
Proofs as programs:
challenges and strategies
for program synthesis

Shaowei Lin

20210422

Topos Institute Colloquium

Joint work with

Zhangsheng Lai, Liang Ze Wong,

Jin Xing Lim, Barnabe Monnot, Georgios Piliouras.

Background

Goal

• Open protocols for decentralized embodied intelligence

Interests

• Statistical learning theory for spiking networks

• Dependent type theory for machine reasoning

• Quantum path integrals and motivic information

History

• Berkeley PhD Mathematics

• DARPA Math Challenges in Deep Learning

• A*STAR Urban Systems Initiative

• SUTD Assistant Professor

2

Nervous system for smart cities

Deep visual cortex

Deep learning Sensor networks

3

Smart city applications

Domain Application

unified platform sharing of sensors and data among government agencies

urban planning combining microclimatic models with sensing for town designs

environmental monitoring measuring noise pollution for enforcement of noise laws

structural health monitoring detecting faults on port cranes through sensors and analytics

infrastructural maintenance detecting potholes, broken lights through cars with sensors

public cleanliness sensing trash bin fill-levels to reduce cleaning workloads

high-tech farming improving crop yields with sensors in green houses

elderly healthcare monitoring elderly for falls, depression through home sensors

power grid security detecting, mitigating attacks with adversarial machine learning

4

Reprogramming on the fly

Example 1

A city has camera nodes which

send videos to the backend via

wifi gateways. In emergencies,

the nodes can be reached by 4G.

During a natural disaster,

some gateways were destroyed.

How do we reprogram a camera

node to stream critical videos by

relaying through wifi connections

to other nodes?

5

Wrapping services in code

Example 2

My grandmother wants to start

a bakery. She is great at cooking

but is poor with technology.

To ensure freshness, she wants to

do just-in-time baking. This means

that she will only order ingredients

and arrange deliveries when

customers put in their orders.

How can she source for ingredients

and deliveries in real time while

also selling to the community?

6

Top-down software synthesis

Example 3

The CEO of Acme Books wants a

robot that takes a box of books and

arranges them in alphabetical order

of authors on a shelf.

His manager buys a generic android

from Atoz Bots. She observes that

trivially an empty shelf is sorted.

She instructs her engineer to design

an algorithm to insert a new book on

a sorted shelf. Her proof assistant

verifies that this gets the job done.

7

Knowledge graph queries

Example 4 [Fong & Spivak 2018]

The following knowledge graph

shows the entities in a company

and the relations between them.

The CEO needs to contact the

secretary of Ruth’s department.

An auditor wants a list of all the

managers in the company. He

wonders if every manager works

in the department they manage.

Fong, Brendan, and David I. Spivak. "Seven sketches in compositionality: An invitation to applied category theory." arXiv preprint arXiv:1803.05316 (2018).

Sales

Ruth

Kris

Alan

IT

m
a
n
a
g
e
r

manager

manager

8

Decentralized Embodied Intelligence

How can a network of agents

accomplish given tasks by

performing decentralized steps,

managing embodied resources,

and learning intelligent strategies?

action

space?
machine

reasoning?

objective

function?

9

Reinforcement learning

10

GOAL

Neural and symbolic

modules that work

seamlessly together

to accomplish

intuitive reasoning.

11

Proof assistants

12

Proof assistants

Axioms, definitions, theorems make up the global context, e.g.

Definition. A list is sorted if it is

• empty;

• a one-element list; or

• of the form (𝑥 ∶: 𝑦 ∶: 𝑙) where

𝑥 ≤ 𝑦 and (𝑦 ∶: 𝑙) is sorted.

Definition. The list insert(𝑖, 𝑙) is

• [𝑖] if 𝑙 is empty;

• (𝑖: : ℎ: : 𝑡) if 𝑙 = (ℎ: : 𝑡) and 𝑖 ≤ ℎ;

• ℎ: : insert 𝑖, 𝑡 if 𝑙 = (ℎ: : 𝑡) and 𝑖 > ℎ.

