the put-get law for 𝑡 ∈ 𝑇 and

put(𝑢𝑠(𝑡), 𝑡′) = put(put(𝑠, 𝑡), 𝑡′) = put(𝑠, 𝑡′) = 𝑢𝑠(𝑡′)

by the put-put law for 𝑡 , 𝑡′ ∈ 𝑇. We can therefore define a function 𝛼 : 𝑆→ 𝑇 ×𝑈 by

𝛼(𝑠) =
(
get(𝑠), 𝑢𝑠

)
.

In the other direction, we have a function 𝛽 : 𝑇 ×𝑈 → 𝑆 given by

𝛽(𝑡 , 𝑢) = 𝑢(𝑡).

The two functions 𝛼 and 𝛽 are mutually inverse: 𝛼 # 𝛽 : 𝑆→ 𝑆 is the identity because

𝛽(𝛼(𝑠)) = 𝑢𝑠(get(𝑠)) = put(𝑠, get(𝑠)) = 𝑠

by the get-put law, while 𝛽 # 𝛼 : 𝑇 ×𝑈 → 𝑇 ×𝑈 is the identity because

𝛼(𝛽(𝑡 , 𝑢)) =
(
get(𝑢(𝑡)), 𝑢𝑢(𝑡)

)
= (𝑡 , 𝑡′ ↦→ put(𝑢(𝑡), 𝑡′)) = (𝑡 , 𝑢),

as get(𝑢(𝑡)) = 𝑡 and put(𝑢(𝑡), 𝑡′) = 𝑢(𝑡′) by construction for 𝑢 ∈ 𝑈 . Thus 𝑆 � 𝑇 ×𝑈 , and

the product projection 𝑆
𝛼−→ 𝑇 ×𝑈 → 𝑇 sends 𝑠 ↦→ get(𝑠), as desired.

268 CHAPTER 7. POLYNOMIAL COMONOIDS AND RETROFUNCTORS

We have therefore shown that for every retrofunctor 𝑆y𝑆 ↛ 𝑇y𝑇 , there exists a set

𝑈 for which 𝑆 � 𝑇 × 𝑈 and the on-positions function get is the product projection

𝑆 � 𝑇 ×𝑈 → 𝑇. Notice that the on-directions function put can be uniquely recovered

from the bĳection 𝑆 � 𝑇×𝑈weconstructed: it is determinedby the functions 𝑢𝑠 : 𝑇 → 𝑆

for 𝑠 ∈ 𝑆, which in turn is determined by the second projection 𝑇 ×𝑈 → 𝑈 .

More precisely, composing 𝛼 : 𝑆 → 𝑇 × 𝑈 with the projection to 𝑈 yields a map

𝑆→ 𝑈 sending 𝑠 ↦→ 𝑢𝑠 ; then put(𝑠, 𝑡) is given by 𝑢𝑠(𝑡). Of course, a priori𝑈 could just

be a set—we may not know how to interpret its elements as a functions 𝑇 → 𝑆. This is

where 𝛽 : 𝑇 ×𝑈 → 𝑆 comes in: we know 𝛽(𝑡 , 𝑢𝑠) = 𝑢𝑠(𝑡). So put(𝑠, 𝑡)must be 𝛽(𝑡 , 𝑢𝑠).

Exercise 7.86 (Solution here). Let 𝑆, 𝑇,𝑈 be sets forwhichwehave a bĳection 𝑆 � 𝑇×𝑈 .

Show that there exists a unique retrofunctor 𝑆y𝑆 ↛ 𝑇y𝑇 whose on-positions function

𝑆 � 𝑇 ×𝑈 → 𝑇 is given by the product projection. ♦

Exercise 7.87 (Solution here).
1. Suppose |𝑆| = 3. How many retrofunctors are there 𝑆y𝑆 → 𝑆y𝑆?

2. Suppose |𝑆| = 4 and |𝑇| = 2. How many retrofunctors are there 𝑆y𝑆 ↛ 𝑇y𝑇? ♦

Example 7.88. We have a state category 𝔠(1)y𝔠(1) on the set of objects of C. Define a lens

𝔠(1)y𝔠(1) → 𝔠 by

cod 𝑓

𝑖

𝔠(1)y𝔠(1)
ObC

ObC 𝑓

𝑖

𝔠

ObC

C[−]cod

sending each object 𝑖 ∈ C to itself on positions and, at 𝑖, sending each morphism

𝑓 : 𝑖 → _ to its codomain cod 𝑓 on directions.

This lens is a retrofunctor 𝔠(1)y𝔠(1) ↛ C because it sends identities back to identities,

codomains forward to codomains, and preserves composition (trivially, since each

morphism in 𝑐(1)y𝑐(1) is determined by its domain and codomain.

Exercise 7.89 (Solution here). Fix an object 𝑖 ∈ 𝔠(1) = ObC. Then we have a state

category 𝔠[𝑖]y𝔠[𝑖] on the set 𝔠[𝑖] = C[𝑖] of morphisms out of 𝑖 in C. Define a lens

14
More precisely, we are treating the on-morphism functions 𝑇 → 𝑆 for each 𝑠 ∈ 𝑆 of a retrofunctor

𝑆y𝑆 ↛ 𝑇y𝑇 as a single function 𝑆 × 𝑇 → 𝑆.

7.3. MORPHISMS OF POLYNOMIAL COMONOIDS ARE RETROFUNCTORS 269

𝔠[𝑖]y𝔠[𝑖] → 𝔠 by

𝑓 # 𝑔

𝑓

𝔠[𝑖]y𝔠[𝑖]
C[𝑖]

C[𝑖] 𝑔

cod 𝑓

𝔠

ObC

C[−]

cod

#

sending each morphism 𝑓 : 𝑖 → _ to its codomain on positions and, at 𝑓 , sending each

morphism 𝑔 : cod 𝑓 → _ to the composite 𝑓 # 𝑔 : 𝑖 → _ on directions. Is this lens a

retrofunctor 𝔠[𝑖]y𝔠[𝑖] ↛ C? ♦

We’ll revisit retrofunctors from state categories in Section 7.3.3.

Other retrofunctors

Example 7.90 (Objects aren’t representable in Cat♯). In the world of categories and the

usual functors between them, the terminal category T B • with one object and one

morphism represents objects, in the sense that functors T → C naturally correspond to

objects in C.

Unfortunately, the same cannot be said for retrofunctors: we’ll see in Exercise 7.91

that there does not exist a fixed category U for which retrofunctors U ↛ C are in

bĳection with objects in C for every category C.

Retrofunctors T ↛ C are somewhat strange beasts: because they must preserve

codomains, they can be identified with objects 𝑐 ∈ C for which the codomain of every

emanating morphism 𝑐 → 𝑐′ is 𝑐′ = 𝑐 itself.

Exercise 7.91 (Solution here). We saw in Exercise 7.27 that 2y has a unique comonoid

structure.

1. Show that for any category U, retrofunctors U ↛ 2y are in bĳection with the set

2ObU
.

2. Use the case ofC B 2y to show that if retrofunctorsU ↛ C are always in bĳection

with objects in C, then U must have exactly one object.

3. Now use a different category D to show that if retrofunctors U ↛ D are in

bĳection with objects in D, then U must have more than one object. Conclude

that objects are not reprsentable in Cat♯ the way they are in Cat.
4. Is there a fixed category V for which retrofunctors E ↛ V are in bĳection with

objects in E for every category E? If there is, find it; if there isn’t, prove there

isn’t. ♦

Example 7.92. Consider the category RyR, where the codomain of 𝑟 emanating from 𝑥

is 𝑥 + 𝑟, identities are 0, and composition is given by addition. What are retrofunctors

into RyR?

270 CHAPTER 7. POLYNOMIAL COMONOIDS AND RETROFUNCTORS

Let C be a category and | · | : C ↛ RyR a retrofunctor. It assigns to every object 𝑐

both a real number |𝑐| ∈ R and a choice of emanating morphism |𝑐|♯(𝑟) : 𝑐 → 𝑐𝑟 such

that |𝑐| + 𝑟 = |𝑐𝑟 |. This assignment satisfies some laws. Namely we have 𝑐0 = 𝑐 and,

given reals 𝑟, 𝑠 ∈ R, we have (𝑐𝑟)𝑠 = 𝑐𝑟+𝑠 .

Exercise 7.93 (Solution here). How many retrofunctors

𝑠
𝑎−→ 𝑡 ↛ 𝑢

𝑏

𝑐
𝑣

are there from the walking arrow category A, drawn above on the left, to the walking

parallel-arrows category PA, drawn above on the right? ♦

Exercise 7.94 (Solution here).
1. For any category C with carrier 𝔠, find a category with carrier 𝔠y.

2. Show that your construction is functorial; i.e. assign each retrofunctor C ↛ D a

retrofunctor 𝔠y ↛ 𝔡y in a way that preserves identities and composites.

3. Is your functor a monad on Cat♯, a comonad on Cat♯, both, or neither? ♦

Exercise 7.95 (Solution here). Suppose 𝔠, 𝔡, 𝔢 are polynomials, each with a comonoid

structure, and that 𝑓 : 𝔠→ 𝔡 and 𝑔 : 𝔡→ 𝔢 are lenses.

1. If 𝑓 and 𝑓 #𝑔 are each retrofunctors, is 𝑔 automatically a retrofunctor? If so, sketch

a proof; if not, sketch a counterexample.

2. If 𝑔 and 𝑓 #𝑔 are each retrofunctors, is 𝑓 automatically a retrofunctor? If so, sketch

a proof; if not, sketch a counterexample. ♦

In the next chapter, we will delve deeper into the categorical structure and prop-

erties of Cat♯. We’ll encounter many more categories and retrofunctors along the

way. But first, we’ll conclude this chapter with several alternative characterizations of

retrofunctors out of state categories.

7.3.3 Equivalent characterizations of retrofunctors from state categories

Fix a category C throughout with polynomial carrier 𝔠. How can view the data of a

retrofunctor from a state category 𝑆y𝑆 ↛ C? This is actually a very natural categorical

concept—we’ll see some equivalent ways to express this data below, then state and

prove even more equivalences next chapter when we have the machinery to do so.

7.3. MORPHISMS OF POLYNOMIAL COMONOIDS ARE RETROFUNCTORS 271

As coalgebras

Recall from Example 6.67 that for a set 𝑆, lenses 𝑆y𝑆 → 𝑝 correspond to functions

𝑆 → 𝑝(𝑆) known as coalgebras for the functor 𝑝. As a retrofunctor 𝑆y𝑆 ↛ C is just a

special kind of lens from 𝑆y𝑆 to 𝔠, it should correspond to a special kind of coalgebra

𝑆→ 𝔠(𝑆) for the functor 𝔠. Indeed, whenever 𝔠 carries a comonoid Cwith respect to the

composition product (i.e. a comonad), there is a special notion of a C-coalgebra (i.e. a

coalgebra for the comonad C), as follows.

Definition 7.96 (Coalgebra for a polynomial comonoid). Let C = (𝔠, 𝜖, 𝛿) be a polyno-

mial comonoid. A C-coalgebra (𝑆, 𝛼) is
• a set 𝑆, called the carrier, equipped with

• a function 𝛼 : 𝑆→ 𝔠 ⊳ 𝑆,

such that the following diagrams, collectively known as the coalgebra laws, commute:

𝑆 𝔠 ⊳ 𝑆

𝑆

𝛼

𝜖 ⊳ 𝑆

𝑆 𝔠 ⊳ 𝑆

𝔠 ⊳ 𝑆 𝔠 ⊳ 𝔠 ⊳ 𝑆.

𝛼

𝛼

𝛿 ⊳ 𝑆

𝔠 ⊳ 𝛼

(7.97)

A morphism of C-coalgebras (𝑆, 𝛼) → (𝑇, 𝛽) is a function ℎ : 𝑆 → 𝑇 such that the

following diagram commutes:

𝑆 𝔠 ⊳ 𝑆

𝑇 𝔠 ⊳ 𝑇

ℎ

𝛼

𝔠 ⊳ ℎ

𝛽

Proposition 7.98. Retrofunctors 𝑆y𝑆 ↛ C can be identified (up to isomorphism) with

C-coalgebras carried by 𝑆.

Proof. Let 𝔠 be the carrier of C. In Example 6.67, we showed that (6.65) gives a natural

correspondence between lensesΦ : 𝑆y𝑆 → 𝔠 and functions 𝜑 : 𝑆→ 𝔠⊳𝑆. We can unravel

this correspondence via the proof of Proposition 6.57 as follows. A lensΦ : 𝑆y𝑆 → 𝔠 can

be drawn like so (we will adopt our former convention of identifying each morphism

𝑠 → 𝑡 from 𝑆y𝑆 with its codomain 𝑡):

𝑡

𝑠
𝑆y𝑆

𝑓

𝑖
𝔠

Φ1

Φ♯

Meanwhile, the corresponding function 𝜑 : 𝑆 → 𝔠 ⊳ 𝑆, equivalently a lens between

constants, can be drawn thusly (recall that we color a box red when it is impossible to

272 CHAPTER 7. POLYNOMIAL COMONOIDS AND RETROFUNCTORS

fill, i.e. when it can only be filled by an element of the empty set):

𝑠
𝑆

𝑓

𝑖
𝔠

𝑡
𝑆

Φ1

Φ♯

Then it suffices to show that Φ satisfies the retrofunctor laws if and only if 𝜑

satisfies the coalgebra laws. We can verify this using polyboxes. From (7.53), the eraser

preservation law forΦwould state the following (remember that the arrow in the eraser

for the state category 𝑆y𝑆 is just an equality):

𝑠

𝑠
𝑆y𝑆 idy

𝑠
𝑆y𝑆

𝔠
Φ1

Φ♯

idy=

Meanwhile, the commutative triangle on the left of (7.97) can be written as follows:

𝑠
𝑆

𝑠
𝑆

𝑠
𝑆

𝔠

𝑆

Φ1

Φ♯

idy

=

But these polybox equations are entirely equivalent.

Then from (7.54), the duplicator preservation law for Φ would state the following

(remember that the three arrows in the duplicator for the state category 𝑆y𝑆 are all

equalities)

𝑠
𝑆y𝑆

𝑠

𝑆y𝑆

𝑆y𝑆

𝑔

𝔠

ℎ

𝔠

tgt

r
u
n

Φ1

Φ♯

Φ1

Φ♯

𝑠
𝑆y𝑆

𝔠

𝑔

𝔠

ℎ

𝔠

Φ1

Φ♯

cod

#

=

7.3. MORPHISMS OF POLYNOMIAL COMONOIDS ARE RETROFUNCTORS 273

Meanwhile, the commutative triangle on the right of (7.97) can be written as follows:

𝑠
𝑆y𝑆

𝑔

𝔠

𝑆y𝑆

𝑔
𝔠

ℎ
𝔠

𝑆y𝑆

Φ1

Φ♯
Φ1

Φ♯

𝑠
𝑆y𝑆

𝔠

𝑆y𝑆

𝑔
𝔠

ℎ
𝔠

𝑆y𝑆

Φ1

Φ♯

cod

#
=

But these polybox equations are equivalent as well. Hence the retrofunctor laws for Φ

are equivalent to the coalgebra laws for 𝜑. □

So a retrofunctor from a state category to C bears the same data as a C-coalgebra.

The equivalences don’t stop there, however.

As discrete opfibrations

The concept of a C-coalgebra is in turn equivalent to a better known categorical con-

struction on C, which we introduce here.

Definition 7.99 (Discrete opfibration). Let C be a category. A pair (S ,𝜋), where S is

a category and 𝜋 : S → C is a functor, is called a discrete opfibration over C if it satisfies

the following condition:

• for every object 𝑠 ∈ S, object 𝑐′ ∈ C, and morphism 𝑓 : 𝜋(𝑠) → 𝑐′ there exists a

unique object 𝑠′ ∈ S and morphism 𝑓 : 𝑠 → 𝑠′ such that 𝜋(𝑓) = 𝑓 . Note that in

this case 𝜋(𝑠′) = 𝑐.

𝑠 𝑠′

𝜋(𝑠) _

𝑓

𝜋 𝜋

𝑓

A morphism of discrete opfibrations (S ,𝜋) → (S′,𝜋′) over C is a functor 𝐹 : S → S′

making the following triangle commute: We refer to 𝑓 as the lift of 𝑓 to 𝑠.
A morphism (S ,𝜋) → (S′,𝜋′) between discrete opfibrations over C is a functor

𝐹 : S → S′ making the following triangle commute:

S S′

C

𝜋

𝐹

𝜋′
(7.100)

We denote the category of discrete opfibrations over C by dopf(C).

274 CHAPTER 7. POLYNOMIAL COMONOIDS AND RETROFUNCTORS

Exercise 7.101 (Solution here). Show that if 𝐹 : S → S′ is a functor making the triangle

(7.100) commute, where both𝜋 and𝜋′ are discrete opfibrations, then 𝐹 is also a discrete

opfibration. ♦

Exercise 7.102 (Solution here). Suppose 𝜋 : S → C is a discrete opfibration and 𝑖 ∈ S

is an object. With notation as in Definition 7.99, show the following:

1. Show that the lift id𝜋(𝑖) = id𝑖 of the identity on 𝜋(𝑖) is the identity on 𝑖.

2. Show that for 𝑓 : 𝜋(𝑖) → 𝑐 and 𝑔 : 𝑐 → 𝑐′, we have 𝑓 # 𝑔 = 𝑓 # 𝑔.
3. Show how 𝜋 could instead be interpreted as a retrofunctor. ♦

As it turns out, not only doC-coalgebras carry the same data as discrete opfibrations

over C, they in fact comprise isomorphic categories.

Proposition 7.103. The category ofC-coalgebras is isomorphic to the category dopf(C)
of discrete opfibrations over C.

As copresheaves

It is well-known in the category theory literature that the category of discrete opfibra-

tions over C is equivalent to yet another familiar category: the category SetC, whose

objects are functors C → Set. Such a functor is known as a copresheaf on C for short.

These are relevant, e.g. in the theory of categorical databases [Spi12]. Here we re-

view what is needed to understand this equivalence. We begin by giving a standard

construction on any copresheaf.

Definition 7.104 (Category of elements). Given a copresheaf onC, i.e. a functor 𝐼 : C→
Set, its category of elements

∫ C
𝐼 is defined to have objects

Ob

∫ C
𝐼 B {(𝑐, 𝑥) | 𝑐 ∈ C, 𝑥 ∈ 𝐼𝑐}

and a morphism 𝑓 : (𝑐, 𝑥) → (𝑐′, 𝑥′) for every morphism 𝑓 : 𝑐 → 𝑐′ from C satisfying

(𝐼 𝑓)(𝑥) = 𝑥′.

Identities and composites in

∫ C
𝐼 are inherited from C; they obey the usual category

laws by the functoriality of 𝐼.

The category is so named because its objects are the elements of the sets that the

objects of C are sent to by 𝐼. Each morphism 𝑓 : 𝑐 → _ in C then becomes as many

morphisms in

∫ C
𝐼 as there are elements of 𝐼𝑐, tracking where 𝐼 𝑓 sends each such

element.

7.3. MORPHISMS OF POLYNOMIAL COMONOIDS ARE RETROFUNCTORS 275

The next exercise shows how this construction turns every copresheaf into a discrete

opfibration.

Exercise 7.105 (Solution here). Let 𝐼 : C → Set be a functor, and let

∫ C
𝐼 be as in

Definition 7.104.

1. Show that there is a functor 𝜋 :

∫ C
𝐼 → C sending objects (𝑐, 𝑥) ↦→ 𝑐 and mor-

phisms 𝑓 : (𝑐, 𝑥) → (𝑐′, 𝑥′) to 𝑓 : 𝑐 → 𝑐′.

2. Show that 𝜋 is in fact a discrete opfibration. ♦

In fact, the assignment of a discrete opfibration to every copresheaf given above is

functorial, as the next exercise shows.

Exercise 7.106 (Solution here). Suppose that 𝐼 , 𝐽 : C → Set are functors and 𝛼 : 𝐼 → 𝐽

is a natural transformation.

1. Show that 𝛼 induces a functor (
∫ C

𝐼) → (
∫ C

𝐽).
2. Show that it is a morphism of discrete opfibrations in the sense of Definition 7.99.

3. Have you now verified that there is a functor∫ C
: SetC → dopf(C)

or is there something left to do?

♦

Exercise 7.107 (Solution here). Let 𝐺 be a graph, and let G be the free category on it.

Show that for any functor 𝑆 : G→ Set, the category
∫ G

𝑆 of elements is again free on a

graph. ♦

Proposition 7.108. The categorySetC of copresheaves onC is equivalent to the category

of discrete opfibrations over C.

Proof. By Exercise 7.106 we have a functor

∫ C
: SetC → dopf(C). There is a functor

going back: given a discrete opfibration 𝜋 : S → C, we define a functor 𝜕𝜋 : C → Set
on objects by sending each 𝑐 ∈ C to the set of objects in S that 𝜋 maps to 𝑐; that is,

(𝜕𝜋)(𝑐) B {𝑠 ∈ S | 𝜋(𝑠) = 𝑐}.

Then on morphisms, for each 𝑓 : 𝑐 → _ in C and 𝑠 ∈ (𝜕𝜋)(𝑐) we have 𝜋(𝑠) = 𝑐, so

by Definition 7.99 there exists a unique morphism 𝑓 : 𝑠 → _ for which 𝜋(𝑓) = 𝑓 . As

𝜋(cod 𝑓) = cod 𝑓 , we have cod 𝑓 ∈ (𝜕𝜋)(cod 𝑓), so we can define

(𝜕𝜋)(𝑓)(𝑠) B cod 𝑓 .

276 CHAPTER 7. POLYNOMIAL COMONOIDS AND RETROFUNCTORS

On objects, the roundtrip SetC → SetC sends 𝐼 : C→ Set to the functor

𝑐 ↦→ {𝑠 ∈
∫ C

𝐼 | 𝜋(𝑠)
= {(𝑐, 𝑥) | 𝑥 ∈ 𝐼(𝑐)} = 𝐼(𝑐).

The roundtrip dopf(C) → dopf(C) sends 𝜋 : S → C to the discrete opfibration whose

object set is {(𝑐, 𝑠) ∈ Ob(C) ×Ob(S) | 𝜋(𝑠) = 𝑐} and this set is clearly in bĳection with

Ob(S). Proceeding similarly, one defines an isomorphism of categories S �
∫ C

𝜕𝜋. □

Proposition 7.109. Up to isomorphism, discrete opfibrations into C can be identified

with dynamical systems on C.

In case it isn’t clear, this association is only functorial on the groupoid of objects and

isomorphisms.

Proof. Givenadiscrete opfibration𝜋 : S → C, take𝑆 B Ob(S)anddefine (𝜑1 , 𝜑♯) : 𝑆y𝑆 →
𝔠 by 𝜑1 = 𝜋 andwith 𝜑♯

given by the lifting: 𝜑(𝑔) B 𝑔̂ as in Definition 7.99. One checks

using Exercise 7.102 that this defines a retrofunctor.

Conversely, given a retrofunctor (𝜑1 , 𝜑♯) : 𝑆y𝑆 → 𝔠, the function 𝜑1 induces a lens

𝑆y→ 𝔠, and we can factor it as a vertical followed by a cartesian 𝑆y→ 𝔰
𝜓
−→ 𝔠. We can

give 𝔰 the structure of a category such that 𝜓 is a retrofunctor; see Exercise 7.110. □

Exercise 7.110 (Solution here). With notation as in Proposition 7.109, complete the

proof as follows.

1. Check that (𝜑, 𝜑♯) defined in the first paragraph is indeed a retrofunctor.

2. Find a comonoid structure on 𝔰 such that 𝜓 is a retrofunctor, as stated in the

second paragraph.

3. Show that the two directions are inverse, up to isomorphism. ♦

Example 7.111. In Example 8.50 we had a dynamical systemwith 𝑆 B {•, •, •} and 𝑝 B
y2 + 1, and 𝜑 : 𝑆y𝑆 → 𝑝 from Exercise 4.23, depicted here again for your convenience:

• •

•
(7.112)

Under the forgetful-cofree adjunction (Theorem 8.45), the lens 𝜑 coincides with a

retrofunctor 𝐹 : 𝑆y𝑆 ↛ T𝑝 from the state category on 𝑆 to the category of 𝑝-trees. We

can now see this as a copresheaf on the category T𝑝 itself.

The cofree category T𝑡 is actually the free category on a graph, as we saw in

Proposition 8.55, and so the schema is easy. There is one table for each tree (object in

7.4. SUMMARY AND FURTHER READING 277

T𝑝), e.g. we have a table associated to this tree:

•

•

•

•

• •

•

• •

•

•

• •

•

•

•

•

• •

•

• •

•

The table has two columns, say left and right, corresponding to the two arrows ema-

nating from the root node. The left column refers back to the same table, and the right

column refers to another table (the one corresponding to the yellow dot).

Again, there are infinitely many tables in this schema. Only three of them have data

in them; the rest are empty. We know in advance that this instance has three rows in

total, since |𝑆| = 3.

Given a dynamical system 𝑆y𝑆 → 𝑝, we extend it to a retrofunctor 𝜑 : 𝑆y𝑆 ↛ T𝑝 . By

Propositions 7.108 and 7.109, we can consider it as a discrete opfibration over T𝑝 . By

Exercise 7.107 the category

∫
𝜑 is again free on a graph. It is this graph that we usually

draw when depicting the dynamical system, e.g. in (7.112).

To summarize, we have four equivalent notions:

(1) retrofunctors 𝐹 : 𝑆y𝑆 ↛ C;

(2) C-coalgebras (𝑆, 𝛼), with 𝛼 : 𝑆→ 𝔠 ⊳ 𝑆;

(3) discrete opfibrations 𝜋 : S → C, with ObS = 𝑆;

(4) copresheaves 𝐼 : C→ Set, with Ob

∫ C
𝐼 = 𝑆.

Moreover, (2), (3), and (4) form equivalent categories. Translating between these no-

tions yields different perspectives on familiar categorical concepts. In the next chapter,

we will discover even more characterizations of the same data within Poly (see Propo-

sition 8.66).

7.4 Summary and further reading

In this chapter we began by showing that for every set 𝑆, the thing that makes a

dynamical system like 𝑆y𝑆 → 𝑝 actually run is the fact that 𝑆y𝑆 has the structure

of a comonoid. We then explained Ahman-and-Uustalu’s result that comonoids, i.e.

polynomials 𝑝, equipped with a pair of lenses 𝜖 : 𝑝 → y and 𝛿 : 𝑝 → 𝑝 ⊳ 𝑝, are exactly

categories [AU16]. We explained how 𝜖 picks out an identity for each object and how

𝛿 picks out a codomain for each morphism and a composite for each composable pair

of morphisms. In particular we showed that the category corresponding to 𝑆y𝑆 is the

contractible groupoid on 𝑆, i.e. the category with 𝑆-many objects and a unique morphism

between any two.

278 CHAPTER 7. POLYNOMIAL COMONOIDS AND RETROFUNCTORS

We then discussed how comonoid morphisms 𝔠→ 𝔡 are not functors but retrofunc-
tors: they map forwards on objects and backwards on morphisms. Retrofunctors were

first defined by Marcelo Aguiar [Agu97], though his definition was opposite to ours;

he referred to these as cofunctors. Retrofunctors are the morphisms of a category we

notate as Cat♯. We showed that retrofunctors between state categories 𝑆y𝑆 ↛ 𝑇y𝑇 are

what are known in the functional programming community as very well-behaved lenses.
For more on lenses, see [nLa22].

7.5 Exercise solutions
Solution to Exercise 7.2.

Given a polynomial 𝔰 ∈ Poly equipped with a lens 𝜖 : 𝔰 → y, we know that 𝜖 picks out a direction at

every position of 𝔰. So all we can say about 𝔰 is that there is at least one direction at each of its positions.

Equivalently, we could say that 𝔰 can be written as the product of y and some other polynomial.

Solution to Exercise 7.9.
Following the arrows on either side of (7.8) all the way to the domain’s direction box, we obtain

an expression for each box’s contents that we can then set equal to each other. The easiest way to

actually write down these expressions is probably to start at the end with 𝑠
0
→ 𝑠

3
and follow the

arrows backward, unpacking each term until only the contents of the blue boxes remain (namely

𝑠
0
, 𝑠

0
→ 𝑠

1
, 𝑠

1
→ 𝑠

2
, and 𝑠

2
→ 𝑠

3
). Here’s what we get when we follow this process for the left hand

side of (7.8) (remember where to look for the three inputs to the run function):

𝑠
0
→ 𝑠

3
= run(𝑠

0
, 𝑠

0
→ 𝑠

2
, 𝑠

2
→ 𝑠

3
)

= run(𝑠
0
, run(𝑠

0
, 𝑠

0
→ 𝑠

1
, 𝑠

1
→ 𝑠

2
), 𝑠

2
→ 𝑠

3
)

= run(𝑠
0
, run(𝑠

0
, 𝑠

0
→ 𝑠

1
, 𝑠

1
→ 𝑠

2
), 𝑠

2
→ 𝑠

3
);

and here’s what we get for the right (also remember where to look for the two inputs to the target

function):

𝑠
0
→ 𝑠

3
= run(𝑠

0
, 𝑠

0
→ 𝑠

1
, 𝑠

1
→ 𝑠

3
)

= run(𝑠
0
, 𝑠

0
→ 𝑠

1
, run(𝑠

1
, 𝑠

1
→ 𝑠

2
, 𝑠

2
→ 𝑠

3
))

= run(𝑠
0
, 𝑠

0
→ 𝑠

1
, run(tgt(𝑠

0
, 𝑠

0
→ 𝑠

1
), 𝑠

1
→ 𝑠

2
, 𝑠

2
→ 𝑠

3
)).

Setting these equal yields our desired associativity equation:

run(𝑠
0
, run(𝑠

0
, 𝑠

0
→ 𝑠

1
, 𝑠

1
→ 𝑠

2
), 𝑠

2
→ 𝑠

3
) = run(𝑠

0
, 𝑠

0
→ 𝑠

1
, run(tgt(𝑠

0
, 𝑠

0
→ 𝑠

1
), 𝑠

1
→ 𝑠

2
, 𝑠

2
→ 𝑠

3
)).

Solution to Exercise 7.11.
1. Given 𝔰 ∈ Poly and a lens 𝛿 : 𝔰→ 𝔰 ⊳ 𝔰, we want all the ways to obtain a lens 𝔰→ 𝔰⊳ 4

using 𝛿, id𝔰

(i.e. 𝔰), ⊳, and #. Starting with 𝔰, the only way to get to 𝔰⊳ 2
is with a single 𝛿 : 𝔰 → 𝔰⊳ 2

. From

there, we can get to 𝔰⊳ 4
directly by composing with 𝛿 ⊳ 𝛿 to obtain 𝛿 # (𝛿 ⊳ 𝛿). Alternatively, we can

preserve either the first or the second 𝔰 using the identity, then get to 𝔰⊳ 3
from the other 𝔰 in one

of two ways: either 𝛿 # (𝛿 ⊳ 𝔰) or 𝛿 # (𝔰 ⊳ 𝛿). This gives us 4 more ways to write a lens 𝔰→ 𝔰⊳ 4
: either

𝛿 # (𝔰⊳ (𝛿 # (𝛿 ⊳𝔰))) or 𝛿 # (𝔰⊳ (𝛿 # (𝔰⊳ 𝛿))) if we chose to preserve the first 𝔰, and either 𝛿 # ((𝛿 # (𝛿 ⊳𝔰))⊳𝔰)
or 𝛿 # ((𝛿 # (𝔰 ⊳ 𝛿)) ⊳ 𝔰) if we chose to preserve the second. Here’s the full list, sorted roughly by

how far to the left we try to apply each 𝛿:

(1) 𝛿 # ((𝛿 # (𝛿 ⊳ 𝔰)) ⊳ 𝔰)
(2) 𝛿 # ((𝛿 # (𝔰 ⊳ 𝛿)) ⊳ 𝔰)
(3) 𝛿 # (𝛿 ⊳ 𝛿)

7.5. EXERCISE SOLUTIONS 279

(4) 𝛿 # (𝔰 ⊳ (𝛿 # (𝛿 ⊳ 𝔰)))
(5) 𝛿 # (𝔰 ⊳ (𝛿 # (𝔰 ⊳ 𝛿)))

This coincides with the 5 different ways to parenthesize a 4-term expression.

2. We wish to show that if (7.10) commutes, then all the lenses on our list are equal. The commuta-

tivity of (7.10) implies that 𝛿 # (𝛿 ⊳ 𝔰) = 𝛿 # (𝔰 ⊳ 𝛿); so (1) and (2) from our list are equal, as are (4)

and (5). Meanwhile, since 𝔰 = 𝔰 # 𝔰, we can rewrite (1) as

𝛿 # ((𝛿 # (𝛿 ⊳ 𝔰)) ⊳ (𝔰 # 𝔰)) = 𝛿 # (𝛿 ⊳ 𝔰) # (𝛿 ⊳ 𝔰 ⊳ 𝔰),

where the associativity of ⊳ and # allows us to drop some parentheses. Then the commutativity

of (7.10) allows us to further rewrite this as

𝛿 # (𝔰 ⊳ 𝛿) # (𝛿 ⊳ 𝔰 ⊳ 𝔰) = 𝛿 # ((𝔰 # 𝛿) ⊳ (𝛿 # (𝔰 ⊳ 𝔰)))
= 𝛿 # (𝛿 ⊳ 𝛿),

so (1) and (3) are equal. Similarly, we can rewrite (5) as

𝛿 # ((𝔰 # 𝔰) ⊳ (𝛿 # (𝔰 ⊳ 𝛿))) = 𝛿 # (𝔰 ⊳ 𝛿) # (𝔰 ⊳ 𝔰 ⊳ 𝛿)
= 𝛿 # (𝛿 ⊳ 𝔰) # (𝔰 ⊳ 𝔰 ⊳ 𝛿)
= 𝛿 # ((𝛿 # (𝔰 ⊳ 𝔰)) ⊳ (𝔰 # 𝛿))
= 𝛿 # (𝛿 ⊳ 𝛿)

so (3) and (5) are equal. Hence all the lenses on our list are equal.

Solution to Exercise 7.12.
We have Run𝑛(𝜑) = 𝛿(𝑛) #𝜑⊳ 𝑛

for all 𝑛 ∈ N, as well as 𝛿(0) = 𝜖 and 𝛿(1) = id𝔰. Then Run
0
(𝜑) = 𝜖 #𝜑⊳ 0 =

𝜖 # idy = 𝜖 and Run
1
(𝜑) = id𝔰 # 𝜑⊳ 1 = 𝜑⊳ 1 = 𝜑.

Solution to Exercise 7.21.
We complete the proof of Proposition 7.20, where we are given a comonoid (𝔠, 𝜖, 𝛿) along with 𝛿(0) B 𝜖

and 𝛿(𝑛+1) B 𝛿 #
(
𝛿(𝑛) ⊳ 𝔠

)
for all 𝑛 ∈ N.

