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Categories and Geometry/Topology

▶ Functoriality precedes categories

▶ Emmy Noether pointed to functoriality in 1930’s

▶ Categories introduced in 1945

▶ There are dictionaries between categories and spaces -
nerve construction

▶ Functoriality and categories are the key ideas for algebraic
topology
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Algebraic Topology

Homology



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Algebraic Topology

H0 = k,H1 = 0,H2 = k ,Hi = 0 for k > 2
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Algebraic Topology

H0 = k ,H1 = k3,H2 = k ,Hi = 0 for k > 2



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Algebraic Topology: Functoriality

▶ Homology produces vector spaces

▶ It does so in a functorial way (Emmy Noether)

▶ Continuous map f : X → Y induces linear transformation
Hk(f ) : Hk(X ) → Hk(Y )

▶ Functoriality is critical for computation and applications

▶ Brouwer fixed point theorem

▶ Persistent homology

▶ Computational methods
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Algebraic Topology

▶ Homology is used to distinguish shapes

▶ Crude measure

Same homology
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Algebraic Topology

▶ Homology is used to distinguish shapes

▶ Crude measure

Different spaces
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Making Homology More Sensitive

▶ Supply additional structure to homology (cup products)

▶ Study “parametrized” homology, where spaces are
equipped with a reference map to a space B

▶ Much richer set of invariants coming from homology of B

▶ Etale homotopy theory studies the situation where B is the
“classifying space of the absolute Galois group of a field F”

▶ Gives information about F -rational points of variety over F

▶ We will be interested in the situation where B = [0, 1]
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The Topology of Complements

Suppose we have Y ⊆ X an embedding of topological spaces,
and we have topological information about X and Y . What can
be said about the topology of X − Y ?
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Robotics

Motion planning through obstacles
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Sensor Nets

Covered region for a sensor net
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Topology of Complements

▶ Why should this be possible?

▶ First results say that we can obtain homology in the case
where the ambient space X is a manifold

▶ Alexander duality theorem
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Topology of Complements

▶ Why should this be possible?

▶ First results say that we can obtain homology in the case
where the ambient space X is a manifold

▶ Alexander duality theorem



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Manifolds

▶ A space X is an n-dimensional manifold if it is locally like
Rn

▶ Means every point has a neighborhood homeomorphic to
an open disc in Rn

Manifold

Not a manifold
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Manifolds

▶ A space X is an n-dimensional manifold if it is locally like
Rn

▶ Means every point has a neighborhood homeomorphic to
an open disc in Rn

Manifold Not a manifold
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Cohomology

▶ To state theorem, requires cohomology

▶ Apply Hom(−; k) to a chain complex, obtain a cochain
complex with coboundary operator δ.

▶ Ker(δ)/im(δ) defined to be cohomology H∗(X ).

▶ H i (X ) ∼= Hi (X )∗

▶ Contravariant
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Alexander DualityTheorems

Y ⊆ X , Y compact

X = Rn: H̃i (Rn − Y ) ∼= Hn−i−1(Y )

X = Sn: H̃i (S
n − Y ) ∼= H̃n−i−1(Y )

X a general manifold, Hi (X ,X − Y ) ∼= Hn−i (Y )

Tells us we can recover the homology or cohomology of
complements. Can we recover the actual space from Y ?



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Alexander DualityTheorems

Y ⊆ X , Y compact

X = Rn: H̃i (Rn − Y ) ∼= Hn−i−1(Y )

X = Sn: H̃i (S
n − Y ) ∼= H̃n−i−1(Y )

X a general manifold, Hi (X ,X − Y ) ∼= Hn−i (Y )

Tells us we can recover the homology or cohomology of
complements. Can we recover the actual space from Y ?



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Alexander DualityTheorems

Y ⊆ X , Y compact

X = Rn: H̃i (Rn − Y ) ∼= Hn−i−1(Y )

X = Sn: H̃i (S
n − Y ) ∼= H̃n−i−1(Y )

X a general manifold, Hi (X ,X − Y ) ∼= Hn−i (Y )

Tells us we can recover the homology or cohomology of
complements. Can we recover the actual space from Y ?



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Alexander DualityTheorems

Y ⊆ X , Y compact

X = Rn: H̃i (Rn − Y ) ∼= Hn−i−1(Y )

X = Sn: H̃i (S
n − Y ) ∼= H̃n−i−1(Y )

X a general manifold, Hi (X ,X − Y ) ∼= Hn−i (Y )

Tells us we can recover the homology or cohomology of
complements. Can we recover the actual space from Y ?