Pierce, Benjamin C., Chris Casinghino, Marco Gaboardi, Michael Greenberg, Cătălin Hriţcu, Vilhelm Sjöberg, and Brent Yorgey.

"Software foundations." Webpage: http://www.cis.upenn.edu/bcpierce/sf/current/index.html (2010).

Inductive sorted : list nat → Prop :=
| sorted_nil : sorted []
| sorted_one : ∀ x, sorted [x]
| sorted_cons : ∀ x y l,

x ≤ y → sorted (y :: l)
→ sorted (x :: y :: l).

Fixpoint insert (i : nat) (l : list nat) :=
match l with
| [] ⇒ [i]
| h :: t ⇒ if i <=? h then i :: h :: t

else h :: insert i t
end.

13

Proof assistants guide us in

constructing a term/proof

for a given type/theorem.

14

local context

conclusion

subgoal

15

A goal is a collection of subgoals.

16

17

18

19

proof

term

20

Ignore equalities between types

from unfolding (𝛿-reductions) of

definitions (weak ∞-categories?)

Category of goals and tactics

a, x, y : nat
l : list nat
H : x <= y
S : sorted (y :: l)
IHS : sorted (insert a (y :: l))
================================
sorted (insert a (x :: y :: l))

a, x : nat
=====================
sorted (insert a [x])

a : nat
====================
sorted (insert a [])

================================
forall (a : nat) (l : list nat),
sorted l -> sorted (insert a l)

induction S

Finster, Eric, David Reutter, and Jamie Vicary. "A Type Theory for

Strictly Unital ∞ -Categories." arXiv preprint arXiv:2007.08307 (2020).

21

Category of types and terms

sorted_ind

forall (a, x, y : nat)
(l : list nat)
(H : x <= y)
(S : sorted (y :: l))
(IHS : sorted (insert a (y :: l))),
sorted (insert a (x :: y :: l))

forall (a, x : nat),
sorted (insert a [x])

forall (a : nat),
sorted (insert a [])

forall (a : nat) (l : list nat),
sorted l -> sorted (insert a l)

Some goal structures forgotten

by functor from category of goals

to category of types.

22

Category of types and terms

forall (a, x, y : nat)
(l : list nat)
(H : x <= y)
(S : sorted (y :: l))
(IHS : sorted (insert a (y :: l))),
sorted (insert a (x :: y :: l))

forall (a, x : nat),
sorted (insert a [x])

forall (a : nat),
sorted (insert a [])

forall (a : nat) (l : list nat),
sorted l -> sorted (insert a l)

sorted_ind

Morphisms in monoidal category

of types can be represented by

string diagrams.

23

Category of types and terms

forall (a : nat) (l : list nat),
sorted l -> sorted (insert a l)

True

A proof is a path from the

terminal/unit type to the theorem.

24

Program synthesis

Intents as types, implementations as terms.

Example. Type of all sorting algorithms.

Top-down (not bottom-up) synthesis of algorithm from specification.

Intents should specify constraints on the algorithm for greater reuse.

They should not specify the steps of the algorithm.

Instead of humans searching for implementations on StackOverflow,

we prefer machines searching for implementations via intents.

Theorem sort_spec :
(l : seq nat) → ∑ (l0 : seq nat),
(sorted leq l0) ∧ (perm_eq l l0).

25

Intents and implementations

(l : seq nat) → ∑ (l0 : seq nat),
(sorted leq l0) ∧ (perm_eq l l0).

True

An implementation is a path from

the terminal/unit type to the intent.

26

Neural-symbolic program synthesis

27

Neural-symbolic program synthesis

Theorem proving

• CoqHammer

• CoqGym

• ProverBot

• GamePad

Campbell, Mark. "Automated Coding: The Quest to Develop Programs That Write Programs." Computer 53, no. 2 (2020): 80-82.

Program synthesis

• SketchAdapt

• DeepCoder

• DeepCode

• RobustFill

• Bayou

• GPT-3

28

Program synthesis
(joint work with Jin Xing Lim, Barnabe Monnot, Georgios Piliouras)

29

Lessons learnt

Important to use good

library of theorems about

sorted and perm_eq.