1. We will show that 𝛿(𝑛) is a morphism 𝔠 → 𝔠⊳ 𝑛 for every 𝑛 ∈ N by induction on 𝑛. We know

𝛿(0) = 𝜖 is a morphism 𝔠→ y = 𝔠⊳ 0
, and for each 𝑛 ∈ N, if 𝛿(𝑛) is a morphism 𝔠→ 𝔠⊳ 𝑛 , then the

composite 𝛿(𝑛+1) = 𝛿 #
(
𝛿(𝑛) ⊳ 𝔠

)
is a morphism

𝔠
𝛿−→ 𝔠 ⊳ 𝔠

𝛿(𝑛) ⊳ 𝔠−−−−−→ 𝔠⊳ 𝑛 ⊳ 𝔠 � 𝔠⊳ (𝑛+1)

Hence the result follows by induction.

2. We have 𝛿(1) = 𝛿 # (𝛿(0) ⊳ 𝔠) = 𝛿 # (𝜖 ⊳ 𝔠) = id𝔠 by the left erasure law from (7.15).

3. By the previous part, we have 𝛿(2) = 𝛿 # (𝛿(1) ⊳ 𝔠) = 𝛿 # (𝔠 ⊳ 𝔠) = 𝛿.

Solution to Exercise 7.26.
We will eventually see that comonoids in Poly are categories; this gives us intuition for what is going

on here. In fact the category corresponding to the comonoid in this exercise is the walking arrow,

depicted in (7.24). The erasure (counit) laws are verified by looking at the picture of 𝛿 in (7.25) and

noting that it sends the double (do-nothing) lines (the identities) back to the double lines.

Solution to Exercise 7.27.
Given a set 𝐵, we wish to give a comonoid structure on 𝐵y and show that it is unique. There is only

one way to define an eraser lens 𝜖 : 𝐵y → y: the on-position function is the unique map ! : 𝐵 → 1,
while every on-directions function 1→ 1 must be the identity. Meanwhile 𝐵y ⊳ 𝐵y � 𝐵2y, so to specify

a duplicator lens 𝛿 : 𝐵y → 𝐵2y, it suffices to specify an on-positions function 𝛿1 : 𝐵 → 𝐵2
, and every

on-directions function will again be the identity.

280 CHAPTER 7. POLYNOMIAL COMONOIDS AND RETROFUNCTORS

All the comonoid laws should then hold trivially on directions, so it suffices to consider each law on

positions. The erasure laws imply that the composite functions

𝐵
𝛿1−−→ 𝐵 × 𝐵 𝐵 × !−−−→ 𝐵 × 1 � 𝐵,

where the second map is just the canonical left projection, and

𝐵
𝛿1−−→ 𝐵 × 𝐵 ! × 𝐵−−−→ 1 × 𝐵 � 𝐵,

where the second nap is just the canonical right projection, are both the identity on 𝐵. The only

function 𝛿1 : 𝐵 → 𝐵 × 𝐵 that satisfies this condition is the diagonal 𝑎 ↦→ (𝑎, 𝑎). It is easy to verify that

the diagonal is coassociative, so this does define a unique comonoid structure on 𝐵y. (It turns out that

this is equivalent to the well-known result that there is a unique comonoid structure on every set in

(Set, 1,×).)

Solution to Exercise 7.33.

1. The category 𝐴
𝑓
−−−→ 𝐵 has 2 morphisms out of 𝐴, namely id𝐴 and 𝑓 ; and 1 morphism out of

𝐵, namely id𝐵. So its carrier is {𝐴}y{id𝐴 , 𝑓 } + {𝐵}y{id𝐵} � y2 + y.
2. The category 𝐵

𝑔
−→ 𝐴

ℎ←− 𝐶 has 1 morphism out of 𝐴, namely id𝐴; 2 morphisms out of 𝐵, namely

id𝐵 and 𝑔; and 2 morphisms out of 𝐶, namely id𝐶 and ℎ. So its carrier is {𝐴}y{id𝐴}+{𝐵}y{id𝐵 ,𝑔}+
{𝐶}y{id𝐶 ,ℎ} � 2y2 + y.

3. The empty category has no objects or morphisms, so its carrier is just 0.
4. The category in question has 1 object, and its set of morphisms is in bĳection withN, so its carrier

is isomorphic to yN. (This category is the monoid (N, 0,+) viewed as a 1-object category; see

Example 7.40 for the general case.)

5. The category in question has N as its set of objects, and for each 𝑚 ∈ N, the morphisms out

of 𝑚 are determined by their codomains: there is exactly 1 morphism 𝑚 → 𝑛 for every 𝑛 ∈ N
satisfying 𝑚 ≤ 𝑛, and no other morphisms out of 𝑚. So the carrier of the category is isomorphic

to ∑
𝑚∈N

y{𝑛∈N|𝑚≤𝑛} � NyN ,

as {𝑛 ∈ N | 𝑚 ≤ 𝑛} � N under the bĳection 𝑛 ↦→ 𝑛 − 𝑚. (This category is the poset (N,≤).)
6. The category in question has N as its set of objects, and for each 𝑛 ∈ N, the morphisms out of 𝑛

are again determined by their codomains: there is exactly 1 morphism 𝑛 → 𝑚 for every 𝑚 ∈ N
satisfying 𝑚 ≤ 𝑛, and no other morphisms out of 𝑛. So the carrier of the category is isomorphic

to ∑
𝑛∈N

y{𝑚∈N|𝑚≤𝑛} �
∑
𝑛∈N

yn+1 � y1 + y2 + y3 + · · · .

(This category is the poset (N,≥).)

Solution to Exercise 7.35.

We are given a comonoid (𝔠, 𝜖, 𝛿) corresponding to the preorder 𝐵
𝑓
←− 𝐴

𝑔
−→ 𝐶 .

1. There are three morphisms with domain 𝐴, namely id𝐴 , 𝑓 , and 𝑔; the only other morphisms are

the identity morphisms on 𝐵 and 𝐶. So the carrier is 𝔠 = {𝐴}y{id𝐴 , 𝑓 ,𝑔} + {𝐵}y{id𝐵} + {𝐶}y{id𝐶}.
2. It suffices to specify the eraser 𝜖 : 𝔠 → y on directions: as always, 𝜖♯

𝑖
: 1 → 𝔠[𝑖] picks out id𝑖 for

each 𝑖 ∈ 𝔠(1) = {𝐴, 𝐵, 𝐶}.
3. The duplicator 𝛿 : 𝔠→ 𝔠 ⊳ 𝔠 tells us the codomain of each morphism, as well as how every pair of

composablemorphisms compose (which in the case of a preorder can be deduced automatically).

7.5. EXERCISE SOLUTIONS 281

So we can completely characterize the behavior of 𝛿 using polyboxes as follows:

id𝐴

𝐴
id𝐴

𝐴

id𝐴

𝐴 𝑓

𝐴
id𝐴

𝐴

𝑓

𝐴 𝑔

𝐴
id𝐴

𝐴

𝑔

𝐴 𝑓

𝐴 𝑓

𝐴

id𝐵

𝐵

𝑔

𝐴 𝑔

𝐴

id𝐶

𝐶
id𝐵

𝐵
id𝐵

𝐵

id𝐵

𝐵
id𝐶

𝐶
id𝐶

𝐶

id𝐶

𝐶

Solution to Exercise 7.36.
The linear polynomial 𝐵y corresponds to a category whose objects form the set 𝐵 and whose only

morphisms are identities: in other words, it is the discrete category on 𝐵.

Solution to Exercise 7.37.
1. The polynomial 𝑝 B yn+1 + ny has 𝑛 + 1 positions: 1 with 𝑛 + 1 directions and the rest with 1

direction each. So any category carried by 𝑝 has 𝑛+1 objects, of which only 1 has any nonidentity

morphisms coming out of it: in fact, it has 𝑛 nonidentity morphisms coming out of it. But if

the category is to be a preorder, each of these 𝑛 nonidentity morphisms must have a distinct

codomain. As there are exactly 𝑛 other objects, this completely characterizes the category.

Equivalently, it is the discrete category on n adjoined with a unique initial object, so that the only

nonidentity morphisms are the morphisms out of that initial object to each of the other objects

exactly once.

2. This category can be thought of as “star-shaped” if we picture the initial object in the center with

morphisms leading out to the other 𝑛 objects like spokes.

Solution to Exercise 7.39.
In the case of 𝑆 B 0, the only comonoid structure on 𝑆y𝑆 � 0 is given by the empty category, the only

category with no objects; and in the case of 𝑆 B 1, the only comonoid structure on 𝑆y𝑆 � y is given

by the category with 1 object and no nonidentity morphisms, again the only such category. So in those

cases, the comonoid structure on 𝑆y𝑆 is unique.

Now assume |𝑆| ≥ 2. The state category is always connected, but we can always find a comonoid

structure on 𝑆y𝑆 given by a category that is not connected—and thus not isomorphic to the state

category—as follows. Consider a category whose object set is 𝑆 that has no morphisms between

distinct objects, so that it is certainly not connected. Then to specify the category, it suffices to specify

a monoid associated with each object that will give the morphisms whose domain and codomain

are equal to that object. But there is always a monoid structure on a given nonempty set 𝑆. If 𝑆

is finite, we can take the cyclic group Z/|𝑆|Z of order |𝑆|, so that the resulting category has carrier

𝑆yZ/|𝑆|Z � 𝑆y𝑆 . On the other hand, if 𝑆 is infinite, we can take the free monoid on 𝑆, which has

cardinality

∑
𝑛∈N |𝑆|n = |N||𝑆| = |𝑆|. So the resulting category will again have carrier 𝑆y𝑆 .

Solution to Exercise 7.41.
The fact that monoids (𝑀, 𝑒, ∗) in (Set, 1,×) are just comonoids (y𝑀 , 𝜖, 𝛿) in (Poly, y, ⊳), following

the construction of Example 7.40, is a direct consequence of the fully faithful Yoneda embedding

Setop → Poly sending 𝐴 ↦→ y𝐴 that maps 1 ↦→ y, 𝐴 × 𝐵 ↦→ y𝐴×𝐵 � y𝐴 ⊳ y𝐵 naturally, and 𝑀 ↦→ y𝑀 .

282 CHAPTER 7. POLYNOMIAL COMONOIDS AND RETROFUNCTORS

We can also state the laws and the correspondences between them explicitly, keeping in mind that 𝑒

and ∗ are just the on-directions functinos of 𝜖 and 𝛿. The monoid’s unitality condition states that 𝑒 is a

2-sided unit for ∗, or that
1 ×𝑀 𝑀 𝑀 × 1

𝑀 ×𝑀,

∗
𝑒 ×𝑀 𝑀 × 𝑒

commutes—equivalent to the comonoid’s erasure laws, which state that

y ⊳ y𝑀 y𝑀 y𝑀 ⊳ y

y𝑀 ⊳ y𝑀 ,

𝛿
𝜖 ⊳ y𝑀 y𝑀 ⊳ 𝜖

commutes (trivial on positions, equivalent to the monoid’s unitality condition on directions).

Similarly, the monoid’s associativity condition states that ∗ is associative, or that

𝑀 𝑀 ×𝑀

𝑀 ×𝑀 𝑀 ×𝑀 ×𝑀,

∗

∗ 𝑀 × ∗

∗ ×𝑀

commutes—equivalent to the comonoid’s coassociative law, which state that

y𝑀 y𝑀 ⊳ y𝑀

y𝑀 ⊳ y𝑀 y𝑀 ⊳ y𝑀 ⊳ y𝑀 ,

𝛿

𝛿 y𝑀 ⊳ 𝛿

𝛿 ⊳ y𝑀

commutes (trivial on positions, equivalent to the monoid’s associativity condition on directions).

Solution to Exercise 7.44.
Here (𝑀, 𝑒, ∗) is a monoid, 𝑆 is a set, 𝛼 : 𝑆 × 𝑀 → 𝑆 is a monoid action, and MA is the associated

category, whose corresponding comonoid is (𝑆y𝑀 , 𝜖, 𝛿). We also know that for each 𝑠 ∈ 𝑆 and 𝑚 ∈ 𝑀,

there is a morphism 𝑠
𝑚−→ 𝛼(𝑠, 𝑚) inMA.

1. The erasure 𝜖 : 𝑆y𝑀 → y picks out an element of 𝑚 ∈ 𝑀 for every element 𝑠 ∈ 𝑆 that will play

the role of an identity, which in particular should also have 𝑠 as its codomain. Since we want

the codomain of the morphism 𝑚 out of 𝑠 to be 𝛼(𝑠, 𝑚), we can take 𝑚 = 𝑒 to guarantee that its

codomain will be 𝛼(𝑠, 𝑒) = 𝑠. So we let 𝜖 be the lens whose on-directions function at each 𝑠 ∈ 𝑆
is 𝜖♯𝑠 : 1→ 𝑀 always maps to 𝑒.

2. The duplicator 𝛿 : 𝑆y𝑀 → 𝑆y𝑀 ⊳ 𝑆y𝑀 is determined by what we want the codomain of each

morphism to be and how we want the morphisms to compose. We already know that we

want the morphism 𝑚 ∈ 𝑀 out of each 𝑠 ∈ 𝑆 to have the codomain 𝛼(𝑠, 𝑚). If we then have

another morphism 𝑛 ∈ 𝑀 out of 𝛼(𝑠, 𝑚), its codomain will be 𝛼(𝛼(𝑠, 𝑚), 𝑛) = 𝛼(𝑠, 𝑚 ∗ 𝑛), the
same as the codomain of the morphism 𝑚 ∗ 𝑛 out of 𝑠. So it makes sense for the composite

𝑠
𝑚−→ 𝛼(𝑠, 𝑚) 𝑛−→ 𝛼(𝛼(𝑠, 𝑚), 𝑛) to be the morphism 𝑠

𝑚∗𝑛−−−→ 𝛼(𝑠, 𝑚 ∗ 𝑛). Thus, we can define 𝛿 in

polyboxes as

𝑚 ∗ 𝑛
𝑠

𝑚

𝑠

𝑛

𝛼(𝑠, 𝑚)
cod

#

7.5. EXERCISE SOLUTIONS 283

3. We constructed 𝛿 above so that its bottom arrow is an identity function, so verifying the erasure

laws amounts to checking that the direction 𝑒 ∈ 𝑀 that 𝜖 picks out at each position 𝑠 ∈ 𝑆

really does function as an identity morphism 𝑠
𝑒−→ 𝛼(𝑠, 𝑒) under the codomain and composition

operations specified by 𝛿. We have already ensured that the codomain of 𝑒 at 𝑠 is 𝛼(𝑠, 𝑒) = 𝑠;

meanwhile, given 𝑚 ∈ 𝑀 we have that the composite of 𝑠
𝑚−→ 𝛼(𝑠, 𝑚) 𝑒−→ 𝛼(𝑠, 𝑚) is 𝑚 ∗ 𝑒 = 𝑚

and that the composite of 𝑠
𝑒−→ 𝑠

𝑚−→ 𝛼(𝑠, 𝑚) is 𝑒 ∗ 𝑚 = 𝑚 by the monoid’s own unit laws. So the

erasure laws hold.

4. Verifying the coassociativity of 𝛿 amounts to checking that composition plays nicely with

codomains and is associative. We already checked the former when defining 𝛿, and the latter fol-

lows from themonoid’s own associativity laws: given𝑚, 𝑛, 𝑝 ∈ 𝑀, we have (𝑚 ∗𝑛)∗𝑝 = 𝑚 ∗(𝑛 ∗𝑝).
5. The associated categoryMA is a category whose objects are the elements of the set 𝑆 being acted

on, and whose morphisms 𝑠 → 𝑡 for each 𝑠, 𝑡 ∈ 𝑆 are the elements of the monoid 𝑚 ∈ 𝑀 that

send 𝑠 to 𝑡, i.e. 𝛼(𝑠, 𝑚) = 𝑡. The identity morphism on each object is just the unit 𝑒 ∈ 𝑀, while

morphisms compose via the multiplication ∗.
6. It is the same iff𝑀 is a group, i.e. if every 𝑚 ∈ 𝑀 has an inverse. Indeed, the comonoid structure

on 𝑀y𝑀 from Example 7.38 corresponds to a category in which every map is an isomorphism,

so for each 𝑚 ∈ 𝑀, the left-action 𝛼(𝑚,−) : 𝑀 → 𝑀 would need to be a bĳection, and this is the

case iff 𝑀 is a group.

Solution to Exercise 7.46.
1. Since R acts on R/Z by addition modulo 1, (e.g. 𝛼(.7, 5.4) = .1), we obtain a comonoid structure

on (R/Z)yR by Example 7.43. For example, the erasure (R/Z)yR → y sends everything to 0 ∈ R,
because 0 is the identity in R.

2. Yes it is a groupoid because R is a group: every element is invertible.

Solution to Exercise 7.48.
1. If every object in C is linear, then the only morphisms in C are the identity morphisms, so Cmust

be a discrete category.

2. It is not possible for an object in C to have degree 0, as every object must have at least an identity

morphism emanating from it.

3. Some possible examples of categories with objects of degreeN are the monoid (N, 0,+) (see Exer-
cise 7.33 #4), the poset (N,≤) (see Exercise 7.33 #5), and the state category onN (see Example 7.38).

4. Up to isomorphism, there are 3 categories with just one linear and one quadratic object. They

can be distinguished by the behavior of the single nonidentity morphism. Either its domain and

its codomain are distinct, in which case we have the walking arrow category; or its domain and

its codomain are the same, in which case it can be composed with itself to obtain either itself or

the identity. So there are 3 possible categories in total.

5. Yes: since (isomorphic) categories correspond to (isomorphic) comonoids, there are as many

categories with one linear and one quadratic object up to isomorphism as there are comonoid

structures on y2 + y.

Solution to Exercise 7.52.
As in Definition 7.49, we have a monoidal category (C, y, ⊳) with comonoids C B (𝔠, 𝜖, 𝛿) and C ′ B
(𝔠′, 𝜖′, 𝛿′) and a comonoid morphism 𝐹 : C → C ′ (really a morphism 𝐹 : 𝔠 → 𝔠′ in C). Let’s throw

in another comonoid C ′′ B (𝔠′′, 𝜖′′, 𝛿′′) and another comonoid morphism 𝐺 : C ′ → C ′′ (really a

morphism 𝐺 : 𝔠′→ 𝔠′′ in C).

1. To show that the identity morphism id𝔠 : 𝔠 → 𝔠 is a comonoid morphism C → C , we must

check that it preserves erasure by showing that (7.50) commutes, then check that it preserves

284 CHAPTER 7. POLYNOMIAL COMONOIDS AND RETROFUNCTORS

duplication by showing that (7.50) commutes:

𝔠 𝔠

y y

id𝔠

𝜖 𝜖

𝔠 𝔠

𝔠 ⊳ 𝔠 𝔠 ⊳ 𝔠.

id𝔠

𝛿 𝛿
id𝔠 ⊳ id𝔠

But they do commute, since id𝔠 is the identity on 𝔠 and id𝔠 ⊳ id𝔠 is the identity on 𝔠 ⊳ 𝔠.

2. To show that the composite 𝐹 # 𝐺 : 𝔠 → 𝔠′′ of the two comonoid morphisms 𝐹 and 𝐺 is itself

a comonoid morphism C → C ′′, we check that it preserves erasure by showing that (7.50)

commutes, then check that it preserves duplication by showing that (7.50) commutes:

𝔠 𝔠′′

y y

𝐹 # 𝐺

𝜖 𝜖′′

𝔠 𝔠′′

𝔠 ⊳ 𝔠 𝔠′′ ⊳ 𝔠′′.

𝐹 # 𝐺

𝛿 𝛿′′

(𝐹 # 𝐺) ⊳ (𝐹 # 𝐺)

But we can rewrite these squares like so, using the fact that (𝐹 # 𝐺) ⊳ (𝐹 # 𝐺) = (𝐹 ⊳ 𝐹) # (𝐺 ⊳ 𝐺) on
the right:

𝔠 𝔠 𝔠′′

y y y

𝐹

𝜖

𝐺

𝜖′ 𝜖′′

𝔠 𝔠′ 𝔠′′

𝔠 ⊳ 𝔠 𝔠′ ⊳ 𝔠′ 𝔠′′ ⊳ 𝔠′′.

𝐹

𝛿

𝐺

𝛿 𝛿′

𝐹 ⊳ 𝐹 𝐺 ⊳ 𝐺

Then the left square in each diagram commutes because 𝐹 is a comonoid morphism, while the

right square in each diagram commutes because 𝐺 is a comonoid morphism. So both diagrams

commute.

Solution to Exercise 7.60.
Here 𝐹 : C ↛ D and 𝐺 : D ↛ E are retrofunctors in Cat♯ .

1. The identity retrofunctor idD on D should correspond to the identity lens on the carrier of D,

which is the identity on both positions (objects) and directions (morphisms). So idD sends each

object 𝑑 ∈ ObD to itself, while (idD)♯𝑑 : D[𝑑] → D[𝑑] sends each morphism out of 𝑑 to itself as

well.

2. The composite retrofunctor 𝐹 # 𝐺 : C ↛ D should correspond to the composite of 𝐹 as a lens

between the carriers of C and D with 𝐺 as a lens between the carriers of D and E. So on objects,

𝐹 # 𝐺 sends each 𝑐 ∈ ObC to 𝐺(𝐹𝑐) ∈ ObE. Then given 𝑐 ∈ ObC, the on-morphisms function

(𝐹 # 𝐺)♯𝑐 : E[𝐺(𝐹𝑐)] → C[𝑐] is the composite of on-directions functions

E[𝐺(𝐹𝑐)]
𝐺

♯
𝐹𝑐−−−→ D[𝐹𝑐]

𝐹
♯
𝑐−−→ C[𝑐],

sending each morphism ℎ with domain 𝐺(𝐹𝑐) to 𝐹♯𝑐
(
𝐺
♯
𝐹𝑐
ℎ
)
.

Solution to Exercise 7.62.
We want to show that categories C and D are isomorphic in Cat if and only if they are isomorphic in

Cat♯ . First, assume that C and D are isomorphic in Cat, so that there exist mutually inverse functors

𝐹 : C → D and 𝐺 : D → C. Then we can define a retrofunctor 𝐻 : C ↛ D such that for each 𝑐 ∈ C

we have 𝐻𝑐 B 𝐹𝑐 ∈ D, and for each 𝑔 ∈ D[𝐹𝑐] we have 𝐻
♯
𝑐 𝑔 B 𝐺𝑔 ∈ C[𝐺𝐹𝑐] = C[𝑐]. We can

verify that 𝐻 really is a retrofunctor: it preserves identities and composition because 𝐺 does, and it

preserves codomains because 𝐻 cod𝐻
♯
𝑐 𝑔 = 𝐹 cod𝐺𝑔 = 𝐹𝐺 cod 𝑔 = cod 𝑔. Analogously, we can define

a retrofunctor 𝐾 : D ↛ C with 𝐾𝑑 B 𝐺𝑑 and 𝐾
♯
𝑑
𝑓 B 𝐹 𝑓 for each 𝑑 ∈ D and 𝑓 ∈ C[𝐺𝑑]. Then 𝐻 # 𝐾 is

equal to 𝐹 # 𝐺 both on objects and on morphisms, so it is the identity retrofunctor on C; analogously,

𝐾 # 𝐻 is the identity retrofunctor on D. Thus C and D are isomorphic in Cat♯ .
Conversely, assume C andD are isomorphic in Cat♯ , so that there exist mutually inverse retrofunctors

𝐻 : C ↛ D and 𝐾 : D ↛ C. Given objects 𝑐, 𝑐′ and a morphism 𝑓 : 𝑐 → 𝑐′ in C, we have that 𝐾𝐻𝑐 = 𝑐,

7.5. EXERCISE SOLUTIONS 285

so 𝐾
♯
𝐻𝑐

is a function C[𝑐] → D[𝐻𝑐]. In particular, 𝐾
♯
𝐻𝑐
𝑓 is a morphism in D whose domain is 𝐻𝑐 and

whose codomain satisfies 𝐾 cod𝐾
♯
𝐻𝑐
𝑓 = cod 𝑓 = 𝑐′, and thus cod𝐾

♯
𝐻𝑐
𝑓 = 𝐻𝑐′. Hence we can define a

functor 𝐹 : C → D such that for each 𝑐 ∈ C we have 𝐹𝑐 B 𝐻𝑐 ∈ D, and for each morphism 𝑓 : 𝑐 → 𝑐′

in C we have 𝐹 𝑓 B 𝐾
♯
𝐻𝑐
𝑓 : 𝐻𝑐 → 𝐻𝑐′. Functoriality follows from the fact that 𝐾 preserves identities

and composition. Analogously, we can define a functor 𝐺 : D → C with 𝐺𝑑 B 𝐾𝑑 for each 𝑑 ∈ D and

𝐺𝑔 B 𝐻
♯
𝐾𝑑

𝑔 for each 𝑔 : 𝑑 → 𝑑′ in D. Then 𝐹 # 𝐺 is equal to 𝐻 # 𝐾 on objects; on morphisms, it sends

each 𝑓 : 𝑐 → 𝑐′ in C to 𝐻
♯
𝐾𝐻𝑐

(
𝐾
♯
𝐻𝑐
𝑓
)
= 𝐻

♯
𝑐

(
𝐾
♯
𝐻𝑐
𝑓
)
= (𝐾 # 𝐻)♯𝑐 𝑓 = 𝑓 itself. So 𝐹 # 𝐺 is the identity

retrofunctor on C. Analogously, 𝐺 # 𝐹 is the identity functor on D. Thus C and D are isomorphic in

Cat.

Solution to Exercise 7.64.
1. We actually already showed that y has a unique comonoid structure, corresponding to the

category with 1 object and no nonidentity morphisms (which we will also denote by y), in

Exercise 7.39, for the case of 𝑆 B 1.
2. For any category C, there is a unique retrofunctor C ↛ y: it sends every object in C to the

only object in y, and it sends the only morphism in y, an identity morphism, to each identity

morphism in C.

3. By Example 7.63, a retrofunctor from a category C to the discrete category on 𝑆 ∈ Set is a way of

assigning each state in C a label in 𝑆. In this case, y is the discrete category on 1, so there is only

1 label to choose from; hence there is always just 1 way to assign the labels.

Solution to Exercise 7.66.
Given a retrofunctor 𝐹 : C ↛ A, where A is the walking arrow category as in Example 7.65, assume

𝐹𝑐 = 𝑠 for all 𝑐 ∈ C. By Example 7.65, if 𝐹𝑐 = 𝑠 for 𝑐 ∈ C, then there must be a morphism from 𝑐 to an

object in C that 𝐹 sends to 𝑡 for 𝑎 : 𝑠 → 𝑡 in A to be sent back to via 𝐹♯ . But there are no objects in C

that 𝐹 sends to 𝑡. So the only way such a retrofunctor could be defined is if there are no objects in C

that it sends to 𝑠, either: we conclude that C is the empty category.

Solution to Exercise 7.67.
The star-shaped category has 𝑛 + 1 objects, one of which is “central” in the sense that it maps uniquely

to every object; the other objects have only identity maps.

1. A retrofunctor C ↛ yn+1 + ny comprises an assignment of a label to each object in C: either

it assigns “center” or it assigns an element of {1, 2, . . . , 𝑛}. If it assigns “center”, the object is

equipped with 𝑛-many morphisms, with the 𝑖th one having as its codomain an object labeled 𝑖.

2. A retrofunctor C → (N,≤) comprises an assignment of a natural number label to each object in

C, as well as a choice of morphism in C from each object labeled 𝑛 to some object labeled 𝑛 + 1.

3. A retrofunctor C → (N,≤) comprises an assignment of a natural number label to each object in

C, as well as a choice of morphism in C from each object labeled 𝑛 + 1 to some object labeled 𝑛.

Solution to Exercise 7.69.
1. Every object 𝑐 ∈ CS in the commutative square must be labeled 𝑠 or 𝑡. If 𝑐 is labeled 𝑡, there are

no further restrictions, since the only arrow emanating from 𝑡 is the identity. If 𝑐 is labeled 𝑠, then

we must choose an outgoing arrow from 𝑐 to an object labeled 𝑡. So the possible retrofunctors

are

𝑡 𝑡

𝑡 𝑡

𝑠 𝑡

𝑡 𝑡

𝑠 𝑡

𝑡 𝑡

𝑠 𝑡

𝑡 𝑡

𝑡 𝑠

𝑡 𝑡

𝑡 𝑡

𝑠 𝑡

𝑠 𝑠

𝑡 𝑡

𝑠 𝑠

𝑡 𝑡

𝑠 𝑡

𝑠 𝑡

𝑠 𝑡

𝑠 𝑡

𝑡 𝑠

𝑠 𝑡

𝑠 𝑠

𝑠 𝑡

286 CHAPTER 7. POLYNOMIAL COMONOIDS AND RETROFUNCTORS

2. Every object 𝑎 ∈ A in the walking arrow must be labeled 𝑤, 𝑥, 𝑦, or 𝑧. If 𝑎 is labeled 𝑧, there are

no further restrictions. If it is labeled 𝑥 or 𝑦, then 𝑎 must have a map to an element labeled 𝑧;

in particular this implies that 𝑎 must be the source object 𝑠 ∈ A. Finally, 𝑎 cannot be labeled 𝑤

because then 𝑎 would need too many outgoing arrows. So the possible retrofunctors are

𝑧 𝑧 𝑥 𝑧 𝑦 𝑧

Solution to Exercise 7.70.
1. Let P be a poset. A retrofunctor y ↛ P represents an maximal element 𝑝 ∈ P. Indeed, if there

were some 𝑝 ≤ 𝑝′ with 𝑝′ ≠ 𝑝, then the retrofunctor would have to send the map 𝑝 → 𝑝′ to some

morphism in y whose codomain is sent to 𝑝′; this is impossible. But if 𝑝 is maximal, then there

is no obstruction to sending the unique object of y to 𝑝.

2. Let 𝑚 = •0 → · · · → •𝑚−2 → •𝑚−1
. By the same reasoning as above, a map [𝑚] → [𝑛] must

send the final object of [𝑚] to the final object of [𝑛]. It can send the penultimate object 𝑚 − 2 to

either the penultimate object 𝑛 − 2 or to the final object 𝑛 − 1 in [𝑛]. Repeating in this way, we

see that there 2
𝑚
many retrofunctors. For example, the retrofunctors [2] → [2] are those labeled

by (2, 2, 2), (1, 2, 2), (1, 1, 2), and (0, 1, 2).

Solution to Exercise 7.73.
We seek the number of arrow fields on the category • → • . There are 2 choices of morphisms

emanating from the object on the left, and 1 choice of morphism emanating from the object on the

right, for a total of 2 · 1 = 2 arrow fields.

Solution to Exercise 7.74.
1. A retrofunctorC ↛ yZ assigns to each object 𝑐 ∈ C and integer 𝑛 ∈ Z an emanating arrow 𝑐.𝑛 ∈ C

to some other object, with the property that 𝑐.0 = 𝑐 and 𝑐.𝑛.𝑛′ = 𝑐.(𝑛 + 𝑛′). But this is overkill.
Indeed, it is enough to assign the 𝑐.1 arrow and to check that for every object 𝑐′ there exists a

unique object 𝑐 with cod(𝑐.1) = 𝑐′.
2. We seek a canonical retrofunctor yZ ↛ yN. The canonical inclusion 𝑖 : N ↩→ Z gives rise to a lens

𝜄 from yZ to yN, whose sole on-directions function 𝜄♯ : N ↩→ Z coincides with 𝑖. We verify that 𝜄

is a retrofunctor: it preserves identities, as 𝜄♯0 = 0; it automatically preserves codomains; and it

preserves composites, given by addition in either monoid, as 𝜄♯(𝑚 + 𝑛) = 𝑚 + 𝑛 = 𝜄♯(𝑚) + 𝜄♯(𝑛).

Solution to Exercise 7.75.
1. Retrofunctors y𝑀 → y𝑁 are the same asmonoid homomorphisms𝑁 → 𝑀. See Proposition 7.79.

2. No! This is the weirdest thing about retrofunctors. For example, there is a unique retrofunctor

y→ y2 + y from the walking object to the walking arrow, so if we reverse the arrows, there is no

longer a retrofunctor that acts the same on objects.

Solution to Exercise 7.76.
We are given a monoid (𝑀, 𝑒, ∗), a set 𝑆, and an 𝑀-action 𝛼 : 𝑀 × 𝑆 → 𝑆. The category 𝑆y𝑀 has 𝑒

as the identity on each 𝑠 ∈ 𝑆; the codomain of the map labeled 𝑚 emanating from 𝑠 is 𝛼(𝑠, 𝑚), and
composition is given by ∗. The projection 𝑆y𝑀 → y𝑀 sends the identity back to the identity, trivially

preserves codomains, and also preserves composition, so it is a retrofunctor.

Solution to Exercise 7.78.
This works!

Solution to Exercise 7.81.
A continuous arrow field on C assigns to each object 𝑐 ∈ C and each real number 𝑟 ∈ R a morphism 𝑐.𝑟

emanating from 𝑐. These have the property that 𝑐.0 is the identity on 𝑐 and that (𝑐.𝑟).𝑟′ = 𝑐.(𝑟 + 𝑟′). In
other words, you can evolve 𝑐 forward or backward in time by any 𝑟 ∈ R, and this works as expected.

7.5. EXERCISE SOLUTIONS 287

Solution to Exercise 7.86.
Given a bĳection of sets 𝑆 � 𝑇 × 𝑈 , we seek a unique retrofunctor 𝑆y𝑆 ↛ 𝑇y𝑇 whose on-positions

function get is given by the product projection 𝑆 � 𝑇 ×𝑈 → 𝑇. Such a retrofunctor should also have an

on-directions function put : 𝑆 × 𝑇 → 𝑆 such that the three laws from Example 7.85 are satisfied. With

𝑆 � 𝑇 ×𝑈 , such a function is uniquely determined by its components

𝑆 × 𝑇
put

−−−→ 𝑆
get

−−→ 𝑇 and 𝑆 × 𝑇
put

−−−→ 𝑆
𝜋−→ 𝑈,

where 𝜋 : 𝑆 � 𝑇 × 𝑈 → 𝑈 is the other product projection. The left component is determined by

the put-get law, which specifies the behavior of the composite put # get: it should send (𝑠, 𝑡) ↦→ 𝑡.

Identifying 𝑆 with 𝑇 ×𝑈 , the get-put law for 𝑠 = (𝑡 , 𝑢) ∈ 𝑇 ×𝑈 (so get(𝑡 , 𝑢) = 𝑡) reads as

put((𝑡 , 𝑢), 𝑡) = (𝑡 , 𝑢),

while the put-put law reads as

put(put((𝑡 , 𝑢), 𝑡′), 𝑡′′) = put((𝑡 , 𝑢), 𝑡′′)

for 𝑡′, 𝑡′′ ∈ 𝑇. Applying get to both sides, we observe that the first coordinate (in 𝑇) of either side of

each equation are automatically equal when the put-get law holds. So we are really only concerned

with the second coordinates of either side (in𝑈); applying 𝜋 to both sides yields

𝜋(put((𝑡 , 𝑢), 𝑡)) = 𝑢 and 𝜋(put(put((𝑡 , 𝑢), 𝑡′), 𝑡′′)) = 𝜋(put((𝑡 , 𝑢), 𝑡′′))

Solution to Exercise 7.87.
1. There are 6 product projections 3→ 3, namely the three automorphisms, so the answer is 6.