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Alexander DualityTheorems

Y ⊆ X , Y compact

X = Rn: H̃i (Rn − Y ) ∼= Hn−i−1(Y )

X = Sn: H̃i (S
n − Y ) ∼= H̃n−i−1(Y )

X a general manifold, Hi (X ,X − Y ) ∼= Hn−i (Y )

Tells us we can recover the homology or cohomology of
complements. Can we recover the actual space from Y ?



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The Suspension of a Space

The suspension of a circle is a sphere
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Spanier-Whitehead duality

▶ If a compact Y is embedded in Sn, can consider the
complement of Y in Sn+1 ⊇ Sn

▶ Sn+1 − Y ∼= Σ(Sn − Y )

▶ X and Y said to be stably homotopy equivalent if
ΣiX ≃ ΣiY for some i

▶ A space determines a stable homotopy type

▶ Turns out Y determines the stable homotopy type of
complement of Y for an inclusion Y ↪→ SN

▶ Key fact is that for large N all embeddings of Y in SN are
isotopic
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Spanier-Whitehead Duality

For fixed dimensions, is there actually a dependence on the
embedding?

Yes



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Spanier-Whitehead Duality

For fixed dimensions, is there actually a dependence on the
embedding?
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Knot Theory

Embeddings of circle in R3



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Knot Theory

Fundamental group of knot complement is a key invariant of a
knot
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Link Theory

Embeddings of disjoint union of circles in R3
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Unstable Homotopy Types

▶ Homology or cohomology by itself cannot detect the
difference between homotopy types of complements by the
Alexander duality theorem

▶ Fundamental group can in some cases

▶ Fundamental group is often complicated non-abelian
group, not well suited for computation

▶ Can we impose additional structure on homology or
cohomology which detects unstable phenomena?
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Unstable Homotopy Types

▶ Homology or cohomology by itself cannot detect the
difference between homotopy types of complements by the
Alexander duality theorem

▶ Fundamental group can in some cases

▶ Fundamental group is often complicated non-abelian
group, not well suited for computation

▶ Can we impose additional structure on homology or
cohomology which detects unstable phenomena?
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Künneth Formula

▶ Künneth formula describes homology and cohomology of
products X × Y

▶ Hn(X × Y ) ∼= ⊕iHn−i (X )⊗ Hi (Y )

▶ Hn(X × Y ) ∼= ⊕iH
n−1(X )⊗ H i (Y )

▶ More compact descriptions as graded vector spaces:

H∗(X × Y ) ∼= H∗(X )⊗ H∗(Y )

and
H∗(X × Y ) ∼= H∗(X )⊗ H∗(Y )

▶ T a torus, H0(T) = k,H1(T) = k2, and H2(T) = k .



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
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Cup Products

▶ The cup product is a homomorphism

H∗(X )⊗ H∗(X ) −→ H∗(X )

▶ Given by the composite

H∗(X )⊗ H∗(X ) −→ H∗(X × X )
H∗(∆)−→ H∗(X )

where ∆ denotes the diagonal map X → X × X , which
sends x to the pair (x , x)

▶ Image of x ⊗ x ′ is denoted by x ∪ x ′

▶ H∗(X ) becomes a graded k-algebra
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Cup Products

▶ For X a suspension, and x and x ′ positive degree elements
in H∗(X ), x ∪ x ′ = 0. “Cup products of positive degree
elements vanish on suspensions”.

▶ Means that cup products can detect difference between
unstable homotopy types that are the same as stable
homotopy types

▶ Torus gives an example
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Cup Products on a Torus

▶ The graded ring H∗(T) is isomorphic to a Grassmann
algebra Λ(x , y)

▶ x ∪ x = 0, y ∪ y = 0, and x ∪ y = −y ∪ x

▶ x ∪ y is non-zero, so T is not a suspension

▶ Let B be the bouquet S1 ∨ S1 ∨ S2
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▶ The graded ring H∗(T) is isomorphic to a Grassmann
algebra Λ(x , y)

▶ x ∪ x = 0, y ∪ y = 0, and x ∪ y = −y ∪ x

▶ x ∪ y is non-zero, so T is not a suspension

▶ Let B be the bouquet S1 ∨ S1 ∨ S2
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Cup Products on a Torus

▶ B is the suspension of S0 ∨ S0 ∨ S1

	

▶ Follows that cup products of positive elements vanish

▶ Homology and cohomology of B and T are identical as
vector spaces

▶ Cup product shows them to be distinct as unstable
homotopy types. On the other hand, ΣT ≃ ΣB.
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Cup Products and Path Components

▶ For a space X , H0(X ) is a vector space with dimension
equal to the number of path components of X .