Heavy use of

reflection/transport to switch

between prop and bool, and

elaboration/unification to infer

implicit/ambiguous arguments.

Many goals are trivial and solved

automatically by good tactics.

Some goals were non-trivial.

Opportunity to write better tactics

that tackle other similar issues.

Synthesizing sort
Theorem sort_spec (l : seq nat) : {l0 : seq nat & sorted leq l0 & perm_eq l l0}.
Proof.
elim: l => [|a l [l0 s0 p0]].
(* Base case of l *)
by exists [::].
(* Inductive case of l *)
move: a l s0 p0.
elim: l0 => [|b y IHy].
(* Base case of l0 *)
move => a l _ /perm_eq_nilP p0.
by rewrite p0; exists [::a].
(* Inductive case of l0 *)
move => a l s0 H1.
case: (leqP a b) => ab.
(* Case of a <= b *)
exists (a::b::y) => //=.
by apply /andP.
by rewrite perm_cons.
(* Case of a > b *)
case: (IHy a y) => {IHy} //=. (* NON-TRIVIAL STEP *)
move: (s0) => /path_sorted s0con //=.
move => x H2 H3.
exists (b::x) => //=.
rewrite path_min_sorted //=.
(* all (leq b) x *)
move /(order_path_min leq_trans): s0 => s0.
apply /allP.
move: H3 s0 => /perm_eq_mem /eq_all_r <-s0 //=.
move /ltnW: ab => ab.
by rewrite ab s0.
(* perm_eq (a :: l) (b :: x) *)
apply/perm_eqP => //= P.
move/perm_eqP: H1 => //= H1.
move/perm_eqP: H3 => //= H3.
rewrite H1; rewrite <- H3.
by apply: addnCA.

Defined.

30

Extraction type bool = True | False

type nat = O | S of nat

type 'a list = Nil | Cons of 'a * 'a list

let rec leb n m =

match n with

| O -> True

| S n' -> (match m with

| O -> False

| S m' -> leb n' m')

let rec insert i = function

| Nil -> Cons (i, Nil)

| Cons (h, t) ->

(match leb i h with

| True -> Cons (i, (Cons (h, t)))

| False -> Cons (h, (insert i t)))

let rec sort = function

| Nil -> Nil

| Cons (h, t) -> insert h (sort t)

Fixpoint sort (l: list nat)

: list nat :=

match l with

| nil => nil

| h::t => insert h (sort t)

end.

Require Coq.extraction.Extraction.

Extraction Language OCaml.

Recursive Extraction sort.

Extracted code does not use

OCaml primitives for bool, nat, list.

https://softwarefoundations.cis.upenn.edu/vfa-current/Extract.html

Coq

OCaml

31

Extraction
let sort_spec l =

let _evar_0_ = ExistT2 (Nil, __, __) in

let _evar_0_0 = fun a l0 __top_assumption_ ->

let _evar_0_0 = fun l1 ->

let _evar_0_0 = fun a0 _ -> ExistT2 ((Cons (a0, Nil)), __, __) in

let _evar_0_1 = fun b y iHy a0 _ ->

let _evar_0_1 = fun _ -> ExistT2 ((Cons (a0, (Cons (b, y)))), __, __) in

let _evar_0_2 = fun _ ->

let _evar_0_2 = fun x -> ExistT2 ((Cons (b, x)), __, __) in

let ExistT2 (x, _, _) = iHy a0 y __ __ in

_evar_0_2 x in

(match leqP a0 b with

| LeqNotGtn -> _evar_0_1 __

| GtnNotLeq -> _evar_0_2 __) in

let rec f l2 a0 l3 = match l2 with

| Nil -> _evar_0_0 a0 l3

| Cons (y, l4) -> _evar_0_1 y l4 (fun a1 l5 _ _ -> f l4 a1 l5) a0 l3 in

f l1 a l0 in

let ExistT2 (x, _, _) = __top_assumption_ in

_evar_0_0 x in

let rec f = function

| Nil -> _evar_0_

| Cons (y, l1) -> _evar_0_0 y l1 (f l1) in

f l

Extracting

sort_spec
to OCaml

Extracted code

contains proofs

of correctness

of the algorithm

which are not

necessary

for sorting.