2. There are 6 product projections 4→ 2, so the answer is 6.

Solution to Exercise 7.89.
Yes, it is a retrofunctor. One sees easily that it sends identities back to identities and composites back

to composites. The codomain of 𝑓 # 𝑔 is simply 𝑓 # 𝑔 as an element of 𝔠[𝑖], and it is sent forward to

cod(𝑓 # 𝑔), so the map preserves codomains.

Solution to Exercise 7.91.
1. Every object in U must be labeled with either 1 or 2, but there are no other requirements.

2. If retrofunctors U → C are always in bĳection with objects in C, then with C = 2y, we have a

bĳection 2 � 2Ob(U)
by part 1, so U has one object.

3. Take D to be the walking arrow. Then if U has only one object, it cannot be sent to the source

object of D because the emanating morphism would have nowhere to go. Hence the unique

object ofUmust be sent to the target object ofD. But there is only one such retrofunctor, whereas

there are two objects in D. We conclude that objects are not reprsentable in Cat♯ the way they

are in Cat.
4. No, there is no such V. There is exactly one retrofunctor 0 ↛ V, but there are no objects of 0.

Solution to Exercise 7.93.
There are two: one of which sends 𝑠 ↦→ 𝑢 and 𝑡 ↦→ 𝑣 and the other of which sends both 𝑠, 𝑡 ↦→ 𝑣.

Solution to Exercise 7.94.
1. Take the category C′ that has the same objects as C and almost the same arrows, except that it

has one more arrow 𝑖𝑐 from each object 𝑐 ∈ C′ to itself. This new arrow is the identity. The

composites of all the old arrows in C′ are exactly as they are in C. The old identity id
old

𝑐 is no

longer an identity because id
old

𝑐 # 𝑖 = id
old

𝑐 ≠ 𝑖.

2. Given a retrofunctor 𝜑 : 𝔠 ↛ 𝔡, we get a retrofunctor 𝔠y ↛ 𝔡y that acts the same on objects and

all the old arrows and sends the new identities back to the new identities. It preserves identities

and composites going backward and codomains going forward, so it’s a retrofunctor.

288 CHAPTER 7. POLYNOMIAL COMONOIDS AND RETROFUNCTORS

3. It is a monad: there is an obvious unit map 𝔠→ 𝔠y and a multiplication map 𝔠yy→ 𝔠y that sends

the new identity back to the newest identity.

Solution to Exercise 7.95.
1. Counterexample: take 𝔠 = 0. Then the unique lens 𝑓 : 𝔠 → 𝔡 is a retrofunctor and so is 𝑓 # 𝑔 for

any lens 𝑔 : 𝔡→ 𝔢, but some lenses are not retrofunctors.

2. Counterexample: take 𝔢 = y. Then there is a unique retrofunctor 𝜖 : 𝔠 → y. As long as 𝑓 is

copointed, meaning it sends identities backward to identities, then 𝑓 # 𝑔 will be a retrofunctor.

But not every copointed lens is a retrofunctor.

Solution to Exercise 7.101.
In general, a functor 𝐹 : C → D is a discrete opfibration iff, for every object 𝑐 ∈ C, the induced map

𝐹[𝑐] : C[𝑐] → D[𝐹𝑐] is a bĳection.
In our case, if 𝜋 and 𝜋′ are discrete opfibrations then for any 𝑠 ∈ S we have that both the second map

and the composite in S[𝑠]
𝐹[𝑠]
−−−→ S′[𝐹𝑠]

𝜋′[𝐹𝑠]
−−−−−→ C[𝜋𝑠] are bĳections, so the first map is too.

Solution to Exercise 7.102.
1. The identity map id𝑖 satisfies 𝜋(id𝑖) = id𝜋(𝑖), so id𝜋(𝑖) = id𝑖 by the uniqueness-of-lift condition

in Definition 7.99.

2. The morphism 𝑓 # 𝑔 satisfies 𝜋(𝑓 # 𝑔) = 𝜋(𝑓) # 𝜋(𝑔) = 𝑓 # 𝑔, so again this follows by uniqueness of

lift.

3. To see that 𝜋 is a retrofunctor, we need to understand and verify conditions about its action

forward on objects and backward on morphisms. Its action forward on objects is that of 𝜋 as

a functor. Given an object 𝑠 ∈ S, the action of 𝜋 backward on morphisms is the lift operation

𝜋♯
𝑠 (𝑓) B 𝑓 . This preserves identity by part 1, composition by part 2, and codomains because

𝜋(cod(𝜋♯
𝑠 (𝑓))) = cod(𝜋(𝜋♯

𝑠 (𝑓))) = cod(𝑓).

Solution to Exercise 7.105.
1. The functor action on objects and morphisms is defined in the exercise statement, so it suffices to

check that it preserves identities and composites. But this too is obvious: 𝜋(id) = id and 𝜋(𝑓 # 𝑔)
is 𝑓 # 𝑔.

2. Given an object (𝑐, 𝑥) ∈
∫ C

𝐼 and 𝑓 : 𝑐 → 𝑐′, we need to check that there is a unique object 𝑠 ∈
∫ C

𝐼

and morphism 𝑓 : (𝑐, 𝑥) → 𝑠 with 𝜋(𝑓) = 𝑓 . Using 𝑥′ B 𝐼(𝑓)(𝑥) and 𝑠 B (𝑐′, 𝑥′) and 𝑓 B 𝑓 , we

do indeed get 𝜋(𝑓) = 𝑓 and we find that it is the only possible choice.

Solution to Exercise 7.106.
1. Given a natural transformation 𝛼 : 𝐼 → 𝐽, we need a functor

∫ C
𝛼 :

∫ C
𝐼 →

∫ C
𝐽. On objects

have it send (𝑐, 𝑥) ↦→ (𝑐, 𝛼𝑐𝑥), where 𝑥 ∈ 𝐼(𝑐) so 𝛼𝑐𝑥 ∈ 𝐽(𝑐); on morphisms have it send 𝑓 ↦→ 𝑓 , a

mapping which clearly preserves identities and composition.

2. To see that

∫ C
𝛼 is a morphism between discrete opfibrations, one only needs to check that it

commutes with the projections to C, but this is obvious: the mapping (𝑐, 𝑥) ↦→ (𝑐, 𝛼𝑐𝑥) and the

mapping 𝑓 ↦→ 𝑓 preserve the objects and morphisms of C.

3. It is clear that

∫ C
preserves identities and composition in SetC , so we have verified that this is

functor.

Solution to Exercise 7.107.
Given a graph 𝐺 B (src, tgt : 𝐴 ⇒ 𝑉) and functor 𝑆 : G→ Set, define a new graph 𝐻 as the following

diagram of sets: ∑
𝑎∈𝐴 𝑆(src(𝑎)) ∑

𝑣∈𝑉 𝑆(𝑣)
(src,id)

(tgt,𝑆(𝑎))

7.5. EXERCISE SOLUTIONS 289

In other words, it is a graph for which a vertex is a pair (𝑣, 𝑠) with 𝑣 ∈ 𝑉 a 𝐺-vertex and 𝑠 ∈ 𝑆(𝑣), and
for which an arrow is a pair (𝑎, 𝑠)with 𝑎 ∈ 𝐴 a 𝐺-arrow, say 𝑎 : 𝑣 → 𝑣′, and 𝑠 ∈ 𝑆(𝑣) is an element over

the source of that arrow. With this notation, the arrow (𝑎, 𝑠) has as source vertex (𝑣, 𝑠) and has as target

vertex (𝑣′, 𝑆(𝑎)(𝑠))where 𝑆(𝑎) : 𝑆(𝑣) → 𝑆(𝑣′) is the function given by the functor 𝑆 : G→ Set.
It remains to see that the free category on𝐻 is isomorphic to

∫ G
𝑆. We first note that it has the same set

of objects, namely

∑
𝑣∈𝑉 𝑆(𝑣). A morphism in

∫ G
𝑆 can be identified with an object (𝑣, 𝑠) together with

a morphism 𝑓 : 𝑣 → 𝑣′ inG, but this is just a length-𝑛 sequence (𝑎
1
, . . . , 𝑎𝑛) of arrows, with 𝑣 = src(𝑎

1
),

tgt(𝑎𝑖) = src(𝑎𝑖+1
) for 1 ≤ 𝑖 < 𝑛, and tgt(𝑎𝑛) = 𝑣′. This is the same data as a morphism in the free

category on 𝐻.

Chapter 8

Categorical properties of
polynomial comonoids

While we defined the category Cat♯ of categories and retrofunctors in the last chapter,

we have only begun to scratch the surface of the properties it satisfies. As the category

of comonoids in Poly, equipped with a canonical forgetful functor 𝑈 : Cat♯ → Poly
sending each polynomial to its carrier, Cat♯ inherits many of the categorical properties

satisfied by Poly. Underpinning this inheritance is the fact that 𝑈 has a right adjoint,

a cofree functor Poly → Cat♯. We will introduce this adjunction in the first section

of this chapter. Then we will discuss how many of the categorical properties of Poly,
including much of what we covered in Chapter 5, play nicely with restriction to Cat♯.
Finally, we will touch on other constructions we can make over the comonoids in Poly,
such as their comodules and coalgebras.

8.1 Cofree comonoids

Consider a dynamical system 𝜑 : 𝔰 → 𝑝 with state system 𝔰 and interface 𝑝. In Sec-

tion 7.1.5, we posed the question of whether there was a single morphism that could

capture all the information encoded by the family of lenses Run𝑛(𝜑) : 𝔰 → 𝑝⊳ 𝑛 for all

𝑛 ∈ N, defined as the composite

𝔰
𝛿(𝑛)−−→ 𝔰⊳ 𝑛

𝜑⊳ 𝑛

−−→ 𝑝⊳ 𝑛

that models 𝑛 runs through the system 𝜑.

It turns out that there is: the key is that there is a natural way to interpret every

polynomial 𝑝 as a category T𝑝 , so that retrofunctors into T𝑝 are exactly lenses into

𝑝. In other words, T𝑝 will turn out to be the cofree comonoid (or cofree category) on 𝑝.

Cofree comonoids in Poly are beautiful objects, both in their visualizable structure as

a category and in the metaphors we can make about them. They allow us to replace

291

292 CHAPTER 8. CATEGORICAL PROPERTIES OF POLYNOMIAL COMONOIDS

the interface of a dynamical system with a category and get access to a rich theory that

exists there.

We’ll go through the construction of the cofree comonoid and its implications in this

section, featuring a purely formal proof of the fact the forgetful functor𝑈 : Cat♯ → Poly
has a right adjoint T− : Poly→ Cat♯, where for each 𝑝 ∈ Poly, the carrier 𝔱𝑝 B 𝑈T𝑝 of

the category T𝑝 is given by the limit of the following diagram:

y 𝑝 𝑝⊳ 2 𝑝⊳ 3 · · ·

1 𝑝 ⊳ 1 𝑝⊳ 2 ⊳ 1 𝑝⊳ 3 ⊳ 1 · · · .!
𝑝 ⊳ ! 𝑝⊳ 2 ⊳ !

(8.1)

Thus, we will show in Theorem 8.45 that𝑈 and T− form a forgetful-cofree adjunction,

making T𝑝 the cofree comonoid on 𝑝. But first, let us concretely characterize the

canonical comonoid structure on the limit of (8.1), before showing that it is indeed

cofree.

8.1.1 The carrier of the cofree comonoid

Let 𝔱𝑝 be the limit of the diagram (8.1) in Poly; it will turn out to be the carrier of the

cofree comonoid on 𝑝 (where 𝑝 will be an arbitrary polynomial throughout). We could

compute this limit directly, but we will be able to describe it more concretely in terms

of what we call trees on 𝑝 or 𝑝-trees: trees comprised of 𝑝-corollas. In doing so, we will

formalize the tree pictures we have been using to describe polynomials all along.

Trees on polynomials

Definition 8.2 (Tree on a polynomial). Let 𝑝 ∈ Poly be a polynomial. A tree on 𝑝, or a
𝑝-tree, is a rooted tree whose every vertex 𝑣 is assigned a 𝑝-position 𝑖 and a bĳection

from the children of 𝑣 to 𝑝[𝑖]. We denote the set of 𝑝-trees by tree𝑝 .

We can thinkof a 𝑝-tree as being “built” out of 𝑝-corollas according to these instructions:

To choose a 𝑝-tree in tree𝑝 :

1. choose a 𝑝-corolla:

• its root 𝑖0 ∈ 𝑝(1)will be the tree’s root, and

• its leaves in 𝑝[𝑖0]will be the edges out of the root;

2. for each 𝑝[𝑖0]-leaf 𝑎1:

2.1. choose a 𝑝-corolla:

• its root 𝑖1 ∈ 𝑝(1)will be the vertex adjoined to 𝑎1, and

• its leaves in 𝑝[𝑖1]will be the edges out of that vertex;

2.2. for each 𝑝[𝑖1]-leaf 𝑎2:

2.2.1. choose a 𝑝-corolla:

8.1. COFREE COMONOIDS 293

• its root 𝑖2 ∈ 𝑝(1)will be the vertex adjoined to 𝑎2, and

• its leaves in 𝑝[𝑖2]will be the edges out of that vertex;

2.2.2. for each 𝑝[𝑖1]-leaf 𝑎2:

· · ·

Of course, there may eventually be multiple copies of any one 𝑝-root as a vertex or

𝑝-leaf as an edge in our 𝑝-tree, and these vertices and edges are not literally the same.

Sowe should really think of the positions and directions of 𝑝 involved each step as labels
for the vertices and edges of a 𝑝-tree—although crucially, each 𝑝[𝑖]-direction must be

used as a label exactly once among the edges emanating from a given vertex labeled

with 𝑖.

Although these instructions continue forever, we could abbreviate them by writing

them recursively:

To choose a 𝑝-tree in tree𝑝 :

1. choose a 𝑝-corolla:

• its root 𝑖0 ∈ 𝑝(1)will be (the label of) the tree’s root, and

• its leaves in 𝑝[𝑖0]will be (the labels of) the edges out of the root;

2. for each 𝑝[𝑖0]-leaf 𝑎1:

2.1. choose a 𝑝-tree in tree𝑝 :
• it will be the subtree whose root is adjoined to 𝑎1.

We would like to draw some examples of 𝑝-trees, but note that a 𝑝-tree can have

infinite height—in fact, it always will unless every one of its branches terminates at a

𝑝-corolla with no leaves, i.e. a position with an empty direction set. This means that

plenty of 𝑝-trees cannot be drawn, even when all the position- and direction-sets of 𝑝

are finite; but we can instead consider finite-height portions of them that we will call

pretrees.

Pretrees on polynomials

Before we define pretrees, let’s give some examples.

Example 8.3 (A few example 𝑝-pretrees). Let 𝑝 B {•, •}y2 + {•}y + {•}. Here are four

partially constructed 𝑝-trees:

•
•
• •

•
•

•
•
• •

• •
•
• •

•
• •

(8.4)

Here only the third one—the single yellow dot—would count as an element of tree𝑝 .
After all, in Definition 8.2, whenwe speak of a tree on 𝑝, wemean a tree forwhich every

vertex is a position in 𝑝 with all of its emanating directions filled by another position

294 CHAPTER 8. CATEGORICAL PROPERTIES OF POLYNOMIAL COMONOIDS

in 𝑝. Since three of the four trees shown in (8.4) have leaves emanating from the top

that have not been filled by any 𝑝-corollas, these trees are not elements of tree𝑝 .
However, each of these trees can be extended to an actual element of tree𝑝 by

continually filling in each open leaf with another 𝑝-corolla. These might continue

forever—or, if you’re lazy, you could just cap them all off with the direction-less yellow

dot.

Exercise 8.5 (Solution here). Let 𝑞 B y2 + 3y1
. Are there any finite 𝑞-trees? If not,

could there be any vertices of a given 𝑞-tree with finitely many descendents? ♦

The trees in (8.4) can all be obtained by following just the first 3 levels of instructions

for building a 𝑝-tree (in fact, exactly as many instructions as we initially wrote out). On

the other hand, we know from Section 6.1.3 that such a tree represents a position of 𝑝⊳ 3
,

whose directions are its height-3 leaves—and this is true for any 𝑛 ∈ N in place of 3.

So these trees are still important to our theory; but since they are not always complete

𝑝-trees, we will call them something else.

Definition 8.6. Given 𝑝 ∈ Poly, a stage-𝑛 pretree (or 𝑝⊳ 𝑛-pretree) is defined to be an

element of 𝑝⊳ 𝑛(1). For each 𝑖 ∈ 𝑝⊳ 𝑛(1) the height-𝑛 leaves of 𝑖 is defined to be the set

𝑝⊳ 𝑛[𝑖].

Remark 8.7. In Definition 8.6, we use stage instead of height to allow for the fact that a

𝑝⊳ 𝑛-pretree may not reach its maximum height 𝑛 if all of its branches terminate early.

For example, the yellow dot in (8.4) is a 𝑝⊳ 1
-pretree, but it is also a 𝑝⊳ 2

-pretree, a

𝑝⊳ 50
-pretree, and indeed a 𝑝-tree.

Note that for any polynomial 𝑝 ∈ Poly there is exactly one stage-0 pretree on 𝑝 for

any 𝑝 ∈ Poly, because 𝑝⊳ 0(1) = y(1) = 1.

Example 8.8 (Trimming pretrees). Since 𝑝⊳ 1(1) � 𝑝(1) and 𝑝⊳ 0(1) � y(1) � 1, the unique
function ! : 𝑝(1) → 1 can be thought of as a function from 𝑝⊳ 1

-positions to 𝑝⊳ 0
-positions,

or equivalently a function from stage-1 pretrees (i.e. corollas) to stage-0 pretrees on 𝑝.

We can interpret this function as taking a corolla and “stripping away” its leaves along

with the position-label on its root, leaving only a single unlabeled root: a stage-0

pretree.

This deceptively simple function has a surprising amount of utility when combined

with other maps. For any 𝑛 ∈ N, we can take the composition product in Poly of the

identity on 𝑝⊳ 𝑛 and !, interpreted as a lens between constant polynomials, to obtain a

lens 𝑝⊳ 𝑛⊳ ! : 𝑝⊳ 𝑛 ⊳ 𝑝(1) → 𝑝⊳ 𝑛 ⊳ 1, or equivalently a function 𝑝⊳ 𝑛(!) : 𝑝⊳ 𝑛+1(1) → 𝑝⊳ 𝑛(1)
from stage-(𝑛 + 1) pretrees to stage-𝑛 pretrees on 𝑝.

We can deduce the behavior of this function on stage-(𝑛 + 1) pretrees from what we

know about how the composition product interacts with pretrees on 𝑝. The identity

8.1. COFREE COMONOIDS 295

lens on 𝑝⊳ 𝑛 keeps the lower 𝑛 levels of each 𝑝⊳ (𝑛+1)
-pretree intact, while ! will “strip

away” the 𝑝⊳ (𝑛+1)
-pretree’s height-(𝑛 + 1) leaves, along with all the position-labels on

its height-𝑛 vertices. Thus 𝑝⊳ 𝑛(!) is the function sending every stage-(𝑛 + 1) pretree on
𝑝 to its stage-𝑛 pretree, effectively trimming it down a level.

We can go even further: composing several such functions yields a composite

function

𝑝⊳ 𝑛(1)
𝑝⊳ 𝑛(!)
←−−−− 𝑝⊳ (𝑛+1)(1) ← · · · ← 𝑝⊳ (𝑛+𝑘−1)(1)

𝑝⊳ (𝑛+𝑘−1)(!)
←−−−−−−−− 𝑝⊳ (𝑛+𝑘)(1) (8.9)

sending every stage-(𝑛 + 𝑘) pretree on 𝑝 to its stage-𝑛 pretree by trimming off its top 𝑘

levels. We will see these functions again shortly.

Trees as a limit of pretrees

Before we go any further in the theory of 𝑝-trees, let us look at some more examples.

Example 8.10 (A few more actual 𝑝-trees). Keeping 𝑝 B {•, •}y2 + {•}y + {•}, here are
some elements of tree𝑝 that we could imagine (or even draw, at least in part):

• The binary tree that’s “all red all the time.”

• The binary tree where odd layers are red and even layers are blue.

• The binary tree whose root is red, but after which every left child is red and every

right child is blue.
1

• The tree where all the nodes are red, except for the rightmost branch, which

(apart from the red root) is always green.

• Any finite tree, where every branch terminates in a yellow dot.

• A completely random tree: for the root, randomly choose either red, blue, green,

or yellow, and at every leaf, loop back to the beginning, i.e. randomly choose

either red, blue, green, or yellow, etc.

In fact, there are uncountably many trees in tree𝑝 (even just tree2y has cardinality 2N),
but only countablymany can be uniquely characterized in a finite language like English

(and of course only finitely many can be uniquely characterized in the time we have!).

Thus most elements of tree𝑝 cannot even be described.

Exercise 8.11 (Solution here). For each of the following polynomials 𝑝, characterize

the set of trees tree𝑝 .
5. 𝑝 B 1.
6. 𝑝 B 2.
7. 𝑝 B y.

1
To formalize the notions of “left” and “right,” we could think of the direction-sets of the red and blue

dots as 2 � {left, right}, so that out of every vertex there is an edge labeled left and an edge labeled

right.

296 CHAPTER 8. CATEGORICAL PROPERTIES OF POLYNOMIAL COMONOIDS

8. 𝑝 B y2
.

9. 𝑝 B 2y.
10. 𝑝 B y + 1.
11. 𝑝 B 𝐵y𝐴 for some sets 𝐴, 𝐵 ∈ Set. ♦

Exercise 8.12 (Solution here).
1. Say we were interested in n-ary trees: infinite (unless 𝑛 = 0) rooted trees in which

every vertex has 𝑛 children. Is there a polynomial 𝑝 for which tree𝑝 is the set of

n-ary trees?

2. Now say we wanted to assign each vertex of an n-ary tree a label from a set 𝐿. Is

there a polynomial 𝑞 for which tree𝑞 is the set of 𝐿-labeled n-ary trees? ♦

From here, a natural question to ask is how the set tree𝑝 of 𝑝-trees is related to the

set of 𝑝⊳ 𝑛-pretrees 𝑝⊳ 𝑛(1) for each 𝑛 ∈ N. A look back at Definition 8.6 gives a clue:

every 𝑝-tree has a stage-𝑛 pretree obtained by removing all vertices of height greater

than 𝑛, yielding a function tree𝑝 → 𝑝⊳ 𝑛(1) that we will denote by 𝜋(𝑛).

Moreover, since the stage-𝑛 pretree of a given 𝑝-tree agrees with the stage-𝑛 pretree

of any stage-(𝑛 + 𝑘) pretree of the 𝑝-tree, the functions 𝜋(𝑛) should commute with our

tree-trimming functions 𝑝⊳ (𝑛+𝑘)(1) → 𝑝⊳ 𝑛(1) from (8.9) in Example 8.8. In particular,

the following diagram commutes for all 𝑛 ∈ N:

tree𝑝

𝑝⊳ 𝑛(1) 𝑝⊳ (𝑛+1)(1).
𝜋(𝑛)

𝜋(𝑛+1)

𝑝⊳ 𝑛(!)

All this says is that if we trim a 𝑝-tree down until only 𝑛 + 1 levels are left via 𝜋(𝑛+1)
,

then trimmed off one more level via 𝑝⊳ 𝑛(!), it would be the same as if we had trimmed

it down to 𝑛 levels from the start via 𝜋(𝑛). This is summarized by the following larger

commutative diagram, which contains every function of the form Example 8.8:

tree𝑝

· · ·

1 𝑝(1) 𝑝⊳ 2(1) 𝑝⊳ 3(1) · · · .

𝜋(0) 𝜋(1) 𝜋(2) 𝜋(3)

! 𝑝(!) 𝑝⊳ 2(!)
(8.13)

So tree𝑝 with the functions 𝜋(𝑛) forms a cone over the the bottom row—in fact, it is

the universal cone. Intuitively, this is because a 𝑝-tree carries exactly the information

8.1. COFREE COMONOIDS 297

that a compatible sequence of 𝑝⊳ 𝑛-pretrees does: no more, no less. But we can prove it

formally as well.

Exercise 8.14 (Solution here). Prove that tree𝑝 with the functions 𝜋(𝑛) : tree𝑝 → 𝑝⊳ 𝑛(1)
is the limit of the diagram

1 𝑝(1) 𝑝⊳ 2(1) 𝑝⊳ 3(1) · · · .!
𝑝(!) 𝑝⊳ 2(!)

(8.15)

You may use the fact that (8.13) commutes. ♦

If you know about coalgebras for functors, as mentioned in Example 6.67, then you

might know the limit 𝔱𝑝(1) of (8.15) by a different name: it is the terminal coalgebra
for the functor 𝑝, or the terminal 𝑝-coalgebra, because it is terminal in the category of

𝑝-coalgebras, as the following exercise shows.

Exercise 8.16 (Solutionhere). A 𝑝-coalgebra morphismbetween 𝑝-coalgebras𝜑 : 𝑆→ 𝑝(𝑆)
and 𝜓 : 𝑇 → 𝑝(𝑇) (as in Example 6.67) is a function 𝑓 : 𝑆→ 𝑇 such that the square

𝑆 𝑝(𝑆)

𝑇 𝑝(𝑇)

𝜑

𝑓 𝑝(𝑓)
𝜓

commutes.

1. Choose what you think is a good function tree𝑝 → 𝑝(tree𝑝).
2. Show that tree𝑝 equipped with your function tree𝑝 → 𝑝(tree𝑝) is the terminal

object in the category of 𝑝-coalgebras and the morphisms between them.

3. Show that the function tree𝑝 → 𝑝(tree𝑝) you chose is a bĳection.

♦

Positions of the cofree comonoid

Now recall from Example 5.35 that in Poly, the positions of a limit are the limit of the

positions. Moreover, in (8.1), every vertical lens 𝑝⊳ 𝑛 → 𝑝⊳ 𝑛 ⊳ 1 is, in fact, a vertical lens
in the sense of Definition 5.51: an isomorphism on positions. So (8.1) on positions

collapses down to its bottom row, viewed as a diagram in Set. Yet this is precisely the

diagram from (8.15), whose limit is tree𝑝 . So tree𝑝 is the position-set of the limit 𝔱𝑝 of

(8.1): we write 𝔱𝑝(1) � tree𝑝 .
So, as we said above, 𝔱𝑝(1) is the set carrying the terminal coalgebra of 𝑝, but we

prefer to think of it as the set of 𝑝-trees, for it gives us a concrete way to realize the

limit and its projections, as well as a natural interpretation of the directions of 𝔱𝑝 at

each position.

298 CHAPTER 8. CATEGORICAL PROPERTIES OF POLYNOMIAL COMONOIDS

The directions of the cofree comonoid

Given that 𝔱𝑝 is the limit of (8.1), Example 5.35 also tells us how to compute its directions:

the directions of a limit are the colimit of the directions. But every polynomial in the

bottom row of (8.1) has an empty direction-set, and there are no arrows between

polynomials in the top row. So the directions of 𝔱𝑝 are given by a coproduct of the

directions of each 𝑝⊳ 𝑛 .

More precisely, given a 𝑝-tree 𝑇 ∈ tree𝑝 whose stage-𝑛 pretree for 𝑛 ∈ N is 𝜋(𝑛)𝑇, the

direction-set 𝔱𝑝[𝑡] is given by the following coproduct:

𝔱𝑝[𝑇] B
∑
𝑛∈N

𝑝⊳ 𝑛[𝜋(𝑛)𝑇].

But by Definition 8.6, each 𝑝⊳ 𝑛[𝜋(𝑛)𝑇] is the set of height-𝑛 leaves of the 𝑝⊳ 𝑛-pretree

𝜋(𝑛)𝑇, which in turn is the stage-𝑛 pretree of 𝑇. So its height-𝑛 leaves coincide with the

height-𝑛 vertices of 𝑇. Therefore, we can identify 𝑝⊳ 𝑛[𝜋(𝑛)𝑇] with the set of height-𝑛

vertices of 𝑇; we denote this set by vtx𝑛(𝑇).
Since the coproduct above ranges over all 𝑛 ∈ N, it follows that 𝔱𝑝[𝑇] is the set of

all vertices in 𝑇; we denote this set by vtx(𝑇). The on-directions function at 𝑇 of each

projection 𝔱𝑝 → 𝑝⊳ 𝑛 from the limit must then be the canonical inclusion

𝑝⊳ 𝑛[𝜋(𝑛)𝑇] � vtx𝑛(𝑇) ↩→ vtx(𝑇) � 𝔱𝑝[𝑇],

sending height-𝑛 leaves of 𝜋(𝑛)𝑇 to height-𝑛 vertices of 𝑇.

Here is alternative way to think about the directions of 𝔱𝑝 and each 𝑝⊳ 𝑛 that will

be helpful. A defining feature of a rooted tree is that its vertices are in bĳection with

its finite rooted paths: each vertex gives rise to a unique path to that vertex from the

root, and every finite rooted path arises this way. So the directions of 𝑝⊳ 𝑛 at a given

𝑝⊳ 𝑛-pretree correspond in turn to the rooted paths of that pretree leading to its height-

𝑛 leaves; indeed, each such direction is comprised of a sequence of 𝑛 directions of 𝑝,

which together specify a length-𝑛 rooted path up the pretree. Then for 𝑇 ∈ tree𝑝 , the
direction-set 𝔱𝑝[𝑇] consists of every finite rooted path of 𝑇.

Since only finite rooted paths correspond to vertices, all our paths will be assumed

to be finite from here on out. This is our preferred way to think about directions in

𝔱𝑝 . When we wish to refer to what one might call an infinite (rooted) “path,” we will

instead call it a (rooted) ray.

Exercise 8.17 (Solution here). For each of the following polynomials 𝑝, characterize

the polynomial 𝔱𝑝 . You may choose to think of the directions of 𝔱𝑝 either as vertices or

as rooted paths. (Note that these are the same polynomials from Exercise 8.11.)

1. 𝑝 B 1.
2. 𝑝 B 2.
3. 𝑝 B y.

4. 𝑝 B y2
.

8.1. COFREE COMONOIDS 299

5. 𝑝 B 2y.
6. 𝑝 B y + 1.
7. 𝑝 B 𝐵y𝐴 for some sets 𝐴, 𝐵 ∈ Set. ♦

We summarize the results of this section in the following proposition, thus con-

cretely characterizing the carrier 𝔱𝑝 of the cofree comonoid on 𝑝 in terms of 𝑝-trees. For

reasons that will become clear shortly, we will denote each projection from the limit of

(8.1) by 𝜖(𝑛)𝑝 : 𝔱𝑝 → 𝑝⊳ 𝑛 . We denote 𝜖 simply by 𝜖.

Proposition 8.18. For 𝑝 ∈ Poly, let

𝔱𝑝 B
∑

𝑇∈tree𝑝

yvtx(𝑇)

be the polynomial whose positions are 𝑝-trees and whose directions at each 𝑝-tree are

the rooted paths. Then 𝔱𝑝 is the limit of the diagram (8.1), with projections 𝜖(𝑛)𝑝 : 𝔱𝑝 →
𝑝⊳ 𝑛 for every 𝑛 ∈ Nmaking the following diagram commute:

𝔱𝑝

· · ·

y 𝑝 𝑝⊳ 2 𝑝⊳ 3 · · ·

1 𝑝(1) 𝑝⊳ 2(1) 𝑝⊳ 3(1) · · · .

𝜖𝑝
𝜖(1)𝑝

𝜖(2)𝑝 𝜖(3)𝑝

! 𝑝(!) 𝑝⊳ 2(!)
(8.19)

The lens 𝜖(𝑛)𝑝 : 𝔱𝑝 → 𝑝⊳ 𝑛 sends each 𝑝-tree 𝑇 ∈ tree𝑝 to its stage-𝑛 pretree 𝜋(𝑛)𝑇 on

positions and each height-𝑛 leaf of 𝜋(𝑛)𝑇 to the corresponding height-𝑛 rooted path of

𝑇 on directions.

Example 8.20 (Drawing 𝜖(𝑛)𝑝 in polyboxes). Here is 𝜖(𝑛)𝑝 : 𝔱𝑝 → 𝑝⊳ 𝑛 drawn in polyboxes,

where we continue to denote the stage-𝑛 pretree of a 𝑝-tree by 𝜋(𝑛)𝑇:

𝑣

𝑇

𝔱𝑝

tree𝑝
vtx(−) 𝑣

𝜋(𝑛)𝑇

𝑝⊳ 𝑛

𝑝⊳ 𝑛(1)
vtx𝑛(−)

(8.21)

On the right hand side, 𝑣 is a height-𝑛 leaf of 𝜋(𝑛)𝑇; on the left, 𝑣 is identified with the

300 CHAPTER 8. CATEGORICAL PROPERTIES OF POLYNOMIAL COMONOIDS

corresponding height-𝑛 vertex of 𝑇.

This isn’t the only waywe can write this lens in polyboxes, however; polyboxes have

special notation for lenses to composites, allowing us to write, say, the 𝑛 = 4 case like

so:

𝑎
1
{ 𝑎

2
{ 𝑎

3
{ 𝑎

4

𝑇
𝔱𝑝

𝑎
1

𝑖
0

𝑝

𝑎
2

𝑖
1

𝑝

𝑎
3

𝑖
2

𝑝

𝑎
4

𝑖
3

𝑝

(8.22)

Herewe are unpacking the construction of the first 4 levels of𝑇, according to our nested

instructions for building 𝑝-trees. The 𝑝-position 𝑖0 is the label on the root of 𝑇, while

the 𝑝[𝑖0]-direction 𝑎1 specifies one of the edges coming out of it—leading to a height-1

vertex of 𝑇 labeled 𝑖1, and so on.

The contents of the position-boxes and the arrows going up on the codomain side

carry all the data of the bottom 4 levels of 𝑇: namely the label 𝑖0 of the root, the label

𝑖1 of the vertex at the end of every direction 𝑎1 out of the root, and so on until 𝑖3. All

this specifies a unique 𝑝⊳ 4
-position, a 𝑝⊳ 4

-pretree, which is the same as the 𝑝⊳ 4
-pretree

𝑇. Indeed, we can think of 𝜋(4)𝑇 as a shorthand for the gadget comprised of the 4

polyboxes on the right hand side of (8.22) when their blue boxes are yet to be filled. So

the position and direction depicted on the codomain side of (8.22) is equivalent to the

position and direction depicted on the codomain side of (8.21). This generalizes to all

values of 𝑛. The direction 𝑎4 emanating from 𝑖3, together with all the data below it,

corresponds to the rooted path we’ve denoted 𝑎1 { 𝑎2 { 𝑎3 { 𝑎4 in 𝑇.