▶ The path components determines a basis for the vector
space H0(X )

▶ Homology alone does not permit us to identify the basis

▶ H0(−) does not determine π0(−) as a set-valued functor



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Cup Products and Path Components

▶ For a space X , H0(X ) is a vector space with dimension
equal to the number of path components of X .

▶ The path components determines a basis for the vector
space H0(X )

▶ Homology alone does not permit us to identify the basis

▶ H0(−) does not determine π0(−) as a set-valued functor



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Cup Products and Path Components

▶ For a space X , H0(X ) is a vector space with dimension
equal to the number of path components of X .

▶ The path components determines a basis for the vector
space H0(X )

▶ Homology alone does not permit us to identify the basis

▶ H0(−) does not determine π0(−) as a set-valued functor



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Cup Products and Path Components

▶ For a space X , H0(X ) is a vector space with dimension
equal to the number of path components of X .

▶ The path components determines a basis for the vector
space H0(X )

▶ Homology alone does not permit us to identify the basis

▶ H0(−) does not determine π0(−) as a set-valued functor



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Cup Products and Path Components

▶ H0(X ) is a ring under cup product

▶ H0(X ) is isomorphic to the k-algebra of k-valued functions
on π0(X ) under pointwise addition and multiplication

▶ The set of k-algebra homomorphisms H0(X ) → k is in one
to one correspondence with the elements of π0(X )

▶ Means that we can recover π0 from the k-algebra valued
functor H0(−)
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Cup Products of Complements

▶ The various duality theorems allow us to understand the
homology of the complements, including H0.

▶ Is it possible to use the same methods to recover cup
products of the complement, and consequently the set π0
applied to the complement?

▶ This can be done, using the fact that cup products are
induced by a map, namely the diagonal map, and a
functoriality result for the duality theorems



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Cup Products of Complements

▶ The various duality theorems allow us to understand the
homology of the complements, including H0.

▶ Is it possible to use the same methods to recover cup
products of the complement, and consequently the set π0
applied to the complement?

▶ This can be done, using the fact that cup products are
induced by a map, namely the diagonal map, and a
functoriality result for the duality theorems



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Cup Products of Complements

▶ The various duality theorems allow us to understand the
homology of the complements, including H0.

▶ Is it possible to use the same methods to recover cup
products of the complement, and consequently the set π0
applied to the complement?

▶ This can be done, using the fact that cup products are
induced by a map, namely the diagonal map, and a
functoriality result for the duality theorems



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Functoriality of Alexander Duality

All the Alexander Duality isomorphism for X = Sn described
above is functorial, in the sense that for an inclusion
Y0 ⊆ Y1 ⊆ X , the diagram

H i (X − Y0) Hn−i−1(Y0)

H i (X − Y1) Hn−i−1(Y1)

-

? ?
-

commutes. Note that we have X − Y1 ↪→ X − Y0. There are
analogous statements for X = Rn or more general.
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Cup Products of Complements

▶ We assume that we are given a compact subset A ⊆ Rn,
and let CA = Rn − A

▶ H̃i (CA) ∼= Hn−i−1(A) by Alexander Duality Theorem

▶ Let C∆A denote the complement of A ⊆ A× A in R2n

▶ Let C (A× A) denote the complement of A× A in R2n

▶ H0(A× A) ∼= H̃2n−1(C (A× A)) and H0(A) ∼= H̃2n−1(C∆A)

▶ Obtain map C (A× A) → C∆A inducing the cup product
on H0(A) via functoriality of Alexander Duality
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Time Varying Robotics and Sensor Net Problems

▶ We may have a motion planning problem or a situation in
which we have moving sensors

▶ In this case we want to have path in the ambient space
which avoids the obstacles at every point in time

▶ Formulate the problem in terms of spaces over a base

▶ Ambient space will now be X = [0, 1]× Rn, consisting of a
position and a time

▶ π : X → [0, 1] is the projection

▶ The time varying obstacles will now consist of a subspace
Y ⊆ X
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Time Varying Robotics and Sensor Net Problems

▶ By an admissible path, we’ll mean a section

σ : [0, 1] → X − Y

i.e. a continuous map σ : [0, 1] → Y so that π ◦ σ = id[0,1]

▶ Many questions can be asked about such sections

▶ Does one exist?