OCaml

32

Implementation theory

Type of expressions/programs

in the implementation language.

A theory is a language with equalities.

Semantics for the

implementation language.

[Chlipala 2013]

Using the proof assistant to construct

a program with the right semantics.

Chlipala, Adam. Certified programming with dependent types: a pragmatic introduction to the Coq proof assistant. MIT Press, 2013.

Inductive exp : Set :=
| Const : nat -> exp
| Plus : exp -> exp -> exp
| Times : exp -> exp -> exp

Theorem sort_spec_exp :

∑ (f : exp), ∀ (l : seq nat),

let l0 := (denote f) l in

(sorted leq l0) ∧ (perm_eq l l0).

Fixpoint denote (e : exp) : nat :=
match e with

| Const n => n
| Plus e1 e2 => plus (denote e1) (denote e2)
| Times e1 e2 => mult (denote e1) (denote e2)

end.

33

Verification vs synthesis

It is easier to check a solution (e.g. check factorization of a large integer)

than to find a solution (e.g. find the factors of a large integer).

Software verification and synthesis both involve formal methods,

but they require completely different tools, strategies and mindsets.

(Compare bottom-up verification and top-down synthesis of insertion sort.)

In verification, all layers of software stack needs to be scrutinized

to uncover system loopholes and avoid giving false guarantees.

In synthesis, we make assumptions about the semantics of primitive

instructions in our software layer and focus on deriving new behavior.

Engineers working on lower software layers verify those assumptions.

34

Program representation

Synthesized programs need not be extracted/compiled (e.g. from Coq to OCaml)

before storage. They can be saved in compressed form and extracted at run-time.

We could even store them via the proof script that synthesized the program.

Andrej Bauer on representation of mathematical theorems:

Proof assistants facilitate translations from implementation languages to semantics

(e.g. from structured cospans to algorithms) as well as from proof scripts to proof terms.

They call on type-engines to check if proof terms are well-formed or well-typed.

They could be engine-agnostic or even theory-agnostic. (CatLab as proof assistant?)

We do not expect humans to memorize every proof of every

mathematical statement they ever use, nor do we imagine that

knowledge of a mathematical fact is the same thing as the

proof of it. Humans actually memorize proof ideas which allow

them to replicate the proofs whenever they need to. Proof

assistants operate in much the same way, for good reasons.

http://math.andrej.com/2016/08/09/what-is-a-formal-proof/

35

Blockchain and incentives

Proofs/implementations can be made opaque or transparent.

Theorems/intents that use a prior result should depend only on its type

and not the syntax of its term, unless it is a definition or ontology.

Theorems should not break when the proof of a prior result is changed.

For an opaque proof/implementation, we can use blockchain to store

the verification that it is well-typed without revealing its syntax.

We can use smart contracts to collect usage payment and deliver its

syntax or API to other intents that need it for synthesis. These contracts

create a hierarchy of incentives for conjectures or software goals.

36

Transport between theories

Library coq.sorting.permutation

Library mathcomp.ssreflect.seq

How do we effectively indicate that the two definitions are equivalent?

How do we transport a theorem/intent from one theory to another?

Inductive Permutation : list A -> list A -> Prop :=

| perm_nil: Permutation [] []

| perm_skip x l l' : Permutation l l' -> Permutation (x::l) (x::l')

| perm_swap x y l : Permutation (y::x::l) (x::y::l)

| perm_trans l l' l'' : Permutation l l' -> Permutation l' l''

-> Permutation l l''.

Definition perm_eq s1 s2 :=

all [pred x | count_mem x s1 == count_mem x s2] (s1 ++ s2).

37

Transport between types

More generally, how do we transport between equivalent types?

Example [Tabareau, Tanter & Sozeau 2019]

Types Nat (unary numbers) and Bin (binary numbers) are equivalent.

How do we effectively transport functions (e.g. addition, multiplication)

and theorems (e.g. commutativity of addition) from one type to another?