There are even more ways to express 𝜖(4)𝑝 : 𝔱𝑝 → 𝑝⊳ 4
in polyboxes, however. After

all, 𝑝⊳ 4 � 𝑝⊳ 2 ⊳ 𝑝⊳ 2
. So we ought to be able to draw 𝜖(4)𝑝 as follows:

𝔱𝑝

𝑝⊳ 2

𝑝⊳ 2

(8.23)

Let’s think about how we should fill these boxes. We can still put a 𝑝-tree 𝑇 in the

lower left position box. From the commutativity of (8.19), we know the on-positions

function 𝜋(4) of 𝜖(4)𝑝 factors through the on-positions function 𝜋(2) of 𝜖(2)𝑝 , which tells

us that 𝑝⊳ 2
-pretree that should go in the lower right position box should be 𝜋(2)𝑇: the

𝑝⊳ 2
-pretree of 𝑇.

8.1. COFREE COMONOIDS 301

Another way to think about this is that the polyboxes for the lower 𝑝⊳ 2
on the right

side of (8.23) are equivalent to the polyboxes for the 2 lower copies of 𝑝 on the right side

of (8.22)—just like how the polyboxes for 𝑝⊳ 𝑛 in (8.21) are equivalent to the polyboxes

for all 𝑛 = 4 copies of 𝑝 in (8.22). There, the position could be represented with a single

𝑝⊳ 𝑛-pretree 𝜋(𝑛)𝑇, and the direction (𝑎1 , . . . , 𝑎𝑛) is one of its length-𝑛 rooted paths. So

here, too, we can package the 2 lower copies of 𝑝 into a single pair of polyboxes for 𝑝⊳ 2
,

if we let 𝑢 be the height-2 vertex of 𝑇 at the end of the rooted path (𝑎1 , 𝑎2):

𝑇
𝔱𝑝

𝑢

𝜋(2)𝑇
𝑝⊳ 2

𝑝⊳ 2

(8.24)

But then the polyboxes for the 2 upper copies of 𝑝 from (8.22) should also collapse down

to a single pair of polyboxes for 𝑝⊳ 2
, with a 𝑝⊳ 2

-pretree as its position and a height-2

leaf of that pretree as its direction. Indeed, oncewe have followed the directions (𝑎1 , 𝑎2)
up to the height-2 vertex 𝑢, the subtree of 𝑇 rooted at 𝑢 is itself a 𝑝-tree: it has a label

𝑖2 on its root, out of which we can follow the direction 𝑎3 to reach a height-1 vertex

labeled 𝑖3, then follow the direction 𝑎4 to reach a height-2 vertex that we call 𝑤. Of

course, the vertex labeled 𝑖3 is actually a height-3 vertex of the whole tree 𝑇; likewise

𝑤 corresponds to a height-4 vertex of 𝑇. However, from the perspective of the upper

copy of 𝑝⊳ 2
in (8.24), we are starting over from 𝑢 andmoving up the subtree of 𝑇 rooted

at 𝑢—or, more precisely, the 𝑝⊳ 2
-pretree of the subtree rooted at 𝑢. So the polyboxes

end up looking like this:

𝑢 { 𝑤

𝑇
𝔱𝑝

𝑢

𝜋(2)𝑇
𝑝⊳ 2

𝑤

𝜋(2)𝑇(𝑢)
𝑝⊳ 2

(8.25)

Here𝑇(𝑢) denotes the 𝑝-tree equal to the subtree of𝑇 rooted at its vertex 𝑢, and𝑤 is one

of 𝑇(𝑢)’s height-2 vertices. When viewed as the subtree of 𝑇 rooted at its the height-2

vertex 𝑢, the 𝑝-tree 𝑇(𝑢) has its height-2 vertex 𝑤 identified with a height-4 vertex of 𝑇,

a descendent of 𝑢 that we denote by 𝑢 { 𝑤. Alternatively, 𝑢 corresponds to the rooted

path (𝑎1 , 𝑎2) of 𝑇, while 𝑤 corresponds to the rooted path (𝑎3 , 𝑎4) of 𝑇(𝑢), so 𝑢 { 𝑤

corresponds to the concatenated rooted path (𝑎1 , 𝑎2 , 𝑎3 , 𝑎4) of 𝑇. As concatenation is

associative,{ is associative as well.

Both the notation 𝑇(𝑢), for what we will call the 𝑝-subtree of the 𝑝-tree 𝑇 rooted at

𝑢 ∈ vtx(𝑇), and the notation 𝑢 { 𝑤, for the vertex in vtx(𝑇) that 𝑤 ∈ vtx(𝑇(𝑢)) coincides
with when 𝑇(𝑢) is identified with the subtree of 𝑝 rooted at 𝑢, will turn out to be

302 CHAPTER 8. CATEGORICAL PROPERTIES OF POLYNOMIAL COMONOIDS

temporary—we will soon justify why we can express these concepts in much more

familiar terms.
2
As a sneak preview, they will be crucial to defining the categorical

structure of the cofree comonoid on 𝑝.

Here are three more ways to depict 𝜖(4)𝑝 , viewing its codomain in turn as 𝑝⊳ 3 ⊳ 𝑝⊳ 1
,

as 𝑝⊳ 1 ⊳ 𝑝⊳ 2 ⊳ 𝑝⊳ 1
, or as 𝑝⊳ 1 ⊳ 𝑝⊳ 1 ⊳ 𝑝⊳ 1 ⊳ 𝑝⊳ 1

:

𝑟 { 𝑡

𝑇
𝔱𝑝

𝑟

𝜋(3)𝑇
𝑝⊳ 3

𝑡

𝜋(1)𝑇(𝑟)
𝑝⊳ 1

𝑥 { 𝑠 { 𝑡

𝑇
𝔱𝑝

𝑠

𝜋(2)𝑇(𝑥)
𝑝⊳ 2

𝑥

𝜋(1)𝑇
𝑝⊳ 1

𝑡

𝜋(1)𝑇(𝑥 { 𝑠)
𝑝⊳ 1

=

𝑥 { 𝑦 { 𝑧 { 𝑡

𝑇
= 𝔱𝑝

𝑥

𝜋(1)𝑇
𝑝⊳ 1

𝑦

𝜋(1)𝑇(𝑥)
𝑝⊳ 1

𝑧

𝜋(1)𝑇(𝑥 { 𝑦)
𝑝⊳ 1

𝑡

𝜋(1)𝑇(𝑥 { 𝑦 { 𝑧)
𝑝⊳ 1

Here 𝑟 = 𝑥 { 𝑠 and 𝑠 = 𝑦 { 𝑧. Notice that the last depiction is just another way

to write (8.22), with each 𝑝⊳ 1
-pretree in place of the 𝑝-position that labels its root and

height-1 vertices in place of their corresponding directions, which are just length-1

rooted paths.

Finally, all this could be generalized to other values of 𝑛. Here are different ways to

draw polyboxes for 𝜖(𝑛)𝑝 : 𝔱𝑝 → 𝑝⊳ 𝑛 , viewing its codomain as 𝑝⊳ ℓ ⊳ 𝑝⊳𝑚 with 𝑛 = ℓ + 𝑚

8.1. COFREE COMONOIDS 303

or 𝑝⊳ 𝑖 ⊳ 𝑝⊳ 𝑗 ⊳ 𝑝⊳ 𝑘 with 𝑛 = 𝑖 + 𝑗 + 𝑘:

𝑢 { 𝑤

𝑇
𝔱𝑝

𝑢

𝜋(ℓ)𝑇
𝑝⊳ ℓ

𝑤

𝜋(𝑚)𝑇(𝑢)
𝑝⊳𝑚

𝑥 { 𝑠 { 𝑡

𝑇
𝔱𝑝

𝑠

𝜋(𝑗)𝑇(𝑥)
𝑝⊳ 𝑗

𝑥

𝜋(𝑖)𝑇
𝑝⊳ 𝑖

𝑡

𝜋(𝑘)𝑇(𝑥 { 𝑠)
𝑝⊳ 𝑘

=

8.1.2 Cofree comonoids as categories

We have now characterized the carrier 𝔱𝑝 of the comonoid T𝑝 that will turn out to be

cofree on 𝑝; but we have yet to describe the comonoid structure of T𝑝 that 𝔱𝑝 carries.

This structure will allow us to interpret T𝑝 as a category, whose objects will be 𝑝-trees

and whose morphisms will be the vertices of each 𝑝-tree. We could go ahead and

describe this category right now, but as category theorists, let us show that the eraser

and duplicator of T𝑝 , as well as the comonoid laws that they satisfy, arise naturally

from our construction of 𝔱𝑝 as the limit of (8.1).

The eraser of the cofree comonoid

The eraser for a comonoid T𝑝 carried by 𝔱𝑝 should be a lens of the form 𝔱𝑝 → y.

Conveniently, since y appears in (8.1), its limit 𝔱𝑝 is already equipped with a canonical

lens 𝜖𝑝 : 𝔱𝑝 → y, as seen in (8.19). This lens will turn out to be the eraser of the cofree

comonoid on 𝑝.

The eraser picks out a direction at each position of the carrier to be the identity

morphism on that object. As each 𝔱𝑝-position is a tree 𝑇 ∈ tree𝑝 , and each 𝔱𝑝[𝑇]-
direction is a vertex of 𝑇, the eraser 𝜖𝑝 should pick out a single vertex of every 𝑝-tree.

Evenwithout looking at (8.19), youmay alreadyhave your suspicions as towhich vertex

this will turn out to be, as there is, after all, only one sensible way to choose a canonical

vertex that every 𝑝-tree is guaranteed to have: choose its root. Indeed, Proposition 8.18

tells us that 𝜖𝑝 : 𝔱𝑝 → y sends each 𝑝-tree 𝑇 ∈ tree𝑝 to its stage-0 pretree on positions,

stripping away everything except for the single unlabeled root of 𝑇; then on-directions,

𝜖𝑝 picks out the unique height-0 vertex of 𝑇 in vtx0(𝑇) ⊆ vtx(𝑇), which is just its root.

So in the category T𝑝 , where morphisms out of objects are vertices of trees, the

identity morphism on a tree is its root—in fact, we will henceforth denote the root of

a 𝑝-tree by id𝑇 (so that vtx0(𝑇) = {id𝑇}). Equivalently, we can identify id𝑇 with the

2
As a reminder, due to the definition of a 𝑝-tree 𝑇, a 𝑝-subtree of 𝑇 is still itself a 𝑝-tree, whereas the

𝑝⊳ 𝑛-pretree of 𝑇 is not a 𝑝-tree unless the height of 𝑇 is strictly less than 𝑛.

304 CHAPTER 8. CATEGORICAL PROPERTIES OF POLYNOMIAL COMONOIDS

unique length-0 rooted path of 𝑇: the empty rooted path, which starts and ends at the

root. The rest of the categorical structure of T𝑝 will be determined by its duplicator.

The duplicator of the cofree comonoid

The duplicator for a comonoid T𝑝 carried by 𝔱𝑝 should be a lens 𝛿𝑝 : 𝔱𝑝 → 𝔱𝑝 ⊳ 𝔱𝑝 . But

before we can specify such a lens, we need to figure out what kind of polynomial 𝔱𝑝 ⊳ 𝔱𝑝
is.

Here is where our work from Sections 6.3.2 and 6.3.3 comes in handy: since the

diagram in (8.1) is connected, its limit 𝔱𝑝 is a connected limit, and we showed in

Theorem 6.80 that ⊳ preserves connected limits. Therefore 𝔱𝑝 ⊳ 𝔱𝑝 is itself the limit of

some diagram, and a morphism to 𝔱𝑝 ⊳ 𝔱𝑝 is just a cone over that diagram.

Which diagram is it? First, we can use the fact that ⊳ preserves connected limits on

the left to expand 𝔱𝑝 ⊳ 𝔱𝑝 as the limit of the following diagram, where we have applied

the functor − ⊳ 𝔱𝑝 to the diagram from (8.1):

y ⊳ 𝔱𝑝 𝑝 ⊳ 𝔱𝑝 𝑝⊳ 2 ⊳ 𝔱𝑝 𝑝⊳ 3 ⊳ 𝔱𝑝 · · ·

1 ⊳ 𝔱𝑝 𝑝 ⊳ 1 ⊳ 𝔱𝑝 𝑝⊳ 2 ⊳ 1 ⊳ 𝔱𝑝 𝑝⊳ 3 ⊳ 1 ⊳ 𝔱𝑝 · · · .

But we have 𝑝⊳ 𝑛 ⊳ 1 ⊳ 𝔱𝑝 � 𝑝⊳ 𝑛 ⊳ 1, so we can simplify this diagram like so:

y ⊳ 𝔱𝑝 𝑝 ⊳ 𝔱𝑝 𝑝⊳ 2 ⊳ 𝔱𝑝 𝑝⊳ 3 ⊳ 𝔱𝑝 · · ·

1 𝑝 ⊳ 1 𝑝⊳ 2 ⊳ 1 𝑝⊳ 3 ⊳ 1 · · · .

(8.26)

(This works because according to Proposition 6.68, ⊳ actually preserves all limits on the

left—including the terminal object 1.) So 𝔱𝑝 ⊳ 𝔱𝑝 is the limit of (8.26).

Then we use the fact that ⊳ preserves connected limits on the right to expand each

𝑝⊳ ℓ ⊳ 𝔱𝑝 in (8.26) as the limit of the following:

𝑝⊳ ℓ ⊳ y 𝑝⊳ ℓ ⊳ 𝑝 𝑝⊳ ℓ ⊳ 𝑝⊳ 2 𝑝⊳ ℓ ⊳ 𝑝⊳ 3 · · ·

𝑝⊳ ℓ ⊳ 1 𝑝⊳ ℓ ⊳ 𝑝 ⊳ 1 𝑝⊳ ℓ ⊳ 𝑝⊳ 2 ⊳ 1 𝑝⊳ ℓ ⊳ 𝑝⊳ 3 ⊳ 1 · · · .

(8.27)

So the limit of (8.26) is the limit of a larger diagram, where we have “plugged in” a

copy of (8.27) in place of each 𝑝⊳ ℓ ⊳ 𝔱𝑝 that appears.

It’s worth being a little careful, though, when we draw this diagram: each 𝑝⊳ ℓ ⊳ 𝔱𝑝
in (8.26) appears with a lens to 𝑝⊳ ℓ ⊳ 1, and we need to work out what arrow should

go in its place. The lens in question is given by applying 𝑝⊳ ℓ ⊳ − to the unique lens

𝔱𝑝 → 1. But 1 actually shows up in the lower left corner of (8.1), so the unique lens

𝔱𝑝 → 1 is just the projection from the limit of (8.1) to that 1. Then once we apply the

8.1. COFREE COMONOIDS 305

connected limit-preserving functor 𝑝⊳ ℓ ⊳ − to (8.1), yielding (8.27), we obtain the lens

𝑝⊳ ℓ ⊳ 𝔱𝑝 → 𝑝⊳ ℓ ⊳ 1 we desire as the projection from the limit of (8.27) to the 𝑝⊳ ℓ ⊳ 1 in

the lower left corner. So if we want to replace each 𝑝⊳ ℓ ⊳ 𝔱𝑝 in (8.26) with a copy of

(8.27), without changing the limit of the whole diagram, we should replace the arrow

𝑝⊳ ℓ ⊳ 𝔱𝑝 → 𝑝⊳ ℓ ⊳1 with an identity arrow from the 𝑝⊳ ℓ ⊳1 in the lower left corner of (8.27)

to the 𝑝⊳ ℓ ⊳ 1 in (8.26). Of course, we can then collapse these identity arrows down

without changing the limit, so the diagram we are left with should look like this:

𝑝⊳ 3 𝑝⊳ 3 ⊳ 𝑝 𝑝⊳ 3 ⊳ 𝑝⊳ 2 · · ·

𝑝⊳ 3 ⊳ 1 𝑝⊳ 3 ⊳ 𝑝 ⊳ 1 𝑝⊳ 3 ⊳ 𝑝⊳ 2 ⊳ 1 · · ·

𝑝⊳ 2 𝑝⊳ 2 ⊳ 𝑝 𝑝⊳ 2 ⊳ 𝑝⊳ 2 · · ·

𝑝⊳ 2 ⊳ 1 𝑝⊳ 2 ⊳ 𝑝 ⊳ 1 𝑝⊳ 2 ⊳ 𝑝⊳ 2 ⊳ 1 · · ·

𝑝 𝑝 ⊳ 𝑝 𝑝 ⊳ 𝑝⊳ 2 · · ·

𝑝 ⊳ 1 𝑝 ⊳ 𝑝 ⊳ 1 𝑝 ⊳ 𝑝⊳ 2 ⊳ 1 · · ·

y 𝑝 𝑝⊳ 2 · · ·

1 𝑝 ⊳ 1 𝑝⊳ 2 ⊳ 1 · · · .
(8.28)

Here the bottom row of (8.26) is still the bottom row of (8.28), but in the place of each

𝑝⊳ ℓ ⊳ 𝔱𝑝 in the top row, we have grafted in a copy of (8.27). Yet the limit of the diagram

is preserved: the limit of (8.28) is still 𝔱𝑝 ⊳ 𝔱𝑝 . In summary, for purely formal reasons,

Proposition 6.68 and Theorem 6.80 ensure that since the limit of (8.1) is 𝔱𝑝 , the limit of

(8.28) is 𝔱𝑝 ⊳ 𝔱𝑝 .

While (8.28) has become rather unwieldy to draw, it is easy to characterize: it is a

diagram with a copy each of

𝑝⊳ ℓ ⊳ 𝑝⊳𝑚 and 𝑝⊳ ℓ ⊳ 𝑝⊳𝑚 ⊳ 1

for every ℓ , 𝑚 ∈ N, with arrows

𝑝⊳ ℓ ⊳ 𝑝⊳𝑚 → 𝑝⊳ ℓ ⊳ 𝑝⊳𝑚 ⊳ 1 (8.29)

between them; along with arrows

𝑝⊳ ℓ ⊳ 𝑝⊳ (𝑚+1) ⊳ 1→ 𝑝⊳ ℓ ⊳ 𝑝⊳𝑚 ⊳ 1, (8.30)

drawn vertically in (8.28); and

𝑝⊳ ℓ+1 ⊳ 𝑝⊳ 0 ⊳ 1 � 𝑝⊳ ℓ+1 ⊳ 1→ 𝑝⊳ ℓ ⊳ 1 � 𝑝⊳ ℓ ⊳ 𝑝⊳ 0 ⊳ 1, (8.31)

306 CHAPTER 8. CATEGORICAL PROPERTIES OF POLYNOMIAL COMONOIDS

drawn horizontally in (8.28) along the bottom row. Of course, we could write each

𝑝⊳ ℓ ⊳ 𝑝⊳𝑚 as 𝑝⊳ (ℓ+𝑚), but the notation 𝑝⊳ ℓ ⊳ 𝑝⊳𝑚 helps us distinguish it as the object

appearing ℓ rows above the bottom and 𝑚 columns to the right in (8.28), in contrast

with any other 𝑝⊳ ℓ
′
⊳ 𝑝⊳𝑚

′
with (ℓ , 𝑚) ≠ (ℓ ′, 𝑚′), even if ℓ + 𝑚 = ℓ ′ + 𝑚′ guarantees that

there are isomorphisms between these objects.

Nevertheless, it is these isomorphisms that induce a canonical lens 𝔱𝑝 → 𝔱𝑝 ⊳ 𝔱𝑝 , by

giving amap from the diagram (8.1) to the diagram (8.28) as follows. For all ℓ , 𝑚, 𝑛 ∈ N
with 𝑛 = ℓ + 𝑚, we have a canonical isomorphism 𝑝⊳ 𝑛

�−→ 𝑝⊳ ℓ ⊳ 𝑝⊳𝑚 sending the 𝑝⊳ 𝑛

that appears in (8.1) to the 𝑝⊳ ℓ ⊳ 𝑝⊳𝑚 that appears in (8.28), and similarly sending 𝑝⊳ 𝑛 ⊳1
in (8.1) to 𝑝⊳ ℓ ⊳ 𝑝⊳𝑚 ⊳ 1 in (8.28). Then all the arrows that appear in (8.28)—i.e. all the

arrows in (8.29), (8.30), and (8.31)—can be identified with arrows that appear in (8.1),

so everything commutes. We therefore induce a lens from the limit 𝔱𝑝 of (8.1) to the

limit 𝔱𝑝 ⊳ 𝔱𝑝 of (8.28), which we call 𝛿𝑝 : 𝔱𝑝 → 𝔱𝑝 ⊳ 𝔱𝑝 . This turns out to be the duplicator

of T𝑝 .

How does 𝛿𝑝 behave in terms of 𝑝-trees? First, we characterize 𝔱𝑝 ⊳ 𝔱𝑝 and its

projections to each 𝑝⊳ ℓ ⊳ 𝑝⊳𝑚 in (8.28). Concretely, we know that a 𝔱𝑝 ⊳ 𝔱𝑝-position is

just a 𝑝-tree 𝑇 ∈ tree𝑝 along with a 𝑝-tree 𝑈(𝑣) ∈ tree𝑝 associated with every vertex

𝑣 ∈ vtx(𝑇). Then a direction at that position is a choice of vertex 𝑣 ∈ vtx(𝑇) and another

vertex 𝑤 ∈ vtx(𝑈(𝑣)) of the 𝑝-tree 𝑈(𝑣) associated with 𝑣. Each projection from 𝔱𝑝 ⊳ 𝔱𝑝

to 𝑝⊳ ℓ ⊳ 𝑝⊳𝑚 in (8.28) is then the composition product of the projections 𝜖(ℓ)𝑝 : 𝔱𝑝 → 𝑝⊳ ℓ

and 𝜖(𝑚)𝑝 : 𝔱𝑝 → 𝑝⊳𝑚 , which by Example 8.20 we can draw in polyboxes like so:

𝑣

𝑇

𝔱𝑝

tree𝑝
vtx(−)

𝑤

𝑈𝑣

𝔱𝑝

tree𝑝

vtx(−)

𝑣

𝜋(ℓ)𝑇

𝑝⊳ ℓ

𝑝⊳ ℓ (1)
vtxℓ (−)

𝑤

𝜋(𝑚)𝑈𝑣

𝑝⊳𝑚

𝑝⊳𝑚(1)
vtx𝑚(−)

On positions, 𝜖(ℓ)𝑝 ⊳ 𝜖(𝑚)𝑝 sends the 𝑝-tree 𝑇 to its stage-ℓ pretree 𝜋(ℓ)𝑇, and it sends each

𝑝-tree 𝑈𝑣 associated to a height-ℓ vertex 𝑣 ∈ vtxℓ (𝑇) to its stage-𝑚 pretree 𝜋(𝑚)𝑈𝑣 , to

be 𝑝⊳𝑚-pretree associated with the height-ℓ leaf 𝑣 of 𝜋(𝑚)𝑇. Equivalently, this specifies

a 𝑝⊳ (ℓ+𝑚)-pretree on the right: its bottom ℓ levels coincide with the bottom ℓ levels of

𝑇, and its top 𝑚 levels coincide with the bottom 𝑚 levels of the 𝑈𝑣’s for 𝑣 ∈ vtxℓ (𝑇).
Then on directions, 𝜖(ℓ)𝑝 ⊳ 𝜖(𝑚)𝑝 is the canonical inclusion of vertices vtxℓ (𝑇) ↩→ vtx(𝑇)
sending 𝑣 ↦→ 𝑣, followed by the canonical inclusion of vertices vtx𝑚(𝑈𝑣) ↩→ vtx(𝑈𝑣).
These lenses comprise the universal cone over (8.28).

Meanwhile, the other cone we formed over (8.28) is comprised of lenses of the form

𝜖(ℓ+𝑚)𝑝 : 𝔱𝑝 → 𝑝⊳ (ℓ+𝑚) � 𝑝⊳ ℓ ⊳𝑝⊳𝑚 , each of which should factor through 𝔱𝑝 ⊳ 𝔱𝑝 , as depicted

8.1. COFREE COMONOIDS 307

in the following commutative diagram:

𝔱𝑝 𝔱𝑝 ⊳ 𝔱𝑝

𝑝⊳ ℓ ⊳ 𝑝⊳𝑚 .

𝛿𝑝

𝜖(ℓ+𝑚)𝑝

𝜖(ℓ)𝑝 ⊳ 𝜖(𝑚)𝑝
(8.32)

Indeed, by the universal property of 𝔱𝑝 ⊳ 𝔱𝑝 , our 𝛿𝑝 is the unique lens for which the

above diagram commutes for all ℓ , 𝑚 ∈ N. We will use the equation given by the

commutativity of (8.32) repeatedly in what follows, whenever we work with 𝛿𝑝 .

Expressing (8.32) as an equation of polyboxes, using our usual labels for the arrows

of the duplicator 𝛿𝑝 on the left and our depiction of the projection 𝜖(ℓ+𝑚)𝑝 : 𝔱𝑝 → 𝑝⊳ ℓ ⊳𝑝⊳𝑚

from Example 8.20 on the right, we have

𝑣 # 𝑤

𝑇
𝔱𝑝

𝑣

𝑇

𝔱𝑝

𝑤

cod 𝑣

𝔱𝑝

𝑣

𝜋(ℓ)𝑇
𝑝⊳ ℓ

𝑤

𝜋(𝑚)(cod 𝑣)
𝑝⊳𝑚

cod

#

𝑣 { 𝑤

𝑇
𝔱𝑝

𝑣

𝜋(ℓ)𝑇
𝑝⊳ ℓ

𝑤

𝜋(𝑚)𝑇(𝑣)
𝑝⊳𝑚

=

Recall from Example 8.20 that𝑇(𝑣) denotes the 𝑝-tree equal to the subtree of𝑇 rooted at

𝑣 ∈ vtx(𝑇), while 𝑣 { 𝑤 ∈ vtx(𝑇) for 𝑤 ∈ vtx(𝑇(𝑣)) is the descendent of 𝑣 that coincides
with 𝑤 when 𝑇(𝑣) is identified with the subtree of 𝑇 rooted at 𝑣. Equivalently, we can

identify 𝑣 ∈ vtx(𝑇)with the rooted path in 𝑇 that ends at the vertex 𝑣 and 𝑤 ∈ vtx(𝑇(𝑣))
with the rooted path of 𝑇(𝑣) that ends at the vertex 𝑤, so 𝑣 { 𝑤 becomes the rooted

path in 𝑇 obtained by concatenating 𝑣 and 𝑤. Then for this equality to hold over all

ℓ , 𝑚 ∈ N, we want cod 𝑣 B 𝑇(𝑣) and 𝑣 # 𝑤 B 𝑣 { 𝑤; in fact, cod 𝑣 and 𝑣 # 𝑤 will

henceforth be our preferred notation for 𝑇(𝑣) and 𝑣 { 𝑤.

Verifying the comonoid laws

Putting together our constructions of the carrier, the eraser, and the duplicator of the

T𝑝 yields the following result.

308 CHAPTER 8. CATEGORICAL PROPERTIES OF POLYNOMIAL COMONOIDS

Proposition 8.33. As defined above,

(
𝔱𝑝 , 𝜖𝑝 , 𝛿𝑝

)
is a polynomial comonoid correspond-

ing to a category T𝑝 characterized as follows.

• An object in T𝑝 is a 𝑝-tree in 𝑇 ∈ tree𝑝 .
• A morphism emanating from 𝑇 is a rooted path in 𝑇; its codomain is the 𝑝-subtree

rooted at the end of the path.

• The identity morphism on 𝑇 is its empty rooted path.

• Composition is given by concatenating rooted paths: given a rooted path 𝑣 in 𝑇

and a rooted path 𝑤 in cod 𝑣, the 𝑝-subtree rooted at the end of 𝑣, we identify 𝑤

with the corresponding path in 𝑇 that starts where 𝑣 ends, then concatenate the

two paths in 𝑇 to obtain the composite morphism 𝑣 #𝑤, another rooted path in 𝑇.

Proof. Wehave already shown how to construct the given carrier, eraser, and duplicator

purely diagrammatically, and we have given them concrete interpretations in terms of

𝑝-trees, their vertices, and their 𝑝-subtrees. So it remains to verify that the category

laws hold for T𝑝 , or equivalently that the comonoid laws hold for

(
𝔱𝑝 , 𝜖𝑝 , 𝛿𝑝

)
. Again,

our argument will be purely formal, although it is not too hard to see that our concrete

characterization above in terms of 𝑝-trees satisfies the laws for a category.

First, we verify the left erasure law: that

y ⊳ 𝔱𝑝 𝔱𝑝

𝔱𝑝 ⊳ 𝔱𝑝

𝛿𝑝
𝜖𝑝 ⊳ 𝔱𝑝

commutes. We know the lens 𝜖𝑝 ⊳ 𝔱𝑝 : 𝔱𝑝 ⊳ 𝔱𝑝 → y ⊳ 𝔱𝑝 is characterized by its components

𝜖𝑝 ⊳ 𝜖
(𝑛)
𝑝 : 𝔱𝑝 ⊳ 𝔱𝑝 → 𝑝⊳ 0 ⊳ 𝑝⊳ 𝑛 , a projection out of the limit 𝔱𝑝 ⊳ 𝔱𝑝 , for all 𝑛 ∈ N. Then by

our construction of 𝛿𝑝 , each composite 𝛿𝑝 #
(
𝜖𝑝 ⊳ 𝜖

(𝑛)
𝑝

)
: 𝔱𝑝 → 𝑝⊳ 0 ⊳ 𝑝⊳ 𝑛 is the component

of 𝛿𝑝 equal to 𝜖(𝑛)𝑝 = 𝜖(0+𝑛)𝑝 : 𝔱𝑝 → 𝑝⊳ 0 ⊳ 𝑝⊳ 𝑛 � 𝑝⊳ 𝑛 (this is just the commutativity

of (8.32) in the case of (ℓ , 𝑚) = (0, 𝑛)). Together, these characterize the composite lens

𝛿𝑝#
(
𝜖𝑝 ⊳ 𝔱𝑝

)
: 𝔱𝑝 → y⊳𝔱𝑝 � 𝔱𝑝 as the lenswhose components are theprojections 𝜖(𝑛)𝑝 : 𝔱𝑝 →

𝑝⊳ 𝑛 from the limit. It follows from the universal property of 𝔱𝑝 that 𝛿𝑝 #
(
𝜖𝑝 ⊳ 𝔱𝑝

)
can

only be the identity lens on 𝔱𝑝 . Hence the left erasure law holds.

The right erasure law, that

𝔱𝑝 𝔱𝑝 ⊳ y

𝔱𝑝 ⊳ 𝔱𝑝

𝛿𝑝
𝔱𝑝 ⊳ 𝜖𝑝

commutes, follows similarly: the composite 𝛿𝑝 #
(
𝔱𝑝 ⊳ 𝜖𝑝

)
is characterized by its compo-

nents over 𝑛 ∈ N of the form 𝛿𝑝 #
(
𝜖(𝑛)𝑝 ⊳ 𝜖𝑝

)
: 𝔱𝑝 → 𝑝⊳ 𝑛 ⊳ 𝑝⊳ 0

, which we know by (8.32)

is equal to 𝜖(𝑛+0)
𝑝 = 𝜖(𝑛)𝑝 , the projection out of the limit 𝔱𝑝 . It follows from the universal

property of this limit that 𝛿𝑝 #
(
𝔱𝑝 ⊳ 𝜖𝑝

)
must be the identity lens on 𝔱𝑝 .

8.1. COFREE COMONOIDS 309

Finally, we check the coassociative law: that

𝔱𝑝 𝔱𝑝 ⊳ 𝔱𝑝

𝔱𝑝 ⊳ 𝔱𝑝 𝔱𝑝 ⊳ 𝔱𝑝 ⊳ 𝔱𝑝 ,

𝛿𝑝

𝛿𝑝 𝔱𝑝 ⊳ 𝛿𝑝

𝛿𝑝 ⊳ 𝔱𝑝

commutes. Because ⊳ preserves connected limits, we can write 𝔱𝑝 ⊳ 𝔱𝑝 ⊳ 𝔱𝑝 as a limit the

way we did with 𝔱𝑝 ⊳ 𝔱𝑝 : it is the limit of diagram consisting of arrows

𝑝⊳ 𝑖 ⊳ 𝑝⊳ 𝑗 ⊳ 𝑝⊳ 𝑘 → 𝑝⊳ 𝑖 ⊳ 𝑝⊳ 𝑗 ⊳ 𝑝⊳ 𝑘 ⊳ 1

for each 𝑖 , 𝑗 , 𝑘 ∈ N, with additional arrows between the position-sets. So a lens to

𝔱𝑝 ⊳ 𝔱𝑝 ⊳ 𝔱𝑝 , such as those in the square above, is uniquely determined by its components

to 𝑝⊳ 𝑖 ⊳ 𝑝⊳ 𝑗 ⊳ 𝑝⊳ 𝑘 for all 𝑖 , 𝑗 , 𝑘 ∈ N, obtained by composing it with the projections

𝜖(𝑖)𝑝 ⊳ 𝜖
(𝑗)
𝑝 ⊳ 𝜖(𝑘)𝑝 out of the limit. Then by (8.32),

𝛿𝑝 #
(
𝔱𝑝 ⊳ 𝛿𝑝

)
#
(
𝜖(𝑖)𝑝 ⊳ 𝜖

(𝑗)
𝑝 ⊳ 𝜖(𝑘)𝑝

)
= 𝛿𝑝 #

(
𝜖(𝑖)𝑝 ⊳

(
𝛿𝑝 #

(
𝜖
(𝑗)
𝑝 ⊳ 𝜖(𝑘)𝑝

)))
= 𝛿𝑝 #

(
𝜖(𝑖)𝑝 ⊳ 𝜖

(𝑗+𝑘)
𝑝

)
(8.32)

= 𝜖
(𝑖+𝑗+𝑘)
𝑝 (8.32)

= 𝛿𝑝 #
(
𝜖
(𝑖+𝑗)
𝑝 ⊳ 𝜖(𝑘)𝑝

)
(8.32)

= 𝛿𝑝 #
((
𝛿𝑝 #

(
𝜖(𝑖)𝑝 ⊳ 𝜖

(𝑗)
𝑝

))
⊳ 𝜖(𝑘)𝑝

)
(8.32)

= 𝛿𝑝 #
(
𝛿𝑝 ⊳ 𝔱𝑝

)
#
(
𝜖(𝑖)𝑝 ⊳ 𝜖

(𝑗)
𝑝 ⊳ 𝜖(𝑘)𝑝

)
.

for all 𝑖 , 𝑗 , 𝑘 ∈ N. So by the universal property of 𝔱𝑝 ⊳ 𝔱𝑝 ⊳ 𝔱𝑝 , coassociativity holds. □

We call the category T𝑝 corresponding to the comonoid

(
𝔱𝑝 , 𝜖𝑝 , 𝛿𝑝

)
the category of

𝑝-trees, the category of trees on 𝑝, or the 𝑝-tree category.

Example 8.34 (The category of 𝑝-trees: states and transitions for (co)free). Let’s step

back and think about how 𝑝-tree categories relate to the original polynomial 𝑝 from

the perspective of the states and transitions of dynamical systems. Before we build

any trees or categories out of it, a polynomial 𝑝 is just a family of sets of directions

indexed over a set of positions. The directions emerge from positions, but don’t point

to anywhere in particular. If we want to interpret the positions of 𝑝 as states and the

directions of 𝑝 as composable transitions, first we would need to point the directions

to other positions by assigning them codomains. There are many ways to do this, but

we would like to do so “freely,” without having to make any choices along the way

that would bias us one way or another, so as to give a canonical way to interpret 𝑝 as a

category.