▶ How many homotopy classes are there?

▶ What is the structure of the space of sections?
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Time Varying Robotics and Sensor Net Problems
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▶ What is the structure of the space of sections?
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Time Varying Robotics and Sensor Net Problems

▶ Interesting work done on the first problem by
Ghrist-DeSilva, Adams-C., and Ghrist-Krishnan

▶ Second and third problems not addressed

▶ Second and third problems potentially useful as starting
points for finding optimal paths

▶ Joint work with Ben Filippenko
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Time Varying Robotics and Sensor Net Problems: Zig-Zag
Approach

▶ Break up [0, 1] into closed intervals I0, I1, . . . , In that
intersect in endpoints only

▶ Construct the spaces π−1(Is) and π−1(Is ∩ Is+1), and
create a zig-zag diagram of spaces

▶ Clear that if there is a section, then zig-zag barcode will
have along bar

▶ Converse is not true
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Time Varying Robotics and Sensor Net Problems: Zig-Zag
Approach

Analogue of two distinct knots in this setting (Henry Adams)
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Time Varying Robotics and Sensor Net Problems: Sheaves
and Cosheaves

▶ Zig-zag approach relies on choice of covering of [0, 1] by
intervals

▶ In the case where the covered region is a smooth manifold
with boundary and the projection restricted to the
boundary is Morse, there is a good result (joint with B.
Filippenko

▶ Need a more intrinsic invariant

▶ WARNING: Remainder is still speculation - joint work with
B. Filippenko and W. Mackey

▶ Should rely on notion of sheaves and cosheaves

▶ Related notion of parametrized homology, S. Kalisnik
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Sheaves

A sheaf on a topological space with values in a category C is
contravariant functor F from the category of open subsets of X
to C so that for any two open sets U,V ⊆ X , the diagram

F (U ∪ V ) F (U)

F (V ) F (U ∩ V )
?

-

?
-

is a pullback or an equalizer.
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Sheaves - Examples

▶ Functions on X with values in R creates a sheaf of
R-vector spaces

▶ Cohomology can be sheafified to create a cohomology sheaf

▶ Maps from X to a topological space Y is a sheaf of sets
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Sheaves

A sheaf on a topological space with values in a category C is
covariant functor F from the category of open subsets of X to
C so that for any two open sets U,V ⊆ X , the diagram

F (U ∪ V ) F (U)

F (V ) F (U ∩ V )
?

-

?
-

is a pushout or a coequalizer.
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Cosheaves - Examples

▶ Given π : E → X , the functor F (U) = π−1(U) is a cosheaf
of spaces.

▶ π0 can be cosheafified to create a cosheaf of sets.

▶ Hi can be cosheafified to create a homology sheaf of vector
spaces.
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spaces.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Cosheaves - Examples

▶ Given π : E → X , the functor F (U) = π−1(U) is a cosheaf
of spaces.

▶ π0 can be cosheafified to create a cosheaf of sets.

▶ Hi can be cosheafified to create a homology sheaf of vector
spaces.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sheaf Theoretic Approach

▶ Above approach to constructing components using cup
products should work in this “sheafy setting”

▶ S. Kalisnik has shown that Alexander duality holds in
context of parametrized homology

▶ Should permit constructing H0 of complement of Y in
terms of the homology cosheaves of Y

▶ H0 creates a sheaf of k-algebras.

▶ Should be able to construct the cosheaf π0 as the cosheaf
of algebra homomorphisms from H0 to the constant sheaf
k .
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Sheaf Theoretic Approach

▶ Maps from the constant cosheaf of sets with value the one
point set to the cosheaf π0 should be the set of
components of the space of sections of π : X → [0, 1]

▶ Therefore this yields an approach to Problem 2 above.

▶ Unstable Adams spectral sequence takes cohomology
information (including cup products and cohomology
operations and reconstructs mapping spaces.

▶ Analogue of U.A.s.s. for the setting of spaces over [0, 1]
could address Problem 3 above. (W. Mackey has an
approach)

▶ Embedding calculus is a technique for parametrizing the
embeddings of one manifold in another. A. Jin and G.
Arone working on applying it in the setting of spaces over
[0, 1].
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