So to avoid making choices, rather than fixing a codomain for each direction, we

allow every possible direction to point to every possible position once. But a single

310 CHAPTER 8. CATEGORICAL PROPERTIES OF POLYNOMIAL COMONOIDS

direction of any one position cannot point tomultiple positions, which iswhenwe need

tomake several copies of each position: at least one copy for every possible combination

of codomains that can be assigned to its directions. This is how we get from 𝑝 to 𝑝⊳ 2
:

the 𝑝⊳ 2
-pretrees represent all the ways we could assign codomains to the directions in

𝑝. Essentially, we have freely refined our positions into more specific states to account

for everywhere their directions could lead. Each 𝑝⊳ 2
-pretree still remembers which

𝑝⊳ 1
-pretree it grew from, giving us our canonical trimming operation 𝑝⊳ 2(1) → 𝑝⊳ 1(1).
Yet even that is not enough: sure, we’ve assigned codomains to the directions of 𝑝 in

every possible way, but now that we’re building a category, we want our directions to

be composable transitions. So each pair of composable directions of 𝑝—each length-2

rooted path of the 𝑝⊳ 2
-pretrees—is now a possible transition aswell, anothermorphism

in our category. To keep everything canonical, we still want to avoidmaking any actual

choices; we can’t simply say that two directions of 𝑝 compose to a third direction of

𝑝 that we already have. Each pair of composable directions must be an entirely new

morphism—and every new morphism needs a codomain.

You can tell where this is going. To avoid actually choosing codomains for the new

morphisms, we need to refine our 𝑝⊳ 2
-pretrees by making copies of them to account

for every possibility, building 𝑝⊳ 3
-pretrees as a result. Then their length-3 rooted paths

are new morphisms, too, and they need new codomains, and so forth, ad infinitum.

Indeed, this process cannot terminate in a finite number of steps, but that’s okay—we

can take the limit, yielding the ultimate free refinement of positions into states and free

composites of directions as transitions.

This is where (8.1) comes from; it captures the infinite process of turning sequences

of directions into morphisms by giving them codomains in every possible way, then

dealing with the longer sequences of directions that emerge as a result. Note that we

also need to account for the fact that every object needs an identity; to avoid making

a choice, we don’t set it to be any direction or composite of multiple directions of 𝑝,

reserving it instead for the empty sequence of directions that every pretree has. Then

the limit 𝔱𝑝 of (8.1) is all we need: the 𝑝-trees are states representing every possible way

that sequences of directions emerging from a 𝑝-position can lead to other 𝑝-positions,

and the rooted paths of each 𝑝-tree are transitions accounting for every finite sequence

of composable directions from the corresponding state.

Since composites were freely generated, directions and thus entire rooted paths

compose by concatenation—making the empty rooted path the correct identity. And

the codomain is whatever the direction at the end of a rooted path has been freely

assigned to point to—not just the 𝑝-position there but the whole 𝑝-subtree, an entire

state representing all the sequences of directions one could take and the positions

to which they lead, starting from the end of the path just followed. This gives the

comonoid structure on 𝔱𝑝 , completing the cofree construction of the category of 𝑝-trees

T𝑝 .

Soon we will prove that T𝑝 really is the cofree category on 𝑝, but first we give some

8.1. COFREE COMONOIDS 311

examples to make all this concrete.

Examples of 𝑝-tree categories

In what follows, we will freely switch between the morphisms-as-vertices and the

morphisms-as-rooted-paths perspectives of 𝑝-tree categories given in Proposition 8.33

whenever convenient.

Example 8.35 (The category of 1-trees). Let’s start by taking 𝑝 B 1. In Exercise 8.17 #1,

we showed that there is a unique 1-tree: a tree with only 1 vertex, its root. So 𝔱1 � y is

the carrier of the category of 1-trees T1.

Up to isomorphism, there is only one category carried by y: the terminal category

with 1 object and no morphisms aside from the 1 identity. When we think of this as

the category of 1-trees, we can characterize it as follows.

• The 1 object is the tree with 1 vertex: call the tree •, because that’s what it looks

like.

• The 1 morphism • → _ is the 1 vertex of •, its root. After all, there are no

directions of 1 to freely compose, so the only morphism generated is the identity.

Since the 1-subtree of • rooted as its root is just the entire 1-tree •, the codomain

of this morphism is still •, which makes sense—it’s the only object we have.

• The identity morphism id• : • → • is the root of •. This is the same morphism

we just mentioned. Equivalently, it is the empty rooted path.

• The composite morphism id• # id• = id• # id
cod(id•) : • → _ is obtained by con-

catenating the empty rooted path id• of •with the empty rooted path id
cod(id•) of

cod(id•), which is again just the empty rooted path of •. Hence id• # idcod id• = id•,

as expected—it’s the only morphism we have.

This is certainly too trivial an example to say much about, but it demonstrates how we

can interpret the category carried by y as the category of 𝑝-trees for 𝑝 B 1. Moreover, it

helps us see concretelywhy taking the identity to be the root gives it the right codomain

and compositional behavior.

Exercise 8.36 (The category of trees on a constant; solution here). Let 𝐵 be a set, viewed

as a constant polynomial.

1. What is the polynomial 𝔱𝐵?

2. Characterize the 𝐵-tree category T𝐵. ♦

Example 8.37 (The category of y-trees). Now consider 𝑝 B y. In Exercise 8.17 #3, we

showed that there is a unique y-tree: a single ray extending from the root in which

every vertex has exactly 1 child, so that there is exactly 1 height-𝑛 vertex—and 1 length-

𝑛 rooted path—for every 𝑛 ∈ N. Then 𝔱y � yN is the carrier of the category of y-trees

312 CHAPTER 8. CATEGORICAL PROPERTIES OF POLYNOMIAL COMONOIDS

Ty. In fact, we can identify the set of rooted paths of this y-tree with N, so that 𝑛 ∈ N
is the y-tree’s unique length-𝑛 rooted path.

We know fromExample 7.40 that comonoidswith representable carriers correspond

to 1-object categories, which can be identified with monoids. In particular, a comonoid

structure on yN corresponds to a monoid structure on N. There is more than one

monoid structure on N, though, so which one corresponds to the category Ty?

We can characterize Ty in terms of y-trees as follows.

• The 1 object is the unique y-tree, a single ray: call it ↑. Here is a picture of this

ray, to help you visualize its vertices, rooted paths, and subtrees:

...

•
•
•
•

• The morphisms are the rooted paths of ↑; they comprise the set N, where each

𝑛 ∈ N is the unique rooted path of ↑ of length 𝑛. Each rooted path represents the

free composite of 𝑛 copies of the sole direction of y. Since ↑ is an infinite ray, the

y-subtree of ↑ rooted at any of its vertices is still just a copy of ↑. So the codomain

of each morphism is still ↑, which makes sense—it’s the only object we have.

• The identity morphism id↑ : ↑ → ↑ is the empty rooted path, which has length 0;

so id↑ = 0. In the corresponding monoid structure on N, the element 0 ∈ Nmust

then be the unit.

• The composite morphism 𝑚 # 𝑛 : ↑ → ↑ for 𝑚, 𝑛 ∈ N is obtained by concatenating

𝑚, i.e. the length-𝑚 rooted path of ↑, with 𝑛, i.e. the length-𝑛 rooted path of ↑,
translating the latter path so that it beginswhere the former path ends. The result

is then the rooted path of ↑ of length𝑚+𝑛; so𝑚 #𝑛 = 𝑚+𝑛. In the corresponding

monoid structure on N, the binary operation must then be given by addition.

Hence Ty is the monoid (N, 0,+) viewed as a 1-object category.

Example 8.38 (𝐵y-trees are𝐵-streams). Let𝐵 be a set, and consider 𝑝 B 𝐵y. Generalizing

Exercise 8.17 #5 for 𝐵 instead of 2, or applying Exercise 8.17 #7 for the case of 𝐴 B 1, we

can deduce that a 𝐵y-tree consists of a single ray for which every vertex is given a label

from 𝐵. So the vertices of a 𝐵y-tree are in bĳection withN, and 𝐵y-trees are in bĳection

with functions N→ 𝐵 assigning each vertex a label. Hence 𝔱𝐵y � 𝐵NyN is the carrier of

the category of 𝐵y-trees T𝐵y. As in Example 8.37, we identify the set of rooted paths of

a given 𝐵y-tree with N, so that 𝑛 ∈ N is the 𝐵y-tree’s unique length-𝑛 rooted path.

In fact, we have already seen the category T𝐵y once before: it is the category of

𝐵-streams from Example 7.45.

8.1. COFREE COMONOIDS 313

• Recall that a 𝐵-stream is an element of 𝐵N interpreted as a countable sequence of

elements 𝑏𝑛 ∈ 𝐵 for 𝑛 ∈ N, written like so:

𝑏 B (𝑏0 → 𝑏1 → 𝑏2 → 𝑏3 → · · ·).

This is just a 𝐵y-tree lying on its side! Each arrow is a copy of the sole direction

at each position of 𝐵y, pointing to one of the positions in 𝐵 for that direction to

lead to next.

• Given a 𝐵-stream 𝑏 ∈ 𝐵N above, recall that a morphism out of 𝑏 is a natural

number 𝑛 ∈ N, and its codomain is the substream of 𝐵 starting at 𝑏𝑛 :

cod(𝑏 𝑛−→ _) = (𝑏𝑛 → 𝑏𝑛+1 → 𝑏𝑛+2 → 𝑏𝑛+3 → · · ·).

This coincides with how we view morphisms as rooted paths and codomains as

subtrees rooted at the end of those paths in the category of 𝐵y-trees.

• Whether we view 𝑏 as a 𝐵-stream or a 𝐵y-tree, its identity morphism id
𝑏
: 𝑏 → 𝑏

corresponds to 0 ∈ N; from the latter perspective, it is the length-0 path from the

root to itself.

• Whether we view 𝑏 as a 𝐵-stream or a 𝐵y-tree, composition is given by addition;

from the latter perspective, concatenating a length-𝑚 rooted path with a length-𝑛

path yields a length-(𝑚 + 𝑛) rooted path.

Example 8.39 (The category of N-labeled binary trees). Consider 𝑝 B Ny2
. By Exer-

cise 8.17 #7, or Exercise 8.12 #2 in the case of 𝐿 B N and n B 2, anNy2
-tree is an infinite

binary tree with vertices labeled by elements of N. Here’s how such an Ny2
-tree might

start:

17

3

0 3

1

92 6

We can characterize the category TNy2 as follows.

• The objects are N-labeled binary trees from the set NList(2)
.

• A morphism out of an N-labeled binary tree is a binary sequence: a finite list of

directions in 2, whose elements could be interpreted as “left” and “right,” thus

uniquely specifying a rooted path in a binary tree. They comprise the set List(2).
The codomain of each rooted path is the N-labeled binary subtree rooted at the

end of the path.

• The identity morphism on a givenN-labeled binary tree is its empty rooted path.

• The composite of two binary sequences is obtained by concatenation.

314 CHAPTER 8. CATEGORICAL PROPERTIES OF POLYNOMIAL COMONOIDS

Exercise 8.40 (The category of 𝐵-labeled 𝐴-ary trees; solution here). Characterize the

𝐵y𝐴-tree category T𝐵y𝐴 . ♦

Exercise 8.41 (Solution here). Characterize the (y + 1)-tree category Ty+1. ♦

Exercise 8.42 (Solution here). Let 𝑝 B {𝑎, 𝑏, 𝑐, . . . , 𝑧, ␣}y + {•}.
1. Describe the objects of the cofree category T𝑝 , and draw one.

2. For a given such object, describe the set of emanating morphisms.

3. Describe how to take the codomain of a morphism. ♦

Exercise 8.43 (Solution here). Let 𝑝 B {•, •}y2 + {•}y + {•} as in Example 8.10.

1. Choose an object 𝑡 ∈ tree𝑝 , i.e. a tree in 𝑝, and draw a finite approximation of it

(say four layers).

2. What is the identity morphism at 𝑡?

3. Choose a nonidentity morphism 𝑓 emanating from 𝑡 and draw it.

4. What is the codomain of 𝑓 ? Draw a finite approximation of it.

5. Choose a morphism emanating from the codomain of 𝑓 and draw it.

6. What is the composite of your two morphisms? Draw it on 𝑡. ♦

Exercise 8.44 (Solution here). Let 𝑝 be a polynomial, let 𝑄 B {𝑞 ∈ Q | 𝑞 ≥ 0} and
consider the monoid y𝑄 of nonnegative rational numbers under addition. Is it true

that any retrofunctor 𝜑 : T𝑝 ↛ yQ is constant, i.e. that it factors as

T𝑝 ↛ y ↛ yQ?

♦

8.1.3 Exhibiting the forgetful-cofree adjunction

We are now ready to give a diagrammatic proof of the main result of this section: as

promised, the category T𝑝 we constructed is the cofree comonoid on 𝑝.

8.1. COFREE COMONOIDS 315

Theorem 8.45 (Cofree comonoid). The forgetful functor 𝑈 : Cat♯ → Poly has a right

adjoint T− : Poly→ Cat♯, giving rise to an adjunction

Cat♯ Poly
𝑈

⇒
T−

,

such that for each 𝑝 ∈ Poly, the carrier 𝔱𝑝 B 𝑈T𝑝 of the category T𝑝 is given by the

limit of the diagram (8.1), repeated here:

y 𝑝 𝑝⊳ 2 𝑝⊳ 3 · · ·

1 𝑝 ⊳ 1 𝑝⊳ 2 ⊳ 1 𝑝⊳ 3 ⊳ 1 · · · .!
𝑝 ⊳ ! 𝑝⊳ 2 ⊳ !

That is, for any category C ∈ Cat♯ with carrier 𝔠 B 𝑈C, there is a natural isomorphism

Poly(𝔠, 𝑝) � Cat♯(C,T𝑝).

Proof. To show that T− is the right adjoint of𝑈 , it is enough to show that for every lens

𝜑 : 𝔠→ 𝑝, there exists a unique retrofunctor 𝐹 : C ↛ T𝑝 for which

𝔠

𝔱𝑝 𝑝

𝐹
𝜑

𝜖(1)𝑝

(8.46)

commutes. Here the projection 𝜖(1)𝑝 : 𝑈T𝑝 � 𝔱𝑝 → 𝑝 serves as the counit of the adjunc-

tion, and we identify the retrofunctor 𝐹 with its underlying lens𝑈𝐹 : 𝔠→ 𝔱𝑝 .

First, we construct 𝐹 from 𝜑 as follows. If we let 𝜖 and 𝛿 be the eraser and duplicator

of C, the diagram

𝔠 𝔠 ⊳ 𝔠

y 𝑝

1 𝑝 ⊳ 1

𝜖

𝛿

𝜑
𝜖 ⊳ 𝜑

(8.47)

commutes: the pentagon in the lower left commutes trivially, while the triangle in the

upper right commutes by the left erasure law of C, as

𝛿 #
(
𝜖 ⊳ 𝜑

)
= 𝛿 # (𝜖 ⊳ 𝔠) # 𝜑
= id𝔠 # 𝜑 (Left erasure law)

= 𝜑.

316 CHAPTER 8. CATEGORICAL PROPERTIES OF POLYNOMIAL COMONOIDS

Then by induction, the larger diagram

𝔠 𝔠 ⊳ 𝔠 𝔠⊳ 3 𝔠⊳ 4 · · ·

y 𝑝 𝑝⊳ 2 𝑝⊳ 3 · · ·

1 𝑝 ⊳ 1 𝑝⊳ 2 ⊳ 1 𝑝⊳ 3 ⊳ 1 · · ·

𝜖

𝛿

𝜑
𝜖 ⊳ 𝜑

𝛿 ⊳ 𝔠

𝜖 ⊳ 𝜑⊳ 2

𝛿 ⊳ 𝔠⊳ 2

𝜖 ⊳ 𝜑⊳ 3

(8.48)

commutes as well: its leftmost rectangle is (8.47), and taking the composition product

of each rectangle in (8.48) with the commutative rectangle

𝔠 𝔠

𝑝 𝑝

𝑝 𝑝

𝜑 𝜑

yields the rectangle to its right. As 𝔱𝑝 is the limit of the bottom two rows of (8.48),

it follows that there is an induced lens 𝐹 : 𝔠 → 𝔱𝑝 that, when composed with each

projection 𝜖(𝑛)𝑝 : 𝔱𝑝 → 𝑝⊳ 𝑛 , yields the lens depicted in (8.48) from 𝔠 to 𝑝⊳ 𝑛 . This lens

is the composite of the lens 𝔠 → 𝔠⊳ (𝑛+1)
in the top row, which by Proposition 7.20

is the canonical lens 𝛿(𝑛+1)
associated with the comonoid C, composed with the lens

𝜖 ⊳ 𝜑⊳ 𝑛
: 𝔠⊳ (𝑛+1) → 𝑝⊳ 𝑛 .

Next, we prove uniqueness: that a retrofunctor C ↛ T𝑝 with underlying lens

𝑓 : 𝔠→ 𝔱𝑝 is completely determined by the value of 𝑓 # 𝜖(1)𝑝 . It suffices to show that we

can recover the 𝑛th component of 𝑔 from its first component. **

□

8.1.4 The many (inter)faces of the cofree comonoid

The forgetful-cofree adjunction of Theorem 8.45 tells us that given a category C ∈ Cat♯

with carrier 𝔠 B 𝑈C and a polynomial 𝑝 ∈ Poly, there is a natural isomorphism

Poly(𝔠, 𝑝) � Cat♯(C,T𝑝).

So every lens 𝜑 : 𝔠 → 𝑝 has a corresponding retrofunctor 𝐹 : C ↛ T𝑝 that we call its

mate.
We can view 𝜑 as a dynamical system with an interface 𝑝 and a generalized state

system 𝔠, carrying an arbitrary category C of states and transitions. Then the lens

Run𝑛(𝜑) : 𝔠→ 𝑝⊳ 𝑛 for 𝑛 ∈ N, defined as the composite

𝔠
𝛿(𝑛)−−→ 𝔠⊳ 𝑛

𝜑⊳ 𝑛

−−→ 𝑝⊳ 𝑛 ,

8.1. COFREE COMONOIDS 317

models 𝑛 runs through the system 𝜑.

Meanwhile, as the limit of the diagram (8.1) with the row of polynomials of the

form 𝑝⊳ 𝑛 across the top, the carrier 𝔱𝑝 of the cofree comonoid on 𝑝 comes equipped

with a lens 𝜖(𝑛)𝑝 : 𝔱𝑝 → 𝑝⊳ 𝑛 for each 𝑛 ∈ N. Since the retrofunctor 𝐹 : C ↛ T𝑝 has an

underlying lens between carriers 𝑓 B 𝑈𝐹 : 𝔠 → 𝔱𝑝 , we can obtain another lens 𝔠 →⊳ 𝑛

as the composite

𝔠
𝑓
−→ 𝔱𝑝

𝜖(𝑛)𝑝−−→ 𝑝⊳ 𝑛 .

It follows from our forgetful-cofree adjunction that these two composites are equal.

Proposition 8.49. With the definitions above, the following diagram commutes:

𝔠 𝔱𝑝

𝔠⊳ 𝑛 𝑝⊳ 𝑛 .

𝑓

𝛿(𝑛) 𝜖(𝑛)𝑝

𝜑⊳ 𝑛

Nowwe have a better sense of what wemean when we say that 𝐹 : C ↛ T𝑝 captures

all the information that the lenses Run𝑛(𝜑) : 𝔠→ 𝑝⊳ 𝑛 encode: the categoryT𝑝 is carried

by a polynomial 𝔱𝑝 equipped with lenses 𝜖(𝑛)𝑝 : 𝔱𝑝 → 𝑝⊳ 𝑛 , each of which exposes a part

of the category as the 𝑛-fold interface 𝑝⊳ 𝑛 . All together, 𝔱𝑝 acts as a giant interface that

captures the 𝑛-fold behavior of 𝑝⊳ 𝑛 for every 𝑛 ∈ N. But to see all this explicitly, let’s

consider some examples.

Example 8.50. Let 𝑆 B {•, •, •} and 𝑝 B y2 + 1, and consider the dynamical system

𝜑 : 𝑆y𝑆 → 𝑝 modeling the halting deterministic state automaton from Exercise 4.23,

depicted here again for your convenience:

• •

•

Under the forgetful-cofree adjunction, the lens𝜑 coincideswith a retrofunctor 𝐹 : 𝑆y𝑆 ↛
T𝑝 from the state category on 𝑆 to the category of 𝑝-trees. The retrofunctor sends each

state in 𝑆 = {•, •, •} to a 𝑝-tree; these 𝑝-trees are drawn below (the first two are infinite).

Then the vertices of each 𝑝-tree are sent back to a morphism in the state category; the

color of each vertex indicates the codomain of the morphism to which that vertex is

318 CHAPTER 8. CATEGORICAL PROPERTIES OF POLYNOMIAL COMONOIDS

sent.

•

•

•

•

• •

•

• •

•

•

• •

•

•

•

•

• •

•

• •

•

•

•

•

•

• •

•

• •

•

•

• •

•

•
•

Each 𝑝-tree above, with its vertices colored, thus encodes all the ways to navigate the

automaton. In particular, themaximal rooted paths of these trees (i.e. those that terminate

at a leaf) trace out all the ways in which the automaton can halt, and therefore all the

words that the automaton accepts. Notice, too, that every 𝑝-subtree of any one of these

𝑝-trees is another one of these three 𝑝-trees—do you see why?

In general, given a lens 𝜑 : 𝑆y𝑆 → y𝐴 + 1 modeling a halting deterministic state

automaton and an initial state 𝑠0 ∈ 𝑆, the (y𝐴 + 1)-tree to which the corresponding

retrofunctor 𝐹 : 𝑆y𝑆 ↛ Ty𝐴+1 sends 𝑠0 encodes the set of words accepted by the au-

tomaton with that initial state in its maximal rooted paths.

Example 8.51 (Languages recognized by deterministic state automata). Recall from

Proposition 4.17 that a deterministic state automaton with a set of states 𝑆 and a set of

symbols 𝐴 can be identified with a lens y→ 𝑆y𝑆, indicating the initial state 𝑠0 ∈ 𝑆, and
a lens 𝜑 : 𝑆y𝑆 → 2y𝐴, indicating the subset of accept states 𝐹 B 𝜑−1

1
(2) ⊆ 𝑆 and the

update function 𝑢 : 𝑆 × 𝐴→ 𝑆 via 𝑢(𝑠, 𝑎) = 𝜑♯
𝑠 (𝑎).

Under the forgetful-cofree adjunction, the lens 𝜑 coincides with a retrofunctor

𝐹 : 𝑆y𝑆 ↛ T2y𝐴 . By Exercise 8.40, T2y𝐴 is the category of 2-labeled 𝐴-ary trees. So 𝐹(𝑠0)
is an element of tree2y𝐴 � 2List(𝐴)

: an 𝐴-ary tree where each rooted path corresponds

to a list of elements of 𝐴 and bears one of the elements of 2, indicating whether the

course through the automaton corresponding to that rooted path ends at an accept

state or not. Equivalently, an element of 2List(𝐴)
is a subset of List(𝐴); in the case of 𝐹(𝑠0),

it is the subset containing exactly the words in List(𝐴) accepted by the automaton. So

on objects, 𝐹 sends each possible start state 𝑠0 ∈ 𝑆 of the automaton to the subset of

words that the automaton would then accept! Backward on morphisms, 𝐹
♯
𝑠0 sends

every possible word to the state the automaton would reach if it followed that word

starting from 𝑠0.

Example 8.52 (Direction sequences to position sequences). We interpret our dynamical

systems as converting sequences of directions to sequences of positions. The forgetful-

cofree adjunction allows us to express this conversion formally in the language of Poly.

8.1. COFREE COMONOIDS 319

For convenience,we’ll focuson the exampleof an (𝐴, 𝐵)-Mooremachine𝜑 : 𝑆y𝑆 → 𝐵y𝐴,

although of course we can generalize this beyond monomial interfaces.

The lens 𝜑 corresponds to a retrofunctor 𝐹 : 𝑆y𝑆 ↛ T𝐵y𝐴 . By Exercise 8.40, T𝐵y𝐴 is

the category of 𝐵-labeled 𝐴-ary trees; in paticular, its carrier is 𝔱𝐵y𝐴 � 𝐵
List(𝐴)yList(𝐴)

.

Then for every initial state 𝑠0 ∈ 𝑆, the 𝐵-labeled 𝐴-ary tree 𝐹(𝑠0) can be interpreted

as a decision tree of all the possible sequences of directions that the systemmay receive.

The label in 𝐵 corresponding to the vertex (or rooted path) specified by each sequence

in List(𝐴) tells us the final position that the system returns when that sequence is fed

in as directions. Put another way, 𝐹(𝑠0) ∈ 𝐵List(𝐴)
can be interpreted as a function

List(𝐴) → 𝐵. So if the direction sequence is (𝑎1 , . . . , 𝑎𝑛) ∈ 𝐴𝑛 ⊆ List(𝐴), then the

corresponding position sequence (𝑏0 , . . . , 𝑏𝑛) ∈ 𝐵𝑛+1
is given (non-recursively!) by

𝑏𝑖 B 𝐹(𝑠0)(𝑎1 , . . . , 𝑎𝑖).

Finally, 𝐹
♯
𝑠0(𝑎1 , . . . , 𝑎𝑖) ∈ 𝑆 then corresponds to the system’s state after that sequence of

directions is given.

8.1.5 Morphisms between cofree comonoids

Given a lens 𝜑 : 𝑝 → 𝑞, the cofree functor gives us a comonoidmorphismT𝜑 : T𝑝 → T𝑞

as follows.

An object 𝑡 ∈ tree𝑝 is a tree; the tree 𝑢 B T𝜑(𝑡) ∈ tree𝑞 is constructed recursively

as follows. If the root of 𝑡 is 𝑖 ∈ 𝑝(1) then the root of 𝑢 is 𝑗 B 𝜑1(𝑖). To each branch

𝑏 ∈ 𝑞[𝑗], we need to assign a new tree, and we use the one situated at 𝜑♯
𝑖
(𝑏).

Exercise 8.53 (Solution here). Let 𝑝 B {•}y2 + {•} and 𝑞 B {•, •}y + {•, •}.
1. Choose a lens 𝜑 : 𝑝 → 𝑞, and write it out.

2. Choose a tree 𝑇 ∈ tree𝑝 with at least height 3.

3. What is T𝜑(𝑇)? ♦

Exercise 8.54 (Solution here). Let 𝑝 be a polynomial.

1. Show there is an induced retrofunctor T𝑝 → T𝑝⊳ 𝑛 for all 𝑛 ∈ N.

2. When 𝑛 ≥ 1, is the induced retrofunctor is an isomorphism? ♦

8.1.6 Some categorical properties of cofree comonoids

Proposition 8.55. For every polynomial 𝑝, the cofree category T𝑝 is free on a graph.

That is, there is a graph 𝐺𝑝 whose associated free category in the usual sense (the

category of vertices and paths in 𝐺𝑝) is isomorphic to T𝑝 .

320 CHAPTER 8. CATEGORICAL PROPERTIES OF POLYNOMIAL COMONOIDS

Proof. For vertices, we let 𝑉𝑝 denote the set of 𝑝-trees,

𝑉𝑝 B tree𝑝(1).

For arrows we use the counit lens 𝜋 : tree𝑝 → 𝑝 from Theorem 8.45 to define

𝐴𝑝 B
∑

𝑡∈tree𝑝(1)
𝑝[𝜋1(𝑡)]

In other words 𝐴𝑝 is the set {𝑑 ∈ 𝑝[𝜋1(𝑡)] | 𝑡 ∈ tree𝑝} of directions in 𝑝 that emanate

from the root corolla of each 𝑝-tree. The source of (𝑡 , 𝑑) is 𝑡 and the target is cod(𝜋♯
𝑡 (𝑑)).

It is clear that every morphism in T𝑡 is the composite of a finite sequence of such

morphisms, completing the proof. □

Corollary 8.56. Let 𝑝 be a polynomial and T𝑝 the cofree comonoid. Every morphism

in C𝑝 is both monic and epic.

Proof. The free category on a graph always has this property, so the result follows from

Proposition 8.55. □

Proposition 8.57. The additive monoid yN of natural numbers has a ×-monoid struc-

ture in Cat♯.

Proof. The right adjoint 𝑝 ↦→ T𝑝 preserves products, so yList(n) � Tyn is the 𝑛-fold

product of yN in Cat♯. We thus want to find retrofunctors 𝑒 : y→ yN and 𝑚 : yList(2) →
yN that satisfy the axioms of a monoid.

The unique lens y→ yN is a retrofunctor (it is the mate of the identity y→ y). We

take 𝑚 to be the mate of the lens yList(2) → y given by the list [1, 2]. One can check by

hand that these definitions make (yN , 𝑒 , 𝑚) a monoid in (Cat♯ , y,×). □

Recall fromExample 7.71 that an arrowfieldof a categoryC is a retrofunctorC ↛ yN.

Corollary 8.58. For any categoryC, the set Cat♯(C, yN) of arrow fields has the structure

of a monoid. Moreover, this construction is functorial

Cat♯(−, yN) : Cat♯ →Monop

Proof. We saw that yN is a monoid object in Proposition 8.57. □

A retrofunctor C ↛ yN is a policy in C: it assigns an outgoing morphism to each

object of C. Any two such trajectories can be multiplied: we simply do one and then

the other; this is the monoid operation. The policy assigning the identity to each object

is the unit of the monoid.

We use the notation C ↦→ ®C for the monoid of arrow fields.

8.2. MORE CATEGORICAL PROPERTIES OF Cat♯ 321

Theorem 8.59. The arrow fields functor

Cat♯ →Monop

is right adjoint to the inclusion Monop → Cat♯ from Proposition 7.79.

Proof. LetC be a category and (𝑀, 𝑒, ∗) amonoid. A retrofunctor 𝐹 : C ↛ y𝑀 hasnodata

on objects; it is just a way to assign to each 𝑐 ∈ C and𝑚 ∈ 𝑀 a morphism 𝐹
♯
𝑐 (𝑚) : 𝑐 → 𝑐′

for some 𝑐′ B cod(𝐹♯𝑐 (𝑚)). This assignment must send identities to identities and

composites to composites: given 𝑚′ ∈ 𝑀 we have 𝐹
♯
𝑐 (𝑚 # 𝑚′) = 𝐹

♯
𝑐 (𝑚) # 𝐹♯𝑐′(𝑚′). This is

exactly the data of a monoid morphism 𝑀 → ®C: it assigns to each 𝑚 ∈ 𝑀 an arrow

field C, preserving unit and multiplication. □

Proposition 8.60. There is a commutative square of left adjoints

Monop Setop

Cat♯ Poly

𝑈

y− y−

𝑈

where the functors denoted𝑈 are forgetful functors.

Proof. Using the fully faithful functor y− : Monop ⇆ Cat♯ from Proposition 7.79, it is

easy to check that the above diagram commutes.

The free-forgetful adjunction Set ⇆ Mon gives an opposite adjunction Setop ⇆
Monop

, where 𝑈 is now left adjoint. We saw that y− : Setop → Poly is a left adjoint

in Proposition 5.12, that 𝑈 : Cat♯ → Poly is a left adjoint in Theorem 8.45, and that

y− : Mon→ Cat♯ is a left adjoint in Theorem 8.59. □

8.2 More categorical properties of Cat♯

Many of the properties of Poly we covered in Chapters 3 and 5 have analogues in Cat♯;
we review these here.

8.2.1 Other special comonoids and adjunctions

We begin by highlighting a few other adjunctions involving Cat♯, as well as the special

comonoids in Cat♯ they provide.

322 CHAPTER 8. CATEGORICAL PROPERTIES OF POLYNOMIAL COMONOIDS

Proposition 8.61. The functor y− from Proposition 8.60 factors through an isomor-

phism of categories

Cat♯
rep
� Monop ,

where Mon is the category of monoids and monoid homomorphisms and Cat♯
rep

is

the full subcategory of Cat♯ consisting of categories with representable carriers y𝑀 for

some 𝑀 ∈ Set.

Proof. LetC be a category. It has only one object iff its carrier 𝔠 has only one position, i.e.

𝔠 � y𝑀 for some 𝑀 ∈ Set, namely where 𝑀 is the set of morphisms in C. It remains to

show that retrofunctors betweenmonoids are dual—opposite—tomorphisms between

monoids.

A retrofunctor 𝑓 : y𝑀 → y𝑁 involves a single function 𝑓 ♯ : 𝑁 → 𝑀 that must satisfy

a law coming from unitality and one coming from composition, as in Definition 7.49.

The result can now be checked by hand, or seen formally as follows. Each object in

the two diagrams of (7.49) is representable by Exercise 6.9. The Yoneda embedding

Setop → Poly is fully faithful, so these two diagrams are equivalent to the unit and

composition diagrams for monoid homomorphisms. □

Exercise 8.62 (Solution here). Let Cat♯
lin

be the full subcategory of Cat♯ consisting of

categories with linear carriers 𝑆y for some 𝑆 ∈ Set. Show that there is an isomorphism

of categories

Cat♯
lin
� Set. =

♦

Proposition 8.63 (Discrete categories). The inclusion Cat♯
lin
→ Cat♯ has a left adjoint

sending each (𝔠, 𝜖, 𝛿) ∈ Cat♯ to the unique comonoid carried by (𝔠 ⊳ 1)y in Cat♯
lin
.

Proof. We need to show that for any comonoid (𝔠, 𝜖, 𝛿) and set 𝐴, we have a natural

isomorphism

Cat♯(𝔠, 𝐴y). �? Cat♯((𝔠 ⊳ 1)y, 𝐴y)

But every morphism in 𝐴y is an identity, so the result follows from the fact that every

retrofunctor must pass identities back to identities. □

8.2.2 Vertical-cartesian factorization of retrofunctors

A retrofunctor is called cartesian if the underlying lens 𝑓 : 𝔠 → 𝔡 is cartesian (i.e. for

each position 𝑖 ∈ 𝔠(1), the map 𝑓
♯
𝑖

: 𝔡[𝑓1(𝑖)] → 𝔠[𝑖] is an isomorphism).

8.2. MORE CATEGORICAL PROPERTIES OF Cat♯ 323

Proposition 8.64. Every retrofunctor 𝑓 : C ↛ D factors as a verticalmorphism followed

by a cartesian morphism

C
vert

↛ C′
cart

↛ D .

Proof. A retrofunctor C ↛ D is a lens 𝔠 → 𝔡 satisfying some properties, and any lens

𝑓 : 𝔠→ 𝔡 can be factored as a vertical morphism followed by a cartesian morphism

𝔠
𝑔
−→ 𝔠′

ℎ−→ 𝔡.

For simplicity, assume 𝑔1 : 𝔠(1) → 𝔠′(1) is identity (rather than merely isomorphism) on

positions and similarly that for each 𝑖 ∈ 𝔠 the map ℎ
♯
𝑖
: 𝔠′[𝑖] → 𝔡[ℎ1(𝑖)] is identity (rather

than merely isomorphism) on directions.

It suffices to show that the intermediate object 𝔠′ can be endowed with the structure

of a category such that 𝑔 and ℎ are retrofunctors. Given an object 𝑖 ∈ 𝔠′(1), assign its

identity to be the identity on ℎ1(𝑖) = 𝑓 (𝑖); then both 𝑔 and ℎ preserve identities because

𝑓 does. Given an emanating morphism 𝑚 ∈ 𝔠′[𝑖] = 𝔡[𝑓 (𝑖)], assign its codomain to be

cod(𝑚) B cod(𝑓 ♯
𝑖
(𝑚)), and given an emanating morphism 𝑚′ ∈ 𝔠′[cod(𝑚)], assign the

composite 𝑚 # 𝑚′ in 𝔠′ to be 𝑚 # 𝑚′ in 𝔡. In Exercise 8.65 we will check that with these

definitions, 𝔠′ is a category and both 𝑔 and ℎ are retrofunctors. □

Exercise 8.65 (Solution here). We will complete the proof of Proposition 8.64, using

the same notation.

1. Show that composition is associative and unital in 𝔠′.

2. Show that 𝑔 preserves codomains.

3. Show that 𝑔 preserves compositions.

4. Show that ℎ preserves codomains.

5. Show that ℎ preserves compositions. ♦

Proposition 8.66. The wide
a
subcategory of cartesian retrofunctors in Cat♯ is isomor-

phic to the wide subcategory of discrete opfibrations in Cat.
a
A subcategory D of a category C is wide if every object of C is in D.

Proof. Suppose that C andD are categories. Both a functor and a retrofunctor between

them involve a map on objects, say 𝑓 : ObC → ObD. For any object 𝑐 ∈ ObC, a

functor gives a function, say 𝑓♯ : C[𝑐] → D[𝑓 (𝑐)]whereas a retrofunctor gives a function

𝑓 ♯ : D[𝑓 (𝑐)] → C[𝑐]. The retrofunctor is cartesian iff 𝑓 ♯ is an iso, and the functor is a

discrete opfibration iff 𝑓♯ is an iso. We thus transform our functor into a retrofunctor

(or vice versa) by taking the inverse function on morphisms. It is easy to check that

this inverse appropriately preserves identities, codomains, and compositions. □

324 CHAPTER 8. CATEGORICAL PROPERTIES OF POLYNOMIAL COMONOIDS

Proposition 8.67. The wide subcategory of vertical maps in Cat♯ is isomorphic to the

opposite of the wide subcategory bĳective-on-objects maps in Cat:

Cat♯
vert
� (Catboo)op.

Proof. Let C and D be categories. Given a vertical retrofunctor 𝐹 : C ↛ D, we have a

bĳection 𝐹1 : ObC → ObD; let 𝐺1 be its inverse. We define a functor 𝐺 : D → C on

objects by 𝐺1 and, for any 𝑓 : 𝑑 → 𝑑′ in D we define 𝐺(𝑓) B 𝐹
♯
𝐺1(𝑑). It has the correct

codomain: cod(𝐺(𝑓)) = 𝐺1(𝐹1(cod(𝐺(𝑓))) = 𝐺1(cod 𝑓). And it sends identities and

compositions to identities and compositions by the laws of retrofunctors.

The construction of a vertical retrofunctor from a bĳective-on-objects functor is

analogous, and it is easy to check that the two constructions are inverses. □

Exercise 8.68 (Solution here). Let 𝑆 be a set and consider the state category S B

(𝑆y𝑆 , 𝜖, 𝛿). Use Proposition 8.67 to show that categories C equipped with a vertical

retrofunctor S ↛ C can be identified with categories whose set of objects has been

identified with 𝑆. ♦

Exercise 8.69 (Solution here). Consider the categories C B •⇒ • and D B • → • .
There is a unique bĳective-on-objects (boo) functor 𝐹 : C → D and two boo functors

𝐺1 , 𝐺2 : D → C. These have corresponding retrofunctors going the other way.

1. Write down the morphism 𝔡→ 𝔠 of carriers corresponding to 𝐹.

2. Write down the morphism 𝔠→ 𝔡 of carriers corresponding to either 𝐺1 or 𝐺2. ♦

We record the following proposition here.

Proposition 8.70. If 𝜑 : 𝑝 → 𝑞 is a cartesian lens, then T𝜑 : T𝑝 → T𝑞 is a cartesian

retrofunctor: that is, for each 𝑡 ∈ tree𝑝 , the on-morphisms function(
T𝜑

) ♯
𝑡

: T𝑞[T𝜑𝑡]
�−→ T𝑝[𝑡]

is a bĳection.

Proof. Given 𝜑 : 𝑝 → 𝑞 cartesian, each tree 𝑇 ∈ tree𝑝 is sent to a tree in tree𝑞 with the

same branching profile. Amorphism emanating from it is just a finite rooted path, and

the set of these is completely determined by the branching profile. Thus we have the

desired bĳection. □

8.2. MORE CATEGORICAL PROPERTIES OF Cat♯ 325

8.2.3 Limits and colimits of comonoids

We saw in Theorems 5.33 and 5.43 that Poly has all small limits and colimits. It turns

out that Cat♯ has all small limits and colimits as well. We start by discussing colimits

in Cat♯, as they are somewhat easier to get a handle on.

Colimits in Cat♯

It is a consequence of the forgetful-cofree adjunction from Theorem 8.45 that Cat♯

inherits all the colimits from Poly. As these results are somewhat technical, relying on

a property of functors known as comonadicity, we defer their proofs to references.

Proposition 8.71 (Porst). The forgetful functor Cat♯ → Poly is comonadic.

Proof. The fact that a forgetful functor Cat♯ � Comon(Poly) → Poly is comonadic if

it has a right adjoint follows from Beck’s monadicity theorem via a straightforward

generalization of an argument given by Paré in [Par69, pp. 138-9], as pointed out by

Porst in [Por19, Fact 3.1]. So the result follows from Theorem 8.45. □

Corollary 8.72. The category Cat♯ has all small colimits. They are created by the

forgetful functor Cat♯ → Poly.

Proof. A comonadic functor creates all colimits that exist in its codomain (see [nLa18]),

and by Theorem 5.43, the category Poly has all small colimits. □

Example 8.73 (Coproducts in Cat♯). Probably the most familiar kind of colimit in Cat♯

is the coproduct, as Corollary 8.72 tells us that it agrees with the usual coproduct from

Cat. Here’s why.

For concreteness, let 𝐼 be a set and (C𝑖)𝑖∈𝐼 be categories with carriers (𝔠𝑖)𝑖∈𝐼 . Then

the coproduct of (C𝑖)𝑖∈𝐼 in Cat is the category

∑
𝑖∈𝐼 C𝑖 , whose objects are given by the

disjoint union of the objects in each summand, so that

Ob

(∑
𝑖∈𝐼

C𝑖

)
�

∑
𝑖∈𝐼

ObC𝑖 =
∑
𝑖∈𝐼

𝔠𝑖(1) �
(∑
𝑖∈𝐼

𝔠𝑖

)
(1),

and whose morphisms out of each 𝑐 ∈ ObC𝑗 ⊆ Ob

∑
𝑖∈𝐼 C𝑖 are just the morphisms out

of 𝑐 in the summand C𝑗 , so(∑
𝑖∈𝐼

C𝑖

)
[𝑐] � C𝑗[𝑐] = 𝔠𝑗[𝑐] �

(∑
𝑖∈𝐼

𝔠𝑖

)
[𝑐]

Hence

∑
𝑖∈𝐼 C𝑖 is carried by the coproduct of polynomials

∑
𝑖∈𝐼 𝔠𝑖 .

326 CHAPTER 8. CATEGORICAL PROPERTIES OF POLYNOMIAL COMONOIDS

It remains to show that

∑
𝑖∈𝐼 C𝑖 is also the coproduct of (C𝑖)𝑖∈𝐼 in Cat♯. We already

know from Corollary 8.72 that it has the right carrier: the coproduct of carriers

∑
𝑖∈𝐼 𝔠𝑖 .

It also has the right morphisms, for any object (𝑖 , 𝑥)with 𝑥 ∈ 𝔠𝑖(1), the set of emanating

morphisms is—and should be—𝔠𝑖[𝑥].

Exercise 8.74 (Solution here).
1. Show that 0 has a unique comonoid structure.

2. Explain why 0 with its comonoid structure is initial in Cat♯ in two ways: by

explicitly showing it has the required universal property, or by invoking Corol-

lary 8.72. ♦

Exercise 8.75 (Solution here). Given a comonoid (𝔠, 𝜖, 𝛿) ∈ Cat♯, show that there is an

induced comonoid structure on the polynomial 2𝔠. ♦

Limits in Cat♯

As in the case of colimits, there is a rather technical result showing that the forgetful-

cofree adjunction implies the existence of all small limits of comonoids, which we

summarize here.

Corollary 8.76. The category Cat♯ has all small limits.

Proof. By Theorem 8.45, the forgetful functor 𝑈 : Cat♯ → Poly has a right adjoint, and

by Theorem 5.33, Poly itself has all small limits. Furthermore equalizers in Poly are

connected limits, so by Theorem 6.80, they are preserved by ⊳ on either side. Then the

result follows from [Por19, Fact 3.4]. □

8.2.4 Parallel product comonoids

The usual product of categories is not the categorical product in Cat♯. It is, however, a

monoidal product on Cat♯, coinciding with the parallel product ⊗ on Poly.

Proposition 8.77. The parallel product (y,⊗) on Poly extends to a monoidal structure

(y,⊗) on Cat♯, such that the forgetful functor𝑈 : Cat♯ → Poly is strong monoidal with

respect to ⊗. The parallel product of two categories is their product in Cat.

Proof. LetC,D ∈ Cat♯ be categories corresponding to comonoids (𝔠, 𝜖𝔠 , 𝛿𝔠) and (𝔡, 𝜖𝔡 , 𝛿𝔡).
The carrier of C ⊗ D is defined to be 𝔠 ⊗ 𝔡. A position in it is a pair (𝑐, 𝑑) of objects,

one from C and one fromD; a direction there is a pair (𝑓 , 𝑔) of a morphism emanating

from 𝑐 and one emanating from 𝑑.

8.3. COMODULES OVER POLYNOMIAL COMONOIDS 327

We define 𝜖C⊗D : 𝔠 ⊗ 𝔡→ y as

𝔠 ⊗ 𝔡
𝜖ℭ⊗𝜖𝔇−−−−−→ y ⊗ y � y.

This says that the identity at (𝑐, 𝑑) is the pair of identities.
We define 𝛿C⊗D : (𝔠 ⊗ 𝔡) → (𝔠 ⊗ 𝔡) ⊳ (𝔠 ⊗ 𝔡) using the duoidal property:

𝔠 ⊗ 𝔡
𝛿𝔠⊗𝛿𝔡−−−−→ (𝔠 ⊳ 𝔠) ⊗ (𝔡 ⊳ 𝔡) → (𝔠 ⊗ 𝔡) ⊳ (𝔠 ⊗ 𝔡).

One can check that this says that codomains and composition are defined coordinate-

wise, and that (𝔠 ⊗ 𝔡, 𝜖𝔠⊗𝔡 , 𝛿𝔠⊗𝔡) forms a comonoid. One can also check that this is

functorial in C,D ∈ Cat♯. See Exercise 8.78. □

Exercise 8.78 (Solution here). We complete the proof of Proposition 8.77.

1. Show that (𝔠 ⊗ 𝔡, 𝜖𝔠⊗𝔡 , 𝛿𝔠⊗𝔡), as described in Proposition 8.77, forms a comonoid.

2. Check that the construction (C,D) ↦→ C ⊗ D is functorial in C,D ∈ Cat♯. ♦

The cofree construction works nicely with this monoidal product.

Proposition 8.79. The cofree functor 𝑝 ↦→ T𝑝 is lax monoidal; in particular there is a

lens y→ 𝔱y, and for any 𝑝, 𝑞 ∈ Poly there is a natural lens

𝔱𝑝 ⊗ 𝔱𝑞 → 𝔱𝑝⊗𝑞 .

satisfying the usual conditions.

Proof. By Proposition 8.77, the left adjoint 𝑈 : Cat♯ → Poly is strong monoidal. A

consequence of Kelly’s doctrinal adjunction theorem [Kel74] says that the right adjoint

of an oplax monoidal functor is lax monoidal. □

Exercise 8.80 (Solution here).
1. What polynomial is 𝔱y?

2. What is the lens y→ 𝔱y from Proposition 8.79?

3. Explain inwords how to think about the lens 𝔱𝑝⊗ 𝔱𝑞 → 𝔱𝑝⊗𝑞 from Proposition 8.79,

for arbitrary 𝑝, 𝑞 ∈ Poly. ♦

8.3 Comodules over polynomial comonoids

Just as we can define a category of comonoids within any monoidal category, we can

further define a notion of comodules over such comonoids. And much like how poly-

nomial comonoids are categories, these comodules can also be described in categorical

terms we are already familiar with. There is much more to say about comodules over

polynomial comonoids than we have room for here—we will merely give a glimpse of

the theory and applications.

328 CHAPTER 8. CATEGORICAL PROPERTIES OF POLYNOMIAL COMONOIDS

8.3.1 Left and right comodules

When the monoidal category is not symmetric, left comodules and right comodules

may differ significantly, so we define them separately (but notice that the diagrams for

one are analogous to the diagrams for the other).

Definition 8.81 (Left comodule). In a monoidal category (C, y, ⊳), let C = (𝔠, 𝜖, 𝛿) be a
comonoid. A left C-comodule is

• an object 𝑚 ∈ C, called the carrier, equipped with

• a morphism 𝔠 ⊳ 𝑚
𝜆←− 𝑚 called the left coaction,

such that the followingdiagrams, collectively knownas the left comodule laws, commute:

𝔠 ⊳ 𝑚 𝑚

𝑚

𝜖 ⊳ 𝑚

𝜆
𝔠 ⊳ 𝑚 𝑚

𝔠 ⊳ 𝔠 ⊳ 𝑚 𝔠 ⊳ 𝑚

𝛿 ⊳ 𝑚

𝜆

𝜆

𝔠 ⊳ 𝜆

(8.82)

When referring to a left C-comodule, wemay omit its coaction if it can be inferred from

context (or simply unspecified), identifying the comodule with its carrier.

A morphism of left C-comodules 𝑚 and 𝑛 is a morphism 𝛼 : 𝑚 → 𝑛 such that the

following diagram commutes:

𝔠 ⊳ 𝑚 𝑚

𝔠 ⊳ 𝑛 𝑛

𝔠 ⊳ 𝛼 𝛼

Here the top and bottom morphisms are the left coactions of 𝑚 and 𝑛.

Exercise 8.83 (Solution here). Show that the category of C-coalgebras from Defini-

tion 7.96 is exactly the category of constant left C-comodules—i.e. the full subcategory

of the category of left C-comodules spanned by those left C-comodules whose carriers

are constant polynomials. ♦

Definition 8.84 (Right comodule). In a monoidal category (C, y, ⊳), let D = (𝔡, 𝜖, 𝛿) be
a comonoid. A right D-comodule is

• an object 𝑚 ∈ C, called the carrier, equipped with

• a morphism 𝑚
𝜌
−→ 𝑚 ⊳ 𝔡 called the right coaction,

such that the following diagrams, collectively known as the right comodule laws, com-

8.3. COMODULES OVER POLYNOMIAL COMONOIDS 329

mute:

𝑚 𝑚 ⊳ 𝔡

𝑚

𝜌

𝑚 ⊳ 𝜖

𝑚 𝑚 ⊳ 𝔡

𝑚 ⊳ 𝔡 𝑚 ⊳ 𝔡 ⊳ 𝔡

𝜌

𝜌 𝑚 ⊳ 𝛿

𝜌 ⊳ 𝔡

(8.85)

When referring to a right D-comodule, we may omit its coaction if it can be inferred

from context (or unspecified), identifying the comodule with its carrier.

A morphism of right D-comodules 𝑚 and 𝑛 is a morphism 𝛼 : 𝑚 → 𝑛 such that the

following diagram commutes:

𝑚 𝑚 ⊳ 𝔡

𝑛 𝑛 ⊳ 𝔡

𝛼 𝛼 ⊳ 𝔡

Here the top and bottom morphisms are the right coactions of 𝑚 and 𝑛.

Exercise 8.86 (Solution here).
1. Draw the equations of (8.82) using polyboxes.

2. Draw the equations of (8.85) using polyboxes. ♦

Exercise 8.87 (Solution here). Recall from Exercise 7.64 that y has a unique category

structure.

1. Show that the category of left y-comodules is isomorphic to Poly.
2. Show that the category of right y-comodules is isomorphic to Poly. If it is similar,

just say “similar”; if not, explain.

♦

We can characterize left comodules as something far more familiar.

Proposition 8.88. Let C be a category. The category of left C-comodules is equivalent

to the category of functors C→ Poly.

Sketch of proof. Let 𝔠 be the carrier of C. Given a left C-comodule 𝑚 → 𝔠 ⊳ 𝑚, we saw

in Exercise 8.86 that there is an induced function | − | : 𝑚(1) → 𝔠(1), so to each object

𝑖 ∈ Ob(C) we can associate a set 𝑃𝑚
𝑖
B {𝑎 ∈ 𝑚(1) | |𝑎| = 𝑖}. We also have for each

𝑎 ∈ 𝑃𝑖 ⊆ 𝑚(1) a set 𝑚[𝑎], and so we can consider the polynomial

𝑝𝑚𝑖 B
∑
𝑎∈𝑃𝑚

𝑖

y𝑚[𝑎].

The polynomial 𝑝𝑚
𝑖
∈ Poly is easily seen to be functorial in the comodule 𝑚. Moreover,

given a morphism 𝑓 : 𝑖 → 𝑖′ in C, we have for each 𝑎 ∈ 𝑝𝑚
𝑖
(1) an element 𝑎. 𝑓 ∈ 𝑚(1),

330 CHAPTER 8. CATEGORICAL PROPERTIES OF POLYNOMIAL COMONOIDS

with |𝑎. 𝑓 | = 𝑖′, i.e. 𝑎. 𝑓 ∈ 𝑃𝑚
𝑖′ = 𝑝𝑚

𝑖′ (1). Similarly for each 𝑥 ∈ 𝑚[𝑎. 𝑓] = 𝑝𝑚
𝑖′ [𝑎. 𝑓] we

have 𝜆♯
𝑎(𝑓 , 𝑥) ∈ 𝑚[𝑎] = 𝑝𝑚

𝑖
[𝑎], and thus we have a lens 𝑝𝑚

𝑖
→ 𝑝𝑚

𝑖′ . In this way we have

obtained we obtain a functor 𝑝𝑚− : C→ Poly, and this functor is itself functorial in 𝑚.

We leave the proof that this construction has an inverse to the reader. □

Similarly, a right comodule is not an altogether foreign concept.

Proposition 8.89. LetD be a category. A rightD-comodule 𝑚 can be identified (up to

isomorphism) with a functor D → Set𝑚(1).

Sketch of proof. Let 𝔡 be the carrier ofD. Given a rightD-comodule 𝑚 → 𝑚 ⊳ 𝔡we need

a functor 𝐹 : D × 𝑚(1) → Set. We again rely heavily on Exercise 8.86. Given 𝑗 ∈ D and

𝑎 ∈ 𝑚(1), define
𝐹(𝑗 , 𝑑) B {𝑥 ∈ 𝑚[𝑎] | |𝑎. 𝑓 | = 𝑗}.

Given 𝑔 : 𝑗 → 𝑗′ we get 𝜌♯
𝑎(𝑥, 𝑔) ∈ 𝑚[𝑎] with |𝑎.𝜌♯

𝑎(𝑥, 𝑔)| = 𝑗′, and thus 𝑔 induces

a function 𝐹(𝑔 , 𝑑) : 𝐹(𝑗 , 𝑑) → 𝐹(𝑗′, 𝑑). Again by laws from Exercise 8.86 these are

functorial in 𝑔, completing the proof sketch. □

Proposition 8.90. LetC = (𝔠, 𝜖, 𝛿) be a comonoid inPoly. For any set𝐺, the polynomial

y𝐺 ⊳ 𝔠 has a natural right C -comodule structure.

Proof. We use the lens (y𝐺 ⊳ 𝛿) : (y𝐺 ⊳ 𝔠) → (y𝐺 ⊳ 𝔠 ⊳ 𝔠). It satisfies the unitality and

associativity laws because 𝔠 does. □

We can think of elements of 𝐺 as “generators”. Then if 𝑖′ : 𝐺→ 𝔠 ⊳1 assigns to every

generator an object of a category C, then we should be able to find the free C-set that 𝑖′

generates.

Proposition 8.91. Functions 𝑖′ : 𝐺 → 𝔠 ⊳ 1 are in bĳection with positions 𝑖 ∈ y𝐺 ⊳ 𝔠 ⊳ 1.
Let 𝑚 B 𝑖∗(y𝐺 ⊳ 𝔠) and let 𝜌𝑖 be the induced right C -comodule structure. Then 𝜌𝑖
corresponds to the free C-set generated by 𝑖′.

Proof. The polynomial 𝑚 has the following form:

𝑚 � y
∑

𝑔∈𝐺 𝔠[𝑖′(𝑔)]

In particular 𝜌𝑖 is a representable right C -comodule, andwe can identify it with a C-set

by Theorem 8.100. The elements of thisC-set are pairs (𝑔 , 𝑓), where 𝑔 ∈ 𝐺 is a generator

and 𝑓 : 𝑖′(𝑔) → cod(𝑓) is a morphism in C emanating from 𝑖′(𝑔). It is easy to see that

the comodule structure induced by Proposition 8.90 is indeed the free one. □

8.3. COMODULES OVER POLYNOMIAL COMONOIDS 331

Exercise 8.92 (Solution here). Let C be a category and 𝑖 ∈ C an object.

1. Consider 𝑖 as a lens y → 𝔠. Show that the vertical-cartesian factorization of this

lens is y→ y𝔠[𝑖]
𝜑
−→ 𝔠.

2. Use Proposition 6.88 to show that y𝔠[𝑖] ⊳ 𝔠→ 𝔠 ⊳ 𝔠 is cartesian.

3. Show that there is a commutative square

y𝔠[𝑖] y𝔠[𝑖] ⊳ 𝔠

𝔠 𝔠 ⊳ 𝔠

𝛿𝑖

𝜑 cart

𝛿

⌟

4. Show that this square is a pullback, as indicated.

5. Show that 𝛿𝑖 makes y𝔠[𝑖] a right C -comodule. ♦

The lens 𝛿𝑖 can be seen as the restriction of 𝛿 : 𝔠→ 𝔠 ⊳ 𝔠 to a single starting position.

We can extend this to a functor C → yModC that sends the object 𝑖 to y𝔠[𝑖]. Given

a morphism 𝑓 : 𝑖 → 𝑖′ in C, we get a function 𝔠[𝑖′] → 𝔠[𝑖] given by composition with 𝑓 ,

and hence a lens y𝔠[𝑓] : y𝔠[𝑖] → y𝔠[𝑖
′]
.

Exercise 8.93 (Solution here).
1. Show that y𝔠[𝑓] is a right C -comodules morphism.

2. Show that the construction y𝔠[𝑓] is functorial in 𝑓 . ♦

Proposition 8.94. Let 𝔠 be a comonoid. For any set 𝐼 and right 𝔠-comodules (𝑚𝑖)𝑖∈𝐼 , the
coproduct 𝑚 B

∑
𝑖∈𝐼 𝑚𝑖 has a natural right-comodule structure. Moreover, each rep-

resentable summand in the carrier 𝑚 of a right 𝔠-comodule is itself a right-𝔠 comodule

and 𝑚 is their sum.

Sketch of proof. This follows from the fact in Proposition 6.47 that − ⊳ 𝔠 commutes with

coproduct, i.e. (∑𝑖∈𝐼 𝑚𝑖) ⊳ 𝔠 �
∑
𝑖∈𝐼(𝑚𝑖 ⊳ 𝔠). □

Proposition 8.95. If 𝑚 ∈ Poly is equipped with both a right C -comodule and a right

D-comodule structure, we can naturally equip 𝑚 with a (C ×D)-comodule structure.

Proof. It suffices by Proposition 8.94 to assume that 𝑚 = y𝑀 is representable. But a

right C -comodule with carrier y𝑀 can be identified with a retrofunctor 𝑀y𝑀 → C .

Thus if y𝑀 is both a right-C comodule and a right-D comodule, then we have

comonoid morphisms C ← 𝑀y𝑀 → D . This induces a unique comonoid morphism

𝑀y𝑀 → (C ×D) to the product, and we identify it with a right-(C ×D) comodule on

y𝑀 . □

332 CHAPTER 8. CATEGORICAL PROPERTIES OF POLYNOMIAL COMONOIDS

8.3.2 Bicomodules

We take special note of any object that is both a left comodule and a right comodule in

compatible ways.

Definition 8.96 (Bicomodule). In amonoidal category (C, y, ⊳), letC andD be comonoids

with carriers 𝔠 and 𝔡. A (C,D)-bicomodule is
1. an object 𝑚 ∈ C that is both

2. a left C-comodule, with left coaction 𝔠 ⊳ 𝑚
𝜆←− 𝑚, and

3. a right D-comodule, with right coaction 𝑚
𝜌
−→ 𝑚 ⊳ 𝔡,

such that the following diagram, known as the coherence law, commutes:

𝑚

𝔠 ⊳ 𝑚 𝑚 ⊳ 𝔡

𝔠 ⊳ 𝑚 ⊳ 𝔡.

𝜆 𝜌

𝔠 ⊳ 𝜌 𝜆 ⊳ 𝔡

(8.97)

Wemay denote such a bicomodule byC

⊲ ⊳𝑚
D when its left and right coactions have

yet to be specified or may be inferred from context—or even by 𝔠

⊲ ⊳𝑚
𝔡 when the

comonoid structures on 𝔠 and 𝔡 can be inferred from context as well.
a

A morphism of (C,D)-bicomodules is one that is a morphism of left C-comodules

and a morphism of right D-comodules.

a
The notation 𝔠

⊲ ⊳ 𝔡 has a mnemonic advantage, as each ⊳ goes in the correct direction: 𝔠 ⊳𝑚 ← 𝑚

and 𝑚 → 𝑚 ⊳ 𝔡. But it also looks like an arrow going backward from 𝔡 to 𝔠, which will turn out to have a

semantic advantage as well.

We draw the commutativity of (8.97) using polyboxes.

𝑚

𝔠

𝑚

𝔠

𝑚

𝔡

𝑚

𝑚

𝔡

𝔠

𝑚

𝔡

= (8.98)

This polybox equation implies that we can unambiguously write

𝑚 𝑚

𝔡

𝔠

8.3. COMODULES OVER POLYNOMIAL COMONOIDS 333

for any bicomodule 𝔠

⊲ ⊳𝑚
𝔡.

Exercise 8.99 (Solution here). Let C = (𝔠, 𝜖, 𝛿) be a category. Recall from Exercise 7.64

that y has a unique category structure.

1. Show that a left C-module is the same thing as a (C, y)-bimodule.

2. Show that a right C-module is the same thing as a (y,C)-bimodule.

3. Show that every polynomial 𝑝 ∈ Poly has a unique (y, y)-bimodule structure.

4. Show that there is an isomorphism of categories Poly � yMody. ♦

8.3.3 More equivalences

We have seen that a retrofunctor from a state category to a category C carries the same

data as a C-coalgebra, which is in turn equivalent to a discrete opfibration over C or

a copresheaf on C. We then showed that cartesian retrofunctors to C is an equivalent

notion as well. We are now ready to show that several kinds of comodules are also

equivalent to all of these concepts.

Theorem 8.100. Given a polynomial comonoid C = (𝔠, 𝜖, 𝛿), the following comprise

equivalent categories:

1. functors C→ Set;
2. discrete opfibrations over C;

3. cartesian retrofunctors to C ;

4. C -coalgebras (sets with a coaction by C);

5. constant left C -comodules;

6. (C , 0)-bicomodules;

7. linear left C -comodules; and

8. representable right C -comodules (opposite).

In fact, all but the first comprise isomorphic categories; and up to isomorphism, any

one of these can be identified with a retrofunctor from a state category to C.

Proof. 1 ≃ 2 � 3: This was shown in Proposition 7.108.

3 � 4: Given a cartesian retrofunctor (𝜋1 ,𝜋♯) : S ↛ C, let 𝑆 B Ob(S) and define a

𝔠-coalgebra structure 𝛼 : 𝑆 → 𝔠 ⊳ 𝑆 on an object 𝑠 ∈ Ob(S) and an emanating

morphism 𝑓 : 𝜋1(𝑠) → 𝑐′ in C by

∅
𝑠

𝑆
𝑓

𝜋
1
(𝑠)

𝔠

∅

cod𝜋♯
𝑠 (𝑓)

𝑆

𝛼
1

𝛼
2

!

334 CHAPTER 8. CATEGORICAL PROPERTIES OF POLYNOMIAL COMONOIDS

We check that this is indeed a coalgebra using properties of retrofunctors. For

identities in C , we have

𝛼2(𝑠, id𝜋1(𝑠)) = cod𝜋♯
𝑠(id𝜋1(𝑠))

= cod id𝑠 = 𝑠

and for compositions in C we have

𝛼2(𝑠, 𝑓 # 𝑔) = cod

(
𝜋♯
𝑠(𝑓 # 𝑔)

)
= cod

(
𝜋♯
𝑠(𝑓) # 𝜋♯

cod𝜋♯
𝑠 (𝑓)

𝑔

)
= cod

(
𝜋♯

cod𝜋♯
𝑠 (𝑓)

𝑔

)
= 𝛼2(𝛼2(𝑠, 𝑓), 𝑔).

Going backward, if we’re given a coalgebra 𝛼 : 𝑆 → 𝔠 ⊳ 𝑆, we obtain a function

𝛼1 : 𝑆 → 𝔠 ⊳ 1 and we define 𝔰 B 𝛼∗
1
𝔠 and the cartesian lens 𝜑 B (𝛼1 , id) : 𝔰 → 𝔠

to be the base change from Proposition 5.72. We need to show 𝔰 has a comonoid

structure (𝔰, 𝜖, 𝛿) and that𝜑 is a retrofunctor. We simplydefine the eraser 𝜖 : 𝔰→ y

using 𝛼1 and the eraser on 𝔠:

id𝛼1(𝑠)

𝑠

𝔰

id𝛼1𝑠

𝛼
1
(𝑠)
𝔠

𝛼
1

𝜖𝔠

We give the duplicator 𝛿 : 𝔰 → 𝔰 ⊳ 𝔰 using 𝛼2 for the codomain, and using the

composite # from 𝔠:

𝑓 # 𝑔

𝑠
𝔰

𝑓

𝑠
𝔰

𝑔

𝛼
2
(𝑠, 𝑓)

𝔰

cod

com

In Exercise 8.101 we check that (𝔰, 𝜖, 𝛿) really is a comonoid, that (𝛼1 , id) : 𝔰 ↛ 𝔠 is

a retrofunctor, that the roundtrips between cartesian retrofunctors and coalgebras

are identities, and that these assignments are functorial.

4 � 5: This is straightforward and was mentioned in Definition 7.96.

5 � 6: A right 0-comodule is in particular a polynomial 𝑚 ∈ Poly and a lens 𝜌 : 𝑚 →
𝑚 ⊳ 0 such that (𝑚 ⊳ 𝜖) ◦ 𝜌 = id𝑚 . This implies 𝜌 is monic, which itself implies by

Proposition 5.18 that 𝑚 must be constant since 𝑚 ⊳0 is constant. This makes 𝑚 ⊳ 𝜖

the identity, at which point 𝜌 must also be the identity. Conversely, for any set

𝑀, the corresponding constant polynomial is easily seen to make the diagrams

in (8.85) commute.

8.3. COMODULES OVER POLYNOMIAL COMONOIDS 335

5 � 7: By the adjunction in Theorem 5.4 and the fully faithful inclusion Set→ Poly of

sets as constant polynomials, Proposition 5.2, we have isomorphisms

Poly(𝑆y, 𝔠 ⊳ 𝑆y) � Set(𝑆, 𝔠 ⊳ 𝑆y ⊳ 1) = Set(𝑆, 𝔠 ⊳ 𝑆) � Poly(𝑆, 𝔠 ⊳ 𝑆).

One checks easily that if 𝑆y → 𝔠 ⊳ 𝑆y corresponds to 𝑆 → 𝔠 ⊳ 𝑆 under the above

isomorphism, then one is a left comodule if and only if the other is.

7 � 8: By (6.66) we have a natural isomorphism

Poly(𝑆y, 𝔠 ⊳ 𝑆y) � Poly(y𝑆 , y𝑆 ⊳ 𝔠).

In pictures,

𝑆

𝔠(1)
𝔠[]

𝑆

𝑓

𝑔

!

𝑆
𝔠(1)
𝔠[]

𝑆

!

𝑓

𝑔

The last claim was proven in Proposition 7.109. □

Exercise 8.101 (Solution here). Complete the proof of Theorem 8.100 (3 � 4) by proving

the following.

1. Show that (𝔰, 𝜖, 𝛿) really is a comonoid.

2. Show that (𝛼1 , id) : 𝔰 ↛ 𝔠 is a retrofunctor.

3. Show that the roundtrips between cartesian retrofunctors and coalgebras are

identities.

4. Show that the assignment of a C -coalgebra to a cartesian retrofunctor over C is

functorial.

5. Show that the assignment of a cartesian retrofunctor over C to a C -coalgebra is

functorial. ♦

Let C be a category. Under the above correspondence, the terminal functor C →
Set corresponds to the identity discrete opfibration C → C, the identity retrofunctor

C → C , a certain left C comodule with carrier C (1)y which we call the canonical left
C -comodule, a certain constant left C comodule with carrier C (1) which we call the

canonical (C , 0)-bicomodule, and a certain representable right C -comodule with carrier

yC (1)
which we call the canonical right C-comodule.

Exercise 8.102 (Solution here). For any object 𝑐 ∈ C, consider the representable functor
C(𝑐,−) : C→ Set. What does it correspond to as a

1. discrete opfibration over C?

2. cartesian retrofunctor to C ?

3. linear left C -comodule?

336 CHAPTER 8. CATEGORICAL PROPERTIES OF POLYNOMIAL COMONOIDS

4. constant left C -comodule?

5. (C , 0)-bicomodule?

6. representable right C -comodule?

7. dynamical system with comonoid interface C ? ♦

Exercise 8.103 (Solution here). We saw in Theorem 8.100 that the category CMod0 of

(C, 0)-bicomodule has a very nice structure: it’s the topos of copresheaves on C.

1. What is a (0,C)-bicomodule?

2. What is 0ModC? ♦

8.3.4 Bicomodules are parametric right adjoints

There is an equivalent characterization of bicomodules between a pair of polynomial

comonoids due to Richard Garner. Thus we attribute the foundational theory of Cat♯

to Ahman-Uustalu-Garner.

Proposition 8.104 (Garner). Let C and D be categories. Then the following can be

identified, up to isomorphism:

1. a (C,D)-bicomodule.

2. a parametric right adjoint SetD → SetC.
3. a connected limit-preserving functor SetD → SetC.

Parametric right adjoints model data migrations between categorical databases; see

[SW15].

When a polynomial

𝑚 B
∑
𝑖∈𝑚(1)

y𝑚[𝑖]

is given the structure of a (D ,C)-bicomodule, the symbols in that formula are given a

hidden special meaning:

𝑚(1) ∈ SetD and 𝑚[𝑖] ∈ SetC

Before we knew about bicomodule structures, what we called positions and direc-

tionswere understood as each forming an ordinary set. In the presence of a bicomodule

structure, the positions 𝑚(1) have been organized into a D-set and the directions 𝑚[𝑖]
have been organized into a C-set for each position 𝑖. We are listening for C-sets and

positioning ourselves in a D-set.

Definition 8.105 (Prafunctor). Let C and D be categories. A prafunctor (also called a

parametric right adjoint functor) SetC → SetD is one satisfying any of the conditions of

Proposition 8.104.

8.3. COMODULES OVER POLYNOMIAL COMONOIDS 337

8.3.5 Bicomodules in dynamics

We conclude with a peek at how bicomodules can model dynamical systems them-

selves.

Example 8.106 (Cellular automata). In Example 4.66 and Exercise 4.67 we briefly dis-

cussed cellular automata; herewewill discuss anotherway that cellular automata show

up, this time in terms of bicomodules.

Suppose that src, tgt : 𝐴⇒ 𝑉 is a graph, and consider the polynomial

𝑔 B
∑
𝑣∈𝑉

ysrc
−1(𝑣)

so that positions are vertices and directions are emanating arrows. It carries a natural

bicomodule structure

𝑉y

⊲ ⊳
𝑔

𝑉y

where the right structure lens uses tgt; see Exercise 8.107 for details. A bicomodule

𝑉y

⊲ ⊳𝑇 0

can be identified with a functor 𝑇 : 𝑉 → Set, i.e. it assigns to each vertex 𝑣 ∈ 𝑉 a set.

Let’s call 𝑇(𝑣) the color set at 𝑣; for many cellular automata we will put 𝑇(𝑣) � 2 for

each 𝑣.

Then a cellular automata on 𝑔 with color sets 𝑇 is given by a map

𝑉y 𝑉y 0⊲ ⊳
𝑔

⊲ ⊳

𝑇

⊲ ⊳𝑇

𝛼

Indeed, for every vertex 𝑣 ∈ 𝑉 the map 𝛼 gives a function∏
src(𝑎)=𝑣

𝑇(tgt(𝑎)) 𝛼𝑣−−−→ 𝑇(𝑣),

which we call the update function. In other words, given the current color at the target

of each arrow emanating from 𝑣, the function 𝛼𝑣 returns a new color at 𝑣.

Note that if𝑉 ∈ 𝑉yMod0 is the terminal object, then the composite𝑉y

⊲ ⊳
𝑔

𝑉y

⊲ ⊳𝑉 0
is again 𝑉 .

Exercise 8.107 (Solution here). Let src, tgt : 𝐴⇒ 𝑉 and 𝑔 and 𝑇 be as in Example 8.106.

1. Give the structure lens 𝜆 : 𝑔 → 𝑉y ⊳ 𝑔

2. Give the structure lens 𝜌 : 𝑔 → 𝑔 ⊳𝑉y.

338 CHAPTER 8. CATEGORICAL PROPERTIES OF POLYNOMIAL COMONOIDS

3. Give the set 𝑇 and the structure lens 𝑇 → 𝑉y ⊳ 𝑇 corresponding to the functor

𝑉 → Set that assigns 2 to each vertex. ♦

Example 8.108 (Running a cellular automaton). Let 𝑔 be a graph on vertex set 𝑉 , let

𝑇 assign a color set to each 𝑣 ∈ 𝑉 , and let 𝛼 be the update function for a cellular

automaton. As in Example 8.106, this is all given by a diagram

𝑉y 𝑉y 0⊲ ⊳
𝑔

⊲ ⊳

𝑇

⊲ ⊳𝑇

𝛼

To run the cellular automaton, one simply chooses a starting color in each vertex. We

call this an initialization; it is given by a map of bicomodules

𝑉y 0

⊲ ⊳
𝑉

⊲ ⊳
𝑇

⇓𝜎 (8.109)

Note that 𝑔 is a profunctor, i.e. for each 𝑣 ∈ 𝑉 the summand 𝑔𝑣 = ysrc
−1(𝑣)

is

representable, so it preserves the terminal object. In other words 𝑔 ⊳𝑉y 𝑉 � 𝑉 .

Now to run the cellular automaton on that initialization for 𝑘 ∈ N steps is given by

the composite

𝑉y · · · 𝑉y 𝑉y 0

𝑉y · · · 𝑉y 𝑉y 0

𝑉y · · · 𝑉y 0

𝑉y 0

⊲ ⊳
𝑔

⊲

⊳

𝑉

⊲ ⊳
𝑔 ⊲ ⊳

𝑔 ⊲ ⊳𝑉

⇓𝜎

⊲ ⊳
𝑔 ⊲ ⊳

𝑔 ⊲ ⊳
𝑔 ⊲ ⊳𝑇

⇓𝛼

⊲ ⊳
𝑔 ⊲ ⊳

𝑔 ⊲ ⊳𝑇

⊲ ⊳
𝑇

𝛼◦···◦𝛼

Exercise 8.110 (Solution here). Explain why (8.109) models an initialization, i.e. a way

to choose a starting color in each vertex. ♦

8.4. SUMMARY AND FURTHER READING 339

8.4 Summary and further reading

In this chapterwegavemoreof the theoryof ⊳-comonoids, sometimes calledpolynomial

comonads. We began by defining an adjunction

Cat♯ Poly
𝑈

⇒
T−

where T𝑝 is the cofree comonoid T𝑝 associated to any polynomial 𝑝, and we gave

intuition for it in terms of 𝑝-trees. A 𝑝-tree is a (possibly infinite) tree for which each

vertex is labeled by a position 𝑖 ∈ 𝑝(1) and its outgoing arrows are each labeled by

an element of 𝑝[𝑖]. The category corresponding to T𝑝 has 𝑝-trees as its objects; the

morphisms emanating from such a 𝑝-tree are the finite rooted paths up the tree, and

the codomain of such a path is the tree rooted at its endpoint.

We then briefly discussed some other properties of Cat♯ including a formal proof

of the fact that it has all limits and colimits. Colimits in Cat♯ are created by, i.e. fit

nicely with, colimits in Poly, but limits are quite strange; we did not really discuss

them here, but for example the product in Cat♯ of the walking arrow • → • with itself

has infinitely-many objects!

We thenmoved on to left-, right-, and bicomodules between polynomial comonoids.

In particular, we showed that left C-comodules can be identified with functors C →
Poly, and that (C,D)-bicomodules correspond to parametric right adjoint functors

(prafunctors) SetD → SetC. This idea was due to Richard Garner; it is currently un-

published, but can be found in video form here: https://www.youtube.com/watch?v=

tW6HYnqn6eI. Whatwe call prafunctors are sometimes called familial functors between

(co-)presheaf categories; see [Web07], [GH18], and [Sha21] for more on this notion.

8.5 Exercise solutions
Solution to Exercise 8.5.

With 𝑞 B y2 +3y1
, every vertex of a 𝑞-tree starting from the root has either 1 or 2 outgoing edges, from

which it follows that the tree is infinite and that every vertex has infinitely many descendents.

Solution to Exercise 8.11.
1. To select a 1-tree, we must select a position from 1. . . and then we are done, because there are no

directions. So there is a unique 1-tree given by a root and no edges, implying that tree1 � 1.
2. To select a 2-tree, we must select a position from 2. Then we are done, because there are no

directions. So every 2-tree is a root with no edges, and the root is labeled with one of the

elements of 2. Hence tree2 � 2.
3. To select a y-tree, we must select a position from 1; then for the unique direction at that position,

we must select a position from 1; and so forth. Since we only ever have 1 position to choose from,

there is only 1 such y-tree we can build: an infinite ray extending from the root, where every

vertex has exactly 1 child. Hence treey � 1.
4. To select a y2

-tree, we must select a position from 1; then for each direction at that position, we

must select a position from 1; and so forth. We only ever have 1 position to choose from, so there

https://www.youtube.com/watch?v=tW6HYnqn6eI
https://www.youtube.com/watch?v=tW6HYnqn6eI

340 CHAPTER 8. CATEGORICAL PROPERTIES OF POLYNOMIAL COMONOIDS

is only 1 such y2
-tree: an infinite binary tree, where every vertex has exactly 2 children. Hence

treey2 � 1.
5. To select a 2y-tree, wemust select a position from 2; then for the unique direction at that position,

we must select a position from 2; and so forth, one position out of 2 for each level of the tree. So

every 2y-tree is an infinite ray, where every vertex is labeled with an element of 2 and has exactly

1 child. There is then a unique vertex of height 𝑛 for each 𝑛 ∈ N, so there is a bĳection between

2y-trees 𝑇 and functions 𝑓 : N→ 2, where 𝑓 (𝑛) ∈ 2 is the label of the height-𝑛 vertex of 𝑇. Hence

tree2y � 2N.
6. To select a (y+1)-tree, we choose either a positionwith 1 direction or a positionwith no directions:

if the position has no directions, we stop, and if the position has 1 direction, we repeat our choice

for the next level. So a choice of (y + 1)-tree is equivalent to a choice of when, if ever, to stop.

That is, for each 𝑛 ∈ N, there is a unique (y+ 1)-tree of height-𝑛 consisting of 𝑛 + 1 vertices along

a single path, so that every vertex aside from the height-𝑛 leaf has exactly 1 child. Then there

is exactly one more (y + 1)-tree: an infinite ray, obtained by always picking the position with

1 directions and never the one with no directions. Hence we could write treey+1 � N ∪ {∞}
(although this set is in bĳection with N).

7. To select a 𝐵y𝐴-tree for fixed 𝐴, 𝐵 ∈ Set, we must select a position from 𝐵; then for each direction

in 𝐴 at that position, we must select a position from 𝐵; and so forth. This yields a tree in which

every vertex has 𝐴-many children and a label from 𝐵. Such a tree has 1 root and |𝐴| times as

many vertices in one level than the level below it, so its height-𝑛 vertices for each 𝑛 ∈ N are in

bĳection with the set 𝐴n
: each 𝑛-tuple in 𝐴n

gives a length-𝑛 rooted path of directions in 𝐴 to

follow up the tree, uniquely specifying a height-𝑛 vertex. So the set of all vertices is given by∑
𝑛∈N 𝐴n = List(𝐴). Then specifying a 𝐵y𝐴-tree amounts to assigning a label from 𝐵 to every

vertex via a function List(𝐴) → 𝐵. Hence tree𝐵y𝐴 � 𝐵List(𝐴)
.

Solution to Exercise 8.12.
1. Yes: by Exercise 8.11 #11 in the case of 𝐵 = 1, or by analogy with Exercise 8.11 #7 and #8, we have

that treeyn is the set of n-ary trees.

2. Yes: by Exercise 8.11 #11, we have that tree𝐿yn is the set of 𝐿-labeled n-ary trees.

Solution to Exercise 8.14.
We defined tree𝑝 in Definition 8.2 as a rooted tree 𝑇 where every vertex 𝑣 is labeled with an element

of 𝑝(1), together with a choice of bĳection between the set of 𝑣’s children and the set 𝑝[𝑖]. We need to

translate between that description and the description as the set-theoretic limit

1← 𝑝(1) ← 𝑝(𝑝(1)) ← · · ·

An element of this set consists of an element of 1, which is determined, an element 𝑖 ∈ 𝑝(1), an element

(𝑖
1
, 𝑖

2
) ∈ ∑

𝑖∈𝑝(1)
∏
𝑑∈𝑝[𝑖] 𝑝(1) that “agrees”with 𝑖, an element of

∑
𝑖1∈𝑝(1)

∏
𝑑1∈𝑝[𝑖1]

∑
𝑖2∈𝑝(1)

∏
𝑑2∈𝑝[𝑖2] 𝑝(1)

that agrees, etc. But all this agreement is easy to simplify: we need elements

𝑖
1
∈ 𝑝(1),

𝑖
2
∈

∏
𝑑1∈𝑝[𝑖1]

𝑝(1),

𝑖
3
∈

∏
𝑑1∈𝑝[𝑖1]

∏
𝑑2∈𝑝[𝑖2𝑑1]

𝑝(1),

𝑖
4
∈

∏
𝑑1∈𝑝[𝑖1]

∏
𝑑2∈𝑝[𝑖2𝑑1]

∏
𝑑3∈𝑝[𝑖3𝑑1𝑑2]

𝑝(1)

...

To go from the former description to the latter, take such a rooted tree 𝑇 and let 𝑖
1
be the label on the

root vertex. Since by assumption there is a bĳection between the set children of that vertex and the set

8.5. EXERCISE SOLUTIONS 341

𝑝[𝑖
1
], take 𝑖

2
: 𝑝[𝑖

1
] → 𝑝(1) to assign to each 𝑑

1
∈ 𝑝[𝑖

1
] the label on the associated child vertex. Repeat

this indefinitely.

To go from the latter description to the former, simply invert the description in the previous paragraph.

Solution to Exercise 8.16.
1. To give a function 𝑡 : tree𝑝 → 𝑝(tree𝑝) we need to choose, for each tree 𝑇 ∈ tree𝑝 , an element

𝑖 ∈ 𝑝(1) and a function 𝑇.− : 𝑝[𝑖] → tree𝑝 . Choose 𝑖 to be the label on the root of 𝑇, and choose

𝑇.𝑑 to be the tree obtained by following the branch labeled 𝑑 for any 𝑑 ∈ 𝑝[𝑖].
2. Given an arbitrary coalgebra (𝑆, 𝑓), where 𝑆 ∈ Set and 𝑓 : 𝑆→ 𝑝 ⊳ 𝑆, we need to show that there

is a unique function 𝑢 : 𝑆→ tree𝑝 that commutes with 𝑓 and 𝑡, i.e. with 𝑡 ◦ 𝑢 = 𝑝(𝑓).
For each 𝑛, we have a function 𝑓𝑛 : 𝑆→ 𝑝⊳ 𝑛 ⊳ 𝑆 by induction: for 𝑛 = 0 use the identity function

𝑆→ 𝑆 and given 𝑆→ 𝑝⊳ 𝑛 ⊳𝑆we compose with 𝑝⊳ 𝑛 ⊳ 𝑓 to get 𝑆→ 𝑝⊳ 𝑛 ⊳ 𝑝 ⊳𝑆. Let 𝑓 ′𝑛 : 𝑆→ 𝑝⊳ 𝑛(1)
be given by 𝑓 ′𝑛 B 𝑓𝑛 # (𝑝⊳ 𝑛⊳!. We know by Exercise 8.14 that tree𝑝 is the limit of 𝑝⊳ 𝑛(1), so we get

a unique map (𝑓 ′𝑛)𝑛∈N : 𝑆→ tree𝑝 . It commutes with 𝑓 and 𝑡 by construction, and the fact that it

is constructed using the universal property of limits implies that it is appropriately unique.

3. The function tree𝑝 → 𝑝 ⊳ tree𝑝 from the first part is invertible. Indeed, given 𝑖 ∈ 𝑝(1) and
𝑇′ : 𝑝[𝑖] → tree𝑝 , we construct an element of tree𝑝 by taking its root to be labeled with 𝑖, its set of

children to be 𝑝[𝑖], and for each 𝑑 ∈ 𝑝[𝑖] taking the remaining tree to be 𝑇′(𝑑).

Solution to Exercise 8.17.
For thegivenvalues of 𝑝, wehave already characterized theposition-set 𝔱𝑝(1) � tree𝑝 of 𝔱 inExercise 8.11,
so it remains to characterize the directions at each position, i.e. the vertices of each 𝑝-tree.

1. We saw that tree1 � 1 and that the unique 1-tree has a single vertex, its root. Equivalently, it has
only 1 rooted path: the empty path from the root to itself. So 𝔱1 � 1y1 � y.

2. We saw that tree2 � 2 and that each 2-tree has a single vertex, its root. Equivalently, its only

rooted path is the empty path. So 𝔱2 � 2y1 � 2y.
3. We saw that treey � 1 and that the unique y-tree is a single ray extending from the root, where

every vertex has exactly 1 child. So there is exactly 1 vertex of height-𝑛 for each 𝑛 ∈ N, yielding

a bĳection between the vertices of the y-tree to N. Equivalently, the ray has exactly 1 rooted path

of length 𝑛 for each 𝑛 ∈ N. So 𝔱y � yN.

4. We saw that treey2 � 1 and that the unique y2
-tree is an infinite binary tree, where every

vertex has exactly 2 children. So the vertices of height-𝑛 are in bĳection with 2n
, yielding a

bĳection between the vertices of the y2
-tree to

∑
𝑛∈N 2n � List(2). Equivalently, the rooted paths

of an infinite binary tree are just finite binary sequences, which comprise the set List(2). Hence

𝔱y2 � yList(2)
.

5. We saw that tree2y � 2N, and that every 2y-tree is an infinite ray, whose vertices (or rooted paths)

are in bĳection with N. Hence 𝔱2y � 2NyN.
6. We saw that treey+1 � N ∪ {∞}. Here the (y + 1)-tree corresponding to 𝑛 ∈ N consists of 𝑛 + 1

vertices along a single path, so that every vertex aside from the height-𝑛 leaf has exactly 1 child;

and the (y + 1)-tree corresponding to∞ is an infinite ray. Thus the direction-set of 𝔱y+1 at 𝑛 ∈ N
is n + 1, while its direction-set at∞ is N. Hence 𝔱y+1 � {∞}yN +

∑
𝑛∈N yn+1

.

7. We saw that tree𝐵y𝐴 � 𝐵List(𝐴)
, where the height-𝑛 vertices of a given 𝐵y𝐴-tree are in bĳection

with the set 𝐴n
, so the set of all vertices of a 𝐵y𝐴-tree is given by

∑
𝑛∈N 𝐴n = List(𝐴). Equivalently,

the rooted paths of the 𝐵y𝐴-tree are just finite sequences in 𝐴, which comprise the set List(𝐴).
Hence 𝔱𝐵y𝐴 � 𝐵

List(𝐴)yList(𝐴)
.

Solution to Exercise 8.36.
1. We compute 𝔱𝐵 as follows. To select a 𝐵-tree, wemust select a position from 𝐵. Then we are done,

because there are no directions. So every 𝐵-tree consists of 1 vertex labeled with an element of

𝐵. Hence the set of 𝐵-trees 𝔱𝐵(1) = tree𝐵 is in bĳection with 𝐵 itself, yielding 𝔱𝐵 � 𝐵y. (We could

have also applied Exercise 8.17 #7 in the case of 𝐴 = 0, yielding 𝔱𝐵y0 � 𝐵List(0)yList(0) � 𝐵y, as
List(0) � 1 + 01 + 02 + · · · � 1—the empty sequence is the only sequence with elements in 0.)

342 CHAPTER 8. CATEGORICAL PROPERTIES OF POLYNOMIAL COMONOIDS

2. We characterize the 𝐵-tree category T𝐵 as follows. We saw in Exercise 7.27 and Exercise 7.36 that

(up to isomorphism) there is a unique comonoid structure on 𝐵y, corresponding to the discrete

category on 𝐵. So T𝐵 must be isomorphic to the discrete category on 𝐵. In the language of

𝐵-trees, the objects of T𝐵 are trees with exactly 1 vertex, labeled with an element of 𝐵. Each tree

has an identity morphism, its root; but there are no vertices aside from the root, so there are

no morphisms aside from the identities. In particular, the only 𝐵-subtree of any one 𝐵-tree is

the entire 𝐵-tree itself, so there are no morphisms from one 𝐵-tree to a different 𝐵-tree. So the

category of 𝐵-trees can indeed be identified with the discrete category on 𝐵.

Solution to Exercise 8.40.
We characterize T𝐵y𝐴 , following Example 8.39.

• The objects are 𝐵y𝐴-trees. By Exercise 8.17 #7, or Exercise 8.12 #2 with 𝐿 B 𝐵 and n replaced

with an arbitrary set 𝐴, a 𝐵y𝐴-tree is a (infinite, assuming |𝐴|, |𝐵| > 0) tree whose every vertex

is labeled by an element of 𝐵 and whose children are in bĳection with 𝐴. We can call these

𝐵-labeled 𝐴-ary trees; they are in bĳection with the set 𝐵List(𝐴)
.

• A morphism out of a 𝐵-labeled 𝐴-ary tree is a finite list of directions in 𝐴, or a rooted path in

an 𝐴-ary tree. They comprise the set List(𝐴). The codomain of each rooted path is the 𝐵-labeled

𝐴-ary subtree rooted at the end of the path.

• The identity morphism on a given 𝐵-labeled 𝐴-ary tree is its empty rooted path.

• The composite of two lists in 𝐴 is obtained by concatenation.

Solution to Exercise 8.41.
We characterize Ty+1 as follows.

• The objects are (y + 1)-trees. By Exercise 8.17 #6, a (y + 1)-tree is either a single length-𝑛 path for

some 𝑛 ∈ N, which we denote by [𝑛], or a ray, which we denote by [∞]. So the set of objects is

treey+1 = {[𝑛] | 𝑛 ∈ N ∪ {∞}} � N ∪ {∞}.
• A finite (y + 1)-tree [𝑛] for 𝑛 ∈ N has 𝑛 + 1 rooted paths: 1 each of length 0 through 𝑛, inclusive.

So a morphism out of [𝑛] can be identified with an element of the set {0, . . . , 𝑛}.
Meanwhile, the infinite (y+ 1)-tree [∞], a ray, has exactly 1 rooted path of every length ℓ ∈ N. So

a morphism out of [∞] can be identified with an element of the set N. Every (y + 1)-subtree of

the ray is still a ray, so the codomain of each of these morphisms is still [∞].
• The identity morphism on a given 𝐵-labeled 𝐴-ary tree is its empty rooted path.

• The composite of two lists in 𝐴 is obtained by concatenation.

Solution to Exercise 8.42.
1. An object in T𝑝 is a stream of letters 𝑎, 𝑏, . . . , 𝑧 and spaces ␣, that may go on forever or may end

with a gigantic period, “•”. So an example is the infinite stream 𝑎𝑎𝑎𝑎𝑎 · · · . Another example is

ℎ𝑒𝑙𝑙𝑜␣𝑤𝑜𝑟𝑙𝑑•.
2. The object 𝑎𝑎𝑎𝑎𝑎 · · · has N as its set of emanating morphisms. The object ℎ𝑒𝑙𝑙𝑜␣𝑤𝑜𝑟𝑙𝑑• has

{0, . . . , 11} as its set of emanating morphisms.

3. The codomain of any morphism out of 𝑎𝑎𝑎𝑎𝑎 · · · is again 𝑎𝑎𝑎𝑎𝑎 · · · . The codomain of any

morphism 0 ≤ 𝑖 ≤ 11 out of ℎ𝑒𝑙𝑙𝑜␣𝑤𝑜𝑟𝑙𝑑• is the string one obtains by removing the first 𝑖 letters

of ℎ𝑒𝑙𝑙𝑜␣𝑤𝑜𝑟𝑙𝑑•.

Solution to Exercise 8.43.
1.

•
•
•
•
•

•
•
• •

2. The identity morphism at 𝑡 is the trivial path starting at the root node.

8.5. EXERCISE SOLUTIONS 343

3. We indicate a morphism 𝑓 using thick arrows:

•
•
•
•
•

•
•
• •

4. The codomain of 𝑓 is the tree rooted at the target of the path, namely

•
• •

5. Here’s a morphism emanating from the codomain of 𝑓 :

•
• •

6. The composite morphism on the original tree is:

•
•
•
•
•

•
•
• •

Solution to Exercise 8.44.
Take 𝑝 B 2y, and consider the object 𝑥 ∈ T𝑝(1) given by the stream

𝑥 B (2 12 112 1112 11112 111112 . . .)

(with spaces only for readability); note that everymorphismemanating from 𝑥 has adifferent codomain.

We need to give 𝜑♯
𝑖
(𝑞) for every 𝑖 ∈ T𝑝(1) and 𝑞 ≥ 0. Define

𝜑♯
𝑖
(𝑞) B

{
𝑖 if 𝑖 ≠ 𝑥 or 𝑞 = 0

𝑥′ if 𝑖 = 𝑥 and 𝑞 > 0

where 𝑥′ B (12 112 1112 11112 111112 . . .). There are three retrofunctor conditions to check, namely

identity, codomains, and composition. The codomain condition is vacuous since y𝑄 has one object, and

the identity condition holds by construction, because we always have 𝜑♯
𝑖
(0) = 𝑖. Now take 𝑞

1
, 𝑞

2
∈ 𝑄;

we need to check that

𝜑♯

cod 𝜑♯
𝑖
(𝑞1)
(𝑞

2
) =? 𝜑♯

𝑖
(𝑞

1
+ 𝑞

2
)

holds. If 𝑖 ≠ 𝑥 or 𝑞
1
= 𝑞

2
= 0, then it holds because both sides equal 𝑖. If 𝑖 = 𝑥 and either 𝑞

1
> 0 or

𝑞
2
> 0, it is easy to check that both sides equal 𝑥′, so again it holds.

Solution to Exercise 8.53.
Recall that 𝑝 B {•}y2 + {•} and 𝑞 B {•, •}y + {•, •}.

1. Have 𝜑 : 𝑝 → 𝑞 send forward • ↦→ •, with the unique element of 𝑞[•] sent back to the left branch

of 𝑝[•], and send forward • ↦→ •.
2. Here is a sample 𝑇 ∈ tree𝑝 .

•

•

• •

•

344 CHAPTER 8. CATEGORICAL PROPERTIES OF POLYNOMIAL COMONOIDS

3. Here is T𝜑(𝑇):

•

•

•

Solution to Exercise 8.54.
1. By the adjunction from Theorem 8.45, retrofunctors T𝑝 → T𝑝⊳ 𝑛 are in bĳection with lenses

𝔱𝑝 → 𝑝⊳ 𝑛 , where 𝔱𝑝 = 𝑈T𝑝 is the carrier.

From Proposition 7.20 we have a lens 𝛿(𝑛) : T𝑝 → T ⊳ 𝑛
𝑝 , and we also have the counit of the cofree

adjunctionwhichwe’ll temporarily call 𝑟 : T𝑝 → 𝑝. Then the desired lens is (𝛿(𝑛) #𝑟⊳ 𝑛) : 𝔱𝑝 → 𝑝⊳ 𝑛 .

2. When 𝑛 = 1 the induced retrofunctor is an isomorphism, but for 𝑛 ≥ 2 it is not. However, we

should start by saying that the function on objects tree𝑝 → tree𝑝⊳ 𝑛 is a bĳection. It sends a 𝑝-tree
to the 𝑝⊳ 𝑛 tree that simply compresses every height-𝑛 segment into a single vertex, labeled by

that height-𝑛 segment. To go back, just decompress the segments. But this is not a bĳection on

maps, because every rooted path on tree𝑝⊳ 𝑛 would correspond to a rooted path on tree𝑝 whose

length is a multiple of 𝑛. When 𝑛 = 2 and 𝑝 = y+1, some rooted paths in tree𝑝 have odd lengths.

Solution to Exercise 8.62.
A category 𝑆y with linear carrier is a discrete category on 𝑆, so we need to show that a retrofunctor

between the discrete category on 𝑆 and the discrete category on𝑇 is the same thing as a function 𝑆→ 𝑇.

But this is clear: a retrofunctor 𝑆y → 𝑇y is a function 𝑆 → 𝑇 on objects and a function backwards on

morphisms, and the latter is unique because each object in 𝑆y has a unique outgoing morphism.

Solution to Exercise 8.65.
1. Given an object 𝑖 ∈ 𝔠′(1) = 𝔠(1), the set of emanatingmorphisms is 𝔠′[𝑖] B 𝔡[𝑓 𝑖], and they compose

according to the structure of 𝔡. Since morphisms in 𝔡 compose associatively and unitaly, so do

morphisms in 𝔠′.

2. Given 𝑖 ∈ 𝔠(1) and 𝑚 ∈ 𝔠′[𝑖] = 𝔡[𝑓 𝑖], we have 𝑔(cod(𝑔♯
𝑖
(𝑚))) = cod(𝑔♯

𝑖
(𝑚)) = cod(𝑓 ♯

𝑖
(𝑚)) = cod(𝑚)

by definition.

3. For any 𝑖 ∈ 𝔠′(1), the lens 𝑔♯
𝑖
preserves compositions of morphisms in 𝔠′[𝑖] = 𝔡[𝑓 𝑖] because it

agrees with 𝑓
♯
𝑖
, which preserves compositions.

4. Given 𝑖 ∈ 𝔠′(1) and 𝑚 ∈ 𝔡[ℎ𝑖], we have ℎ(cod(ℎ♯
𝑖
(𝑚))) = 𝑓 (cod(𝑓 ♯

𝑖
(𝑚))) = 𝑚.

5. The map ℎ
♯
𝑖
was chosen to be the identity for each 𝑖, so it certainly preserves compositions.

Solution to Exercise 8.68.
The category corresponding to 𝑆y𝑆 is the contractible groupoid𝐾𝑠 on 𝑆. A vertical retrofunctor𝐾𝑆 ↛ C

includes a bĳection on objects, sowe can assume that Ob(C) = 𝑆. But the rest of the retrofunctor assigns
to each map 𝑠

1
→ 𝑠

2
in C some choice of morphism 𝑠

1
→ 𝑠

2
in 𝐾𝑆 , and there is exactly one. Thus the

retrofunctor includes no additional data.

Solution to Exercise 8.69.
Let’s take the two nonidentity arrows in C to be labeled 𝑠, 𝑡 and the unique nonidentity arrow in D to

be labeled 𝑓 . Then the carrier of C is 𝔠 B y{id1 ,𝑠 ,𝑡} + y{id2}
and that of D is 𝔡 B y{id1 , 𝑓 } + y{id2}

.

1. The boo functor 𝐹 : C → D can be identified with a vertical retrofunctor 𝔡 → 𝔠 that sends back

id
1
↦→ id

1
and 𝑠 ↦→ 𝑓 and 𝑡 ↦→ 𝑓 and id

2
↦→ id

2
.

2. For 𝐺
1

: D → C, which we take to send 𝑓 ↦→ 𝑠, the corresponding vertical retrofunctor 𝔠 → 𝔡

sends back id
1
↦→ id

1
and 𝑓 ↦→ 𝑠 and id

2
↦→ id

2
.

Solution to Exercise 8.74.
1. We actually already showed that 0 has a unique comonoid structure, corresponding to the empty

category (which we will also denote by 0), in Exercise 7.39, for the case of 𝑆 B 0.

8.5. EXERCISE SOLUTIONS 345

2. We show that 0 has the universal property of the initial object inCat♯ as follows. For any category

D, there is a unique retrofunctor 0 ↛ D: it vacuously sends each object in 0 to an object in D,

and since there are no objects in 0, it does nothing to morphisms.

Alternatively, we know by Corollary 8.72 that Cat♯ has an initial object, and that the forgetful

functor Cat♯ → Poly sends it to the initial object in Poly, which is 0 (by Proposition 3.3 and the

following discussion). So the initial object in Cat♯ must be the unique comonoid carried by 0.

Solution to Exercise 8.75.
The coproduct of 𝔠with itself is again a comonoid (as a category it is the disjoint union of 𝔠with itself)

and it has the right carrier polynomial, since the carrier functor𝑈 : Cat♯ → Poly is a left adjoint.

Solution to Exercise 8.78.
1. The highbrow way to check that 𝔠 ⊗ 𝔡 forms a comonoid is to say that

⊗ : (Poly, y, ⊳) × (Poly, y, ⊳) −→ (Poly, y, ⊳)

is a colax monoidal functor, so it sends comonoids to comonoids. A lowbrow way to check it is

to see that the category corresponding to 𝔠 ⊗ 𝔡 is just the usual cartesian product C ×D in Cat.
This is a category, hence a comonoid in Poly.

2. Because ⊗ is symmetric, it suffices to show that for any retrofunctor 𝜑 : C ↛ C′, there is an

induced retrofunctor 𝜑 ⊗ D : C ⊗ D ↛ C′ ⊗ D.

Solution to Exercise 8.80.
1. The carrier of Ty is 𝔱y B yN.

2. The lens y→ 𝔱y is the unique lens.

3. Given a 𝑝-tree 𝑇 and a 𝑞-tree 𝑈 , we get a (𝑝 ⊗ 𝑞)-tree by having its root be labeled by the pair of

root labels for 𝑇 and𝑈 , and for each child there—the set of which is the set of pairs consisting of

a child in𝑇 and a child in𝑈—recursively using the above formula to combine these two children.

Solution to Exercise 8.83.
In Definition 8.81, if the carrier of the left C-comodule is always chosen to be a constant polynomial, i.e.

a set, then we recover Definition 7.96. Hence constant left C-comodules are precisely left C-coalgebras;

their notions of morphisms coincide as well, so the categories they form are isomorphic.

Solution to Exercise 8.86.
1. Here is the first equation in terms of polyboxes:

𝑥

𝑎
𝑚

𝑥

𝑎
𝑚

𝜆♯
𝑎(id|𝑎| , 𝑥)

𝑎

𝑚

id|𝑎|

|𝑎|

𝑥

𝑎.id|𝑎|
𝑚

𝜆

𝜖𝔠

=

The equation says that for any 𝑎 ∈ 𝑚(1)we have 𝑎 = 𝑎.id|𝑎| B 𝜆(𝑎, id|𝑎|) and that for any 𝑥 ∈ 𝑚[𝑎]
we have 𝑥 = 𝑥′ B 𝜆♯

𝑎(id|𝑎| , 𝑥).

346 CHAPTER 8. CATEGORICAL PROPERTIES OF POLYNOMIAL COMONOIDS

Here is the second equation in terms of polyboxes:

𝜆♯
𝑎((𝑓 # 𝑓 ′), 𝑥)

𝑎

𝑚

𝑓 # 𝑓 ′

|𝑎|
𝔠

𝑥

𝑎.(𝑓 # 𝑓 ′)

𝑚

𝑓

|𝑎|
𝔠

𝑓 ′

cod 𝑓
𝔠

𝑥

𝑎.(𝑓 # 𝑓 ′)
𝑚

𝜆

𝛿

𝜆♯
𝑎(𝑓 ,𝜆

♯
𝑎. 𝑓
(𝑓 ′, 𝑥))

𝑎

𝑚

𝑓

|𝑎|
𝔠

𝜆♯
𝑎. 𝑓
(𝑓 ′, 𝑥)

𝑎. 𝑓

𝑚

𝑓

|𝑎|
𝔠

𝑓 ′

|𝑎. 𝑓 |
𝔠

𝑥

(𝑎. 𝑓). 𝑓 ′
𝑚

𝜆

𝜆

=

These say that cod(𝑓) = |𝑎. 𝑓 |, that 𝑎.(𝑓 # 𝑓 ′) = (𝑎. 𝑓). 𝑓 ′, and that 𝜆♯
𝑎((𝑓 # 𝑓 ′), 𝑥) = 𝜆♯

𝑎(𝑓 ,𝜆
♯
𝑎. 𝑓
(𝑓 ′, 𝑥)).

2.

𝑥

𝑎
𝑚

𝑥

𝑎
𝑚

𝜌♯𝑎(𝑥, id|𝑎′.𝑥|)

𝑎

𝑚

𝑥

𝑎′
𝑚

id|𝑎′.𝑥|

|𝑎′.𝑥|
𝜌

𝜖𝔡

=

The equation says that for any 𝑎 ∈ 𝑚(1) we have 𝑎 = 𝑎′ B 𝜌
1
(𝑖) and that for any 𝑓 ∈ 𝑚[𝑎] we

have 𝑥 = 𝜌♯𝑎(𝑥, id|𝑎′.𝑥|).

8.5. EXERCISE SOLUTIONS 347

Here is the second equation in terms of polyboxes:

𝜌♯𝑎(𝜌
♯
𝑎(𝑥, 𝑔), 𝑔′)
𝑎

𝑚

𝜌♯
𝑖
(𝑥, 𝑔)

𝑎

𝑚

𝑔′

|𝑎.𝜌♯𝑎(𝑥, 𝑔)|

𝔡

𝑥

𝑎
𝑚

𝑔

|𝑎.𝑥|
𝔡

𝑔′

|𝑎.𝜌♯𝑎(𝑥, 𝑔)|
𝔡

𝜌

𝜌

𝜌♯𝑎(𝑥, (𝑔 # 𝑔′))
𝑎

𝑚

𝑥

𝑎

𝑚

𝑔 # 𝑔′

|𝑎.𝑥|

𝔡

𝑥

𝑎
𝑚

𝑔

|𝑎.𝑥|
𝔡

𝑔′

cod 𝑔
𝔡

𝜌

𝛿

=

These equations say that cod(𝑔) = |𝑎.𝜌♯𝑎(𝑥, 𝑔)| and that 𝜌♯𝑎(𝜌
♯
𝑎(𝑥, 𝑔), 𝑔′) = 𝜌♯𝑎(𝑥, (𝑔 # 𝑔′)).

Solution to Exercise 8.87.
The comonoid structure on y has 𝜖 : y→ y and 𝛿 : y→ y ⊳ y = y the unique lenses.

1. We first show that for any polynomial 𝑚, there is a unique y-comodule structure on 𝑚. By (8.82),

a y-comodule structure is a lens 𝜆 : 𝑚 → y ⊳𝑚 = 𝑚 such that 𝜆 # (! ⊳𝑚) = id𝑚 , but ! ⊳𝑚 = id𝑚 , so

𝜆 = id𝑚 is forced. A morphism (𝑚, id) → (𝑛, id𝑛) of y-comodules is also easily seen to be just a

lens 𝑚 → 𝑛.

2. Similar.

Solution to Exercise 8.99.
1. By Exercise 8.87, it suffices to check that the diagram (8.97) commutes vacuously when 𝔡 = y.

2. By Exercise 8.87, it suffices to check that the diagram (8.97) commutes vacuously when 𝔠 = y.

3. This follows from Exercise 8.87.

4. This follows from Exercise 8.87.

Solution to Exercise 8.107.
For each 𝑣 ∈ 𝑉 , let 𝐴𝑣 B src

−1(𝑣), the set of arrows emanating from 𝑣.

1. We need a lens

∑
𝑣∈𝑉 y𝐴𝑣 → 𝑉

∑
𝑣∈𝑉 y𝐴𝑣 , and we use the obvious “diagonal” lens, which on

positions sends 𝑣 ↦→ (𝑣, 𝑣) and on directions is the identity.

2. We need a lens

∑
𝑣∈𝑉 y𝐴𝑣 → ∑

𝑣∈𝑉
∏
𝑎∈𝐴𝑣

∑
𝑣∈𝑉 y, which is the same as an element of∏

𝑣∈𝑉

∑
𝑣′∈𝑉

∏
𝑎∈𝐴𝑣′

∑
𝑣′′∈𝑉

𝐴𝑣

and we use 𝑣 ↦→ (𝑣, 𝑎 ↦→ tgt(𝑎), 𝑎). Most of this is forced on us, and the only interesting part is

the function 𝐴𝑣 → 𝑉 , which we can take to be anything, the choice being exactly the choice of

“target map” that defines our graph.

348 CHAPTER 8. CATEGORICAL PROPERTIES OF POLYNOMIAL COMONOIDS

3. Let 𝑇 = 2𝑉 and take the map 2𝑉 → 𝑉 × 2𝑉 to be (𝑖 , 𝑣) ↦→ (𝑣, 𝑖, 𝑣) for any 𝑖 ∈ 2 and 𝑣 ∈ 𝑉 .

Solution to Exercise 8.110.
Recall that the (𝑉y, 0)-bicomodule 𝑇 assigns to each vertex 𝑣 ∈ 𝑉 some set 𝑇𝑣 of “colors”, whereas the

(𝑉y, 0)-bicomodule 𝑉 assigns each vertex a singleton set. A map 𝑉 → 𝑇 between them chooses one

color for each vertex, which we’re calling the “starting color”.

Chapter 9

New horizons

In this brief chapter, we lay out some questions that whose answers may or may not

be known, but which were not known to us at the time of writing. They vary from

concrete to open-ended, they are not organized in any particular way, and are in no

sense complete. Still we hope they may be useful to some readers.

1. What can you say about comonoids in the category of all functors Set→ Set, e.g.
ones that aren’t polynomial.

2. What can you say about the internal logic for the topos [T𝑝 , Set] of dynamical

systems with interface 𝑝, in terms of 𝑝?

3. How does the logic of the topos T𝑝 help us talk about issues that might be useful

in studying dynamical systems?

4. Morphisms 𝑝 → 𝑞 in Poly give rise to left adjoints T𝑝 → T𝑞 that preserve

connected limits. These are not geometric morphisms in general; in some sense

they are worse and in some sense they are better. They are worse in that they

do not preserve the terminal object, but they are better in that they preserve

every connected limit not just finite ones. How do these left adjoints translate

statements from the internal language of 𝑝 to that of 𝑞?

5. Consider the ×-monoids and ⊗-monoids in three categories: Poly, Cat♯, and
Mod. Find examples of these comonoids, and perhaps characterize them or

create a theory of them.

6. The category Poly has pullbacks, so one can consider the bicategory of spans in

Poly. Is there a functor from that to Mod that sends 𝑝 ↦→ T𝑝?

7. Databases are static things, whereas dynamical systems are dynamic; yet we see

them both in terms of Poly. How do they interact? Can a dynamical system read

from or write to a database in any sense?

8. Can we do database aggregation in a nice dynamic way?

9. In the theory of polynomial functors, sums of representable functors Set→ Set,
what happens if we replace sets with homotopy types: howmuch goes through?

Is anything improved?

10. Are there any functors Set → Set that aren’t polynomial, but which admit a

349

350 CHAPTER 9. NEW HORIZONS

comonoid structure with respect to composition (y, ⊳)?
11. Characterize the monads in poly. They’re generalizations of one-object operads

(which are the Cartesian ones), but how can we think about them?

12. Describe the limits that exist in Cat♯ combinatorially.

13. Since the forgetful functor𝑈 : Cat♯ → Poly is faithful, it reflectsmonomorphisms:

if 𝑓 : C ↛ D is a retrofunctor whose underlying map on carriers is monic, then it

is monic. Are all monomorphisms in Cat♯ of this form?

14. Are there polynomials 𝑝 such that one use something like Gödel numbers to

encode logical propositions from the topos [tree𝑝 , Set] into a “language” that

𝑝-dynamical systems can “work with”?

Bibliography

[AAG05] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. “Containers: Con-

structing strictlypositive types”. In:Theoretical Computer Science342.1 (2005).
Applied Semantics: Selected Topics, pp. 3–27 (cit. on p. 37).

[Abb+03] Michael Abbott, Thorsten Altenkirch, Neil Ghani, and Conor McBride.

“Derivatives of containers”. In: International Conference on Typed Lambda
Calculi and Applications. Springer. 2003, pp. 16–30 (cit. on p. 51).

[Abb03] MichaelGordonAbbott. “Categories ofContainers”. PhD thesis.University

of Leicester, Aug. 2003 (cit. on p. 37).

[Abo+16] Faris Abou-Saleh, James Cheney, Jeremy Gibbons, James McKinna, and

Perdita Stevens. “Reflections on monadic lenses”. In: A List of Successes that
can Change the World. Springer, 2016, pp. 1–31 (cit. on p. 72).

[Agu97] Marcelo Aguiar. Internal categories and quantum groups. Cornell University,
1997 (cit. on pp. 262, 278).

[AU16] Danel Ahman and Tarmo Uustalu. “Directed Containers as Categories”.

In: EPTCS 207, 2016, pp. 89-98 (2016). eprint: arXiv:1604.01187 (cit. on

p. 277).

[Bor94] Francis Borceux. Handbook of categorical algebra 1. Vol. 50. Encyclopedia
of Mathematics and its Applications. Basic category theory. Cambridge

University Press, Cambridge, 1994 (cit. on p. 18).

[BPS19] Erwan Beurier, Dominique Pastor, and David I Spivak. “Memoryless sys-

tems generate the class of all discrete systems”. In: International Journal of
Mathematics and Mathematical Sciences 2019 (2019) (cit. on p. 129).

[BPV06] Aaron Bohannon, Benjamin C Pierce, and Jeffrey A Vaughan. “Relational

lenses: a language for updatable views”. In: Proceedings of the twenty-fifth
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems.
ACM. 2006, pp. 338–347 (cit. on p. 72).

351

arXiv:1604.01187

352 BIBLIOGRAPHY

[Cap22] Matteo Capucci. Diegetic representation of feedback in open games. 2022. url:

https://arxiv.org/abs/2206.12338 (cit. on p. 166).

[Che22] Eugenia Cheng. The Joy of Abstraction: An Exploration of Math, Category The-
ory, and Life. CambridgeUniversityPress, 2022. doi:10.1017/9781108769389

(cit. on p. 18).

[Con12] John Horton Conway. Regular algebra and finite machines. Courier Corpora-
tion, 2012 (cit. on p. 129).

[FS19] Brendan Fong and David I. Spivak. Seven Sketches in Compositionality: An
Invitation to Applied Category Theory. Cambridge University Press, 2019 (cit.

on p. 18).

[GH18] RichardGarner and TomHirschowitz. “Shapelymonads and analytic func-

tors”. In: Journal of Logic and Computation 28.1 (2018), pp. 33–83 (cit. on

p. 339).

[GJ12] Jeremy Gibbons and Michael Johnson. “Relating algebraic and coalgebraic

descriptions of lenses”. In: Electronic Communications of the EASST 49 (2012)

(cit. on p. 72).

[GK12] Nicola Gambino and Joachim Kock. “Polynomial functors and polynomial

monads”. In: Mathematical Proceedings of the Cambridge Philosophical Society
154.1 (Sept. 2012), pp. 153–192 (cit. on pp. 37, 210, 216).

[Hed+16] Jules Hedges, Evguenia Shprits, Viktor Winschel, and Philipp Zahn. Com-
positionality and string diagrams for game theory. 2016. eprint: arXiv:1604.
06061 (cit. on p. 72).

[Hed17] Jules Hedges. Coherence for lenses and open games. 2017. eprint: arXiv:1704.
02230 (cit. on p. 72).

[Hed18a] Jules Hedges. Limits of bimorphic lenses. 2018. eprint: arXiv:1808.05545
(cit. on pp. 56, 72).

[Hed18b] JulesHedges. “Morphisms of open games”. In:Electronic Notes in Theoretical
Computer Science 341 (2018), pp. 151–177 (cit. on p. 72).

[Jac17] Bart Jacobs. Introduction to Coalgebra. Vol. 59. Cambridge University Press,

2017 (cit. on pp. 37, 208).

[JRW12] Michael Johnson, Robert Rosebrugh, and Richard J Wood. “Lenses, fibra-

tions and universal translations”. In: Mathematical Structures in Computer
Science 22.1 (2012), pp. 25–42 (cit. on p. 72).

[Kel74] G Max Kelly. “Doctrinal adjunction”. In: Category seminar. Springer. 1974,
pp. 257–280 (cit. on p. 327).

[Koc] Joachim Kock. “Notes on Polynomial Functors”. https://mat.uab.cat/

~kock/cat/polynomial.pdf. Accessed 2023/12/04 (cit. on p. 37).

https://arxiv.org/abs/2206.12338
https://doi.org/10.1017/9781108769389
arXiv:1604.06061
arXiv:1604.06061
arXiv:1704.02230
arXiv:1704.02230
arXiv:1808.05545
https://mat.uab.cat/~kock/cat/polynomial.pdf
https://mat.uab.cat/~kock/cat/polynomial.pdf

BIBLIOGRAPHY 353

[Lei14] Tom Leinster. Basic category theory. Vol. 143. Cambridge University Press,

2014 (cit. on p. 18).

[Mac98] Saunders Mac Lane. Categories for the working mathematician. 2nd ed. Grad-

uate Texts inMathematics 5. NewYork: Springer-Verlag, 1998 (cit. on p. 18).

[McB01] Conor McBride. “The derivative of a regular type is its type of one-hole

contexts”. In: Unpublished manuscript (2001), pp. 74–88 (cit. on p. 51).

[MM92] SaundersMacLane and IekeMoerdĳk. Sheaves in Geometry and Logic: A First
Introduction to Topos Theory. Springer, 1992 (cit. on p. 15).

[Mye22] David Jaz Myers. Categorical Systems Theory. 2022 (cit. on p. viii).

[nLa18] Contributors To nLab. Created limit — nLab. 2018. url: https://ncatlab.

org/nlab/show/created+limit (cit. on p. 325).

[nLa19] Contributors To nLab.Connected limit — nLab. 2019. url: https://ncatlab.

org/nlab/show/connected+limit (cit. on p. 212).

[nLa22] nLab authors. lens (in computer science). http://ncatlab.org/nlab/show/
lens%20%28in%20computer%20science%29. Revision 26. Aug. 2022 (cit. on

p. 278).

[OCo11] Russell O’Connor. Functor is to lens as applicative is to biplate: Introducing
multiplate. 2011. eprint: arXiv:1103.2841 (cit. on p. 72).

[Par23] Robert Paré. Retrocells. 2023. arXiv: 2306.06436 [math.CT] (cit. on pp. 254,

257).

[Par69] Robert Paré. “Absolute coequalizers”. In: Category Theory, Homology Theory
and their Applications I. Ed. by Peter J. Hilton. Berlin, Heidelberg: Springer,

1969, pp. 132–145. isbn: 978-3-540-36095-7 (cit. on p. 325).

[Pie91] Benjamin C. Pierce. Basic Category Theory for Computer Scientists. MIT Press,

1991 (cit. on p. 18).

[Por19] Hans-EPorst. “Colimits ofmonoids”. In:Theory and Applications of Categories
34.17 (2019), pp. 456–467 (cit. on pp. 325, 326).

[Rie17] Emily Riehl. Category theory in context. Courier Dover Publications, 2017

(cit. on p. 18).

[Sha21] Brandon Shapiro. Familial Monads as Higher Category Theories. 2021. url:

https://arxiv.org/abs/2111.14796 (cit. on p. 339).

[Shu08] Michael Shulman. “Framed bicategories and monoidal fibrations”. In: The-
ory and Applications of Categories 20 (2008), Paper No. 18, 650–738 (cit. on

pp. 163, 165, 166).

[Spi12] David I. Spivak. “Functorial data migration”. In: Information and Computa-
tion 217 (2012), pp. 31–51 (cit. on p. 274).

https://ncatlab.org/nlab/show/created+limit
https://ncatlab.org/nlab/show/created+limit
https://ncatlab.org/nlab/show/connected+limit
https://ncatlab.org/nlab/show/connected+limit
http://ncatlab.org/nlab/show/lens%20%28in%20computer%20science%29
http://ncatlab.org/nlab/show/lens%20%28in%20computer%20science%29
http://ncatlab.org/nlab/revision/lens%20%28in%20computer%20science%29/26
arXiv:1103.2841
https://arxiv.org/abs/2306.06436
https://arxiv.org/abs/2111.14796

354 BIBLIOGRAPHY

[Spi19] David I. Spivak. Generalized Lens Categories via functors Co𝑝 → Cat. 2019.
eprint: arXiv:1908.02202 (cit. on p. 72).

[Spi22] David I. Spivak. Polynomial functors and Shannon entropy. 2022. arXiv: 2201.
12878 [math.CT] (cit. on p. 166).

[Spi23] David I. Spivak. Functorial aggregation. 2023. arXiv: 2111.10968 [math.CT]
(cit. on p. vii).

[ST17] David I Spivak and Joshua Tan. “Nesting of dynamical systems and mode-

dependent networks”. In: Journal of Complex Networks 5.3 (2017), pp. 389–

408 (cit. on p. 129).

[SW15] David I. Spivak and Ryan Wisnesky. “Relational Foundations for Func-

torial Data Migration”. In: Proceedings of the 15th Symposium on Database
Programming Languages. DBPL. Pittsburgh, PA: ACM, 2015, pp. 21–28 (cit.

on p. 336).

[Web07] Mark Weber. “Familial 2-Functors and Parametric Right Adjoints”. In: The-
ory and Applications of Categories 18 (2007), Paper No. 22, 665–732 (cit. on

p. 339).

arXiv:1908.02202
https://arxiv.org/abs/2201.12878
https://arxiv.org/abs/2201.12878
https://arxiv.org/abs/2111.10968

Index

Cat♯ , 257
categorical properties of, 291–339

isomorphisms in, 258

2-out-of-3, 159

adjunction

between Poly and Cat♯ , 314
between Set and Cat♯ , 264
between Set and Poly, 146
between Setop and Poly, 147
two-variable, 147

affine polynomial, 29, 69

Ahman-Uustalu theorem, 241

applied category theory, v

arrow field, 262, 320

monoid of arrow fields, 320

arrow fields

as adjoint, 320

associativity, 4, 203, 234, 252, 279, 330

bicomodule, 332

as parametric right adjoint, 336

dynamical systems and bicomodules, 337

morphism of, 332

bundle, 54

vector, 263

Cartesian closed category, 153

cartesian product, see product
category, see also polynomial comonoid

codiscrete, 250

cofree comonoids as, 303

connected, 209

copresheaf, 336

degree of an object, 254

discrete, 6, 18, 42, 224, 259, 264, 281, 283,

285

free, 277

of 𝑝-trees, see cofree comonoid

of bicomodules, 336

of coalgebras, 297

of elements, 156, 274, 275

of polynomial functors, 41–82

polynomial carrier of, 242

slice, 210

cellular automata, 118, 120, 337

running, 338

Chu space, 128

clock, 149

tick, 192

closed monoidal structure, 124, 152

coalgebra, 272, 274, 291, 328, 333

as equivalent to other notions, 277

as retrofunctor from state category, 271

carrier of, 271

category of, 297

community, 37

dynamical systems as, 208

morphism of, 271

morphism of coalgebras, 297

of polynomial comonad, 266

terminal, 297

coassociativity, 233–235, 237, 238, 244, 247, 248,

280, 282, 309

cofree comonoid, 291–321

adjunction with Poly, 314
and Moore machines, 318

as category, 303

as free category on a graph, 319

carrier of, 292–303

directions of, 298

duplicator of, 304

eraser of, 303

examples of, 311–314

355

356 BIBLIOGRAPHY

interfaces for, 316

morphisms between, 319

positions of, 297

preserves cartesian maps, 324

colimit, 8, 9, 298

Poly disagrees with SetSet
, 157

in Cat♯ , 325
in Poly, 55, 156
of functors, 15

of functors Set→ Set, 15
comodule, 327–338

bicomodule, see bicomodule

left, 328

morphism of, 328

right, 328

comonad, see polynomial comonoid

comonoid

cofree, see cofree comonoid

definition, 237

morphism of, 254

comonoids, see also Cat♯

completely distributive category, 13, 17, 65

Poly as, 14

Set as, 14
SetSet

as, 16

distributive law in, see distributive law
composition product, 179–226

𝑛-fold, 184

as composition of functors, 180

as dependency, 184

cartesian lenses and, 215

coclosure, 206–209

connected limits and, 209, 212

formula for, 180

grafting corollas, 185

involving constant polynomials, 187

limits and, 206, 209

of special polynomials, 181

on lenses, 182–184

on morphisms, see composition product,

on lenses

positions and directions, 183

positions as strategies, 184

tree picture of, 188

unit of, 180

vertical lenses and, 215

compositional game theory, 72

connected limit, see limit, connected

constant polynomial, 28, 29, 36, 37, 217, 294,

311, 334

as carrying bicomodule, 328

control, 113, 115, 117, 262

copresheaf, 333

and discrete opfibration, 275

as bicomodule, 336

as retrofunctor, 274

on cofree category, 276

coproduct, viii, 8, 13, 15, 18, 42, 64

composition and, 204

distributing over, 70

in Poly, 42
inclusion map into, 8

indexed, 147

of functions, 9

of indexed family, 42

of polynomial comonoids, 325

universal property of, 8, 43

corolla, 32

representable as, 32

corolla forest, 31–34, 37

corolla of, 32

for product of polynomials, 65

leaf of, 32

database, 72, 274

data migration, 336

Day convolution, 69, 70

decision

impossible, 30

multi-step, 195

decision tree, 32, 192, 319

dependent function, 7, 10, 18, 103, 119

lens to y as, 54

dependent lens, see lens
dependent Moore machine, see dynamical

system

derivative, 51

¤𝑝(1) as directions of 𝑝, 52
not well-behaved in Poly, 52

deterministic state automaton, 88

halting, 91, 317

language of, 89, 92, 318

diagram, 8

dialectica category, v

directed limit, 209

directions, see polynomial functor, positions

and directions

Dirichlet product, see parallel product
Dirichlet series, 67

discrete opfibration, 333

as cartesian retrofunctor, 323

as copresheaf, 275

BIBLIOGRAPHY 357

as retrofunctor, 273, 274

category of, 273

morphism of, 273

disjunctive normal form, 14

distributive law, 12, 14

coproducts over composition, 204, 206

for Day monoidal structures, 69

for parallel product, 69

products over composition, 204, 205

duoidality, 214, 327

duplication

multifold, 238

duplicator, see polynomial comonoid,

comultiplication of

dynamical system, 90–96, 190

as bicomodule, 337

as retrofunctor, 265

composite interface, 197

composition product and, 190

constructing from product, 96

constructing new from old, 96–106

juxtaposing, 98

paddler, 109

repeater, 107

running, 235

speeding up, see dynamical system,

composition product and

stepping through, 191

trees, 192

wrapper interface, see interface, wrapper

dynamics, 97, 103, 108, 109, 116, 119, 128

element

category of elements, 156

of a dependent product, 11

of a dependent sum, 10

of a nested dependent set, 11

of a product of sets, 7

of a sum of sets, 7

elements

category of elements, 274

environment, 128

universal, 127

equality

use of, viii

equalizer, 209, 326

as connected limit, 209

eraser, see polynomial comonoid, counit of

event-based systems, 98

exponentiable lens, see lens, cartesian

exponential, 152–153, see also closed monoidal

structure

factorization system

epi-mono, 148, 151

vertical cartesian, 322

vertical-cartesian, 158–162

file reader, see Moore machine, file reader

file searcher, see Moore machine, file searcher

forgetful functor, see also functor, forgetful
forgetful-cofree adjunction, 314

functional programming

lenses in, 41, 72, 266

functor

arrow fields, 321

bĳective on objects (boo), 324

category of functors, viii, 15

coalgebra for, 271, 297

cofree comonad, 319

colimit of functors, 15

comonadic, 325

constant, 4, 16

copresheaf, see copresheaf
discrete opfibration, see discrete

opfibration

forgetful, 315, 321

forgetful Cat♯ → Poly, 291, 292, 315, 325,
326

identity, 4

initial, 16

limit of functors, 15

limit-preserving, 304

of sections, Γ, 55

polynomial, see polynomial functor

product of functors, 6

representable, 3–6, 18

set-valued, 3, 8, 15, 275

sum of functors, 6

terminal, 16

future

as placeholder for dependency, 184, 186

Garner, Richard, 336

global sections, 147, 148, 157, 160, 168, 173

graph, 93, 118–120, 156, 289

as dynamical system, 93

category free on, 277

cellular automaton on, 338

complete, 230, 250

free category on, 319, 320

underlying a category, 251

358 BIBLIOGRAPHY

indexed family, 213

indexed family of objects, 7

indexed set, 6–8, 309

indexing category

for (co)limit, 209

interaction, 106–124, 198, 235

assembling, 123

breaking bonds, 121

cellular automata and, 119

mode dependent, 129

multi-step, 192

picking up the chalk, 111–114

supplier change, 123

wiring diagram, 115–119

interaction pattern, see interaction, 122, 127, 214
interdisciplinary, vi

interface, 85, 91, 190, 192, 204, 209, 234, 235, 291,

316

changing, 179

closed, 111

comonoid, 336

composite, 197, 198

monomial, 84–90, 115, 116, 139, 319

multiple, 96

polynomial, 90

wrapper, 94, 101–111

isomorphism, viii

natural, 12–14, 17, 41, 43, 126, 143, 146–148,

152, 164, 168, 170, 188, 204, 206, 208,

210, 212, 213, 315, 316, 322, 335

of representable functors, 30

Joyal, André, 37

Kock, Joachim, 37

left Kan extension, see composition product,

coclosure

lens, v, 41–64

as interaction protocol, 44–46

as natural transformation, 57–60

between monomials, 56, 71

bidirectionality of, 44, 46

bimorphic, see lens, between monomials

cartesian, 158, 163, 215

composition of, 60

corolla forest depiction, 46

enumeration, 49

epimorphism, 149

exponentiable, 163

from constant polynomial, 53

from linear polynomial, 52

from representable polynomial, 53

identity, 60

laws, 57

monomorphism, 148

polybox depiction, 47–49

positions and directions, 43

spreadsheet depiction, 47, 62

to y as section, 54

to composite, 194

to constant polynomial, 53

to linear polynomial, 52

to representable polynomial, 53

transition, 228, 233

vertical, 158, 215

very well-behaved, 56, see also retrofunctor,
between state categories

limit, 9

cofree comonoid as, 292

connected, 209, 304

in Poly, 153
of functors, 15

of functors Set→ Set, 15
positions and directions, 154

preserved by ⊳, 304

limits

computed pointwise, 156

linear polynomial, 28, 29, 37, 69

comonoid structure on, 241

list, 89, 133

cyclic, 252

long division, 117

monoid, 251–253

action of, 252

for parallel product, 69

multiplication of, 237

of natural numbers, 243

structure on any nonempty set, 251

unit of, 237

monoidal ∗-bifibraion, 163
monoidal closed structure, see closed monoidal

structure

monoidal structure, 64

cartesian (products), 64

cocartesian (sums), 64

corolla forest depiction, 68

from monoidal structure on Set, 69
parallel, see Parallel product
parallel product as pushout, 158

preservation of vertical and cartesian

maps, 162

BIBLIOGRAPHY 359

substitution, see composition product

monomial, 29, 37, 69

principal, 148, 166

Moore machine, 83–90, 97, 99

dependent, see dynamical system,

dependent

deterministic state automaton, see
deterministic state automaton

file reader, 88, 94

file searcher, 94

induced by function, 86

interface of, see also interface
memoryless, 86

return, 83

states of, 83

tape of Turing machine, 87

transition diagram, 84

update, 83

multivariate polynomial, see polynomial

functor, multivariate

natural numbers, N, viii

natural transformation

and Yoneda embedding, 5

as copresheaf morphism, 275

between polynomials, see lens
between representables, 4

horizontal composition, 182, 183

positions map as 1-component, 188

vertical composition, 182

parallel product, 66–71

and dynamical systems, 98–101

and interaction, 106

and the cofree construction, 327

as pushout, 158

closure for, 124

of polynomial comonoids, 326

of special polynomials, 69

section for, 111

parametric right adjoint, 336

polybox, 34–37, 194–204, 207, 210, 213, 229, 230,

233, 241, 246, 247, 272, 273, 303, 332

direction box, 35

for constant polynomials, 36

for lens composition, 62–64

for linear polynomials, 36

for representable polynomials, 36

maps to composition product, 194

position box, 35

spreadsheet, 35

polynomial comonad, see polynomial comonoid

polynomial comonoid, 227–339

as category, 241–248, 254

coalgebra of, 266

colimit of comonoids, 325

colimits of, 325–326

comultiplication of, 237

coproduct of comonoids, 325

counit of, 237

examples, 248

linear, 322

morphism of, see retrofunctor
parallel product of, 326

positions and directions of, 242

preorders as, 248–249

representable, 251, 321

polynomial functor, 3, 6

𝑝(1) as summands of, 27

action on functions, 27

action on sets, 26

affine, see affine polynomial

application as composition, 187

as sum of representables, 25

associated corolla forest, 31

cartesian closed structure, 152

category of polynomials, 41

colimits of polynomials, 156–158

composition of polynomials, 179

constant, see constant polynomial

copointed, 98

coproduct of polynomials, see polynomial

functors, sum of polynomials

derivative of, see derivative
equalizer of polynomials, 155

exponentials of polynomials, 152

full subcategory of SetSet
, 41

limits of polynomials, 153–156

linear, see linear polynomial

monoidal structure on, see monoidal

structure

monomial, see monomial

morphism of, see lens
multivariate, vii

positions and directions, 27, 29–31

positions as 𝑝(1), 187
product of polynomials, 6, see polynomial

functors, product of polynomials, 65

pullback of polynomials, 154, 155,

158–160, 171

pushout of polynomials, 157

representable, see representable
polynomial

360 BIBLIOGRAPHY

sum of polynomials, 6, 50, 65

summand of, 26

term usage by “coalgebra community”, 37

polynomial functors

pullback of polynomials, 331

positions, see polynomial functor, positions and

directions

principal monomial, see monomial, principal

product, viii, see also polynomial functor,

product of polynomials, 8, 13, 18, 131

of functions, 9

projection map out of, 8

universal property of, 8

pullback, see also polynomial functor, pullback

of polynomials, 209

as connected limit, 209

cartesian natural transformation and, 160

wide, 212

pure power, see functor, representable

representable polynomial, 28, 29, 37

retrofunctor, 254

Aguiar’s definition, 278

arrow field, 263

between state categories, 266

cartesian, 322

examples of, 259–270

from state category, 333

isomorphism, 258

similarity with functor, 257

to discrete categories, 259

to monoids, 261

to preorders, 259

vertical, 322, 323

robot, 94–96, 101, 110

rooted tree, see tree, rooted
height of vertex, 31

rooted path in, 31

section, 54–55, 55, 113, 115

do nothing, 228

set

as constant polynomial, 28, 146

cardinality of, 7

category of sets, viii

finite, viii

indexing, 6

ordinal, viii

product of sets, 6

sum of sets, 6

state category, see state system
state system, 85, 90, 190, 227, 233, 272

as polynomial comonoid, 238

comonoid as, 237

corresponding category of, 249

retrofunctor from, 265–269, 277

streams, 312

category of, 253

cofree comonoid and, 312

Systems of ODEs, 265

time

composition product and, 179, 192

topological space, 62

tree

as limit of pretrees, 295

corolla and, 31

depiction of, 185

multi-level, 186

on a polynomial, 292

pretree, 293

rooted, 31

stages, 294

type theoretic axiom of choice, 12

wiring diagram, see interaction, wiring diagram

Yoneda embedding, see Yoneda lemma

Yoneda lemma, 3, 5, 18, 41, 43, 49, 53, 57, 58,

126, 127, 146, 147, 281, 322

BIBLIOGRAPHY 361

Number of todo notes in text, at last pass: 0

	Purpose and prerequisites
	Choices and conventions
	Past, present, and future
	The category of polynomial functors
	Representable functors from the category of sets
	Representable functors and the Yoneda lemma
	Sums and products of sets
	Expanding products of sums
	Sums and products of functors SetSet
	Summary and further reading
	Exercise solutions

	Polynomial functors
	Introducing polynomial functors
	Special classes of polynomial functors
	Interpreting positions and directions
	Corolla forests
	Polyboxes
	Summary and further reading
	Exercise solutions

	The category of polynomial functors
	Dependent lenses between polynomial functors
	Dependent lenses as interaction protocols
	Corolla forest pictures of dependent lenses
	Polybox pictures of dependent lenses
	Computations with dependent lenses
	Dependent lenses between special polynomials
	Translating between natural transformations and lenses
	Identity lenses and lens composition
	Polybox pictures of lens composition
	Symmetric monoidal products of polynomial functors
	Summary and further reading
	Exercise solutions

	Dynamical systems as dependent lenses
	Moore machines
	Deterministic state automata

	Dependent dynamical systems
	Constructing new dynamical systems from old
	Categorical products: multiple interfaces operating on the same states
	Parallel products: juxtaposing dynamical systems
	Composing lenses: wrapper interfaces
	Sections as wrappers

	General interaction
	Wrapping juxtaposed dynamical systems together
	Sectioning juxtaposed dynamical systems off together
	Wiring diagrams as interaction patterns
	More examples of general interaction

	Closure of
	Summary and further reading
	Exercise solutions

	More categorical properties of polynomials
	Special polynomials and adjunctions
	Epi-mono factorization of lenses
	Cartesian closure
	Limits and colimits of polynomials
	Vertical-cartesian factorization of lenses
	Monoidal *-bifibration over Set
	Summary and further reading
	Exercise solutions

	A different category of categories
	The composition product
	Defining the composition product
	Composite functors
	Composite positions and directions
	Composition product on corolla forests
	Dynamical systems and the composition product

	Lenses to composites
	Lenses to composites as polyboxes
	The composition product of lenses as polyboxes

	Categorical properties of the composition product
	Interaction with products and coproducts
	Interaction with limits on the left
	Interaction with limits on the right
	Interaction with parallel products
	Interaction with vertical and cartesian lenses

	Summary and further reading
	Exercise solutions

	Polynomial comonoids and retrofunctors
	State systems, categorically
	The do-nothing section
	The transition lens
	The do-nothing section coheres with the transition lens
	The transition lens is coassociative
	Running dynamical systems
	State systems as comonoids

	Polynomial comonoids are categories
	Translating between polynomial comonoids and categories
	Examples of categories as comonoids

	Morphisms of polynomial comonoids are retrofunctors
	Introducing comonoid morphisms and retrofunctors
	Examples of retrofunctors
	Equivalent characterizations of retrofunctors from state categories

	Summary and further reading
	Exercise solutions

	Categorical properties of polynomial comonoids
	Cofree comonoids
	The carrier of the cofree comonoid
	Cofree comonoids as categories
	Exhibiting the forgetful-cofree adjunction
	The many (inter)faces of the cofree comonoid
	Morphisms between cofree comonoids
	Some categorical properties of cofree comonoids

	More categorical properties of Cat
	Other special comonoids and adjunctions
	Vertical-cartesian factorization of retrofunctors
	Limits and colimits of comonoids
	Parallel product comonoids

	Comodules over polynomial comonoids
	Left and right comodules
	Bicomodules
	More equivalences
	Bicomodules are parametric right adjoints
	Bicomodules in dynamics

	Summary and further reading
	Exercise solutions

	New horizons
	Bibliography