Possible solutions

1. Boolean reflection

2. Parametric transport

3. Cubical transport

4. Univalent transport

Tabareau, Nicolas, Éric Tanter, and Matthieu Sozeau. "The Marriage of Univalence and Parametricity." arXiv preprint arXiv:1909.05027 (2019).

38

Transport between types

Example. Sorting algorithms (joint work with Jin Xing Lim, Georgios Piliouras)

Sorting is writing the elements of a finite totally-ordered set in order to a list.

Insertion sort involves transporting/lifting this set to a list, and

applying the induction principle for lists as a tactic.

Merge sort involves transporting/lifting this set to a binary tree, and

applying the induction principle for binary trees as a tactic.

Quick sort involves transporting/lifting this set to a binary search tree, and

applying the induction principle for binary search trees as a tactic.

We may generalize and apply these tactics to any goal that

require the synthesis of functions over finite sets or lists,

e.g. search, maximum, minimum, average.

39

Unification

To decide if a prior theorem may be applied to a goal, we need unification.

The solution to the above unification problem is

Unfolding a definition (𝛿-reductions) can break unification,

so it is not always advisable to unify normal forms with normal forms.

Goal forall (a : nat) (l : list nat), sorted l -> sorted (insert a l)

Theorem sorted_ind : forall (P : list nat -> Prop),
P [] ->
(forall x : nat, P [x]) ->
(forall (x y : nat) (l : list nat),

x <= y -> sorted (y :: l) -> P (y :: l) -> P (x :: y :: l)) ->
forall (l : list nat), sorted l -> P l

Unify forall (l : list nat), sorted l -> sorted (insert a l)
with forall (l : list nat), sorted l -> ?P l

?P := fun l0 : list nat => sorted (insert a l0)

40

Knowledge Graphs
(joint work with Zhangsheng Lai, Liang Ze Wong)

41

Knowledge instances

Sales

Ruth

Kris

Alan

IT

m
a
n
a
g
e
r

manager

manager

42

Queries as types, answers as terms

Inductive empl :=
| alan
| ruth
| kris.

Inductive dept :=
| sales
| tech.

Definition works (e : empl) : dept :=
match e with
| alan => sales
| ruth => sales
| kris => tech
end.

Definition mgr (e : empl) : empl :=
match e with
| alan => ruth
| ruth => ruth
| kris => kris
end.

Definition sec (e : dept) : empl :=
match e with
| sales => alan
| tech => kris
end.

43

Queries as types, answers as terms

Structure ruth_sec_qry :=

{ ruth_sec :> empl;

ruth_dept : dept;

eq_ruth_dept : ruth_dept = works ruth;

eq_ruth_sec : ruth_sec = sec ruth_dept }.

Definition ruth_sec_ans : ruth_sec_qry.

Proof. unshelve eexists. Focus 3. auto. Focus 2. auto. Defined.

ruth_sec_ans =

{| ruth_sec := alan;

ruth_dept := sales;

eq_ruth_dept := erefl sales;

eq_ruth_sec := erefl alan |}

44

Queries as types, answers as terms

45

Knowledge schemata

Fong, Brendan, and David I. Spivak. "Seven sketches in compositionality: An invitation to applied category theory." arXiv preprint arXiv:1803.05316 (2018).

[adapted from Fong & Spivak 2018]

Theorem eq_sec : forall d, works (sec d) = d.

Proof. destruct d; auto. Qed.

Theorem eq_mgr : forall e, works (mgr e) = works e.

Proof. destruct e; auto. Qed.

46

Knowledge schemata

We may use Structure to organize data about a schema,

declare an instance of the schema,

and prove theorems about all instances of the schema.

Structure company : Type := Build_company

{ employee : Set;

department : Set;

works_in : employee -> department;

secretary : department -> employee;

manager : employee -> employee;

eq_secretary : forall d, works_in (secretary d) = d;

eq_manager : forall e, works_in (manager e) = works_in e }.

Definition acme := Build_company empl dept works sec mgr eq_sec eq_mgr.

Theorem sec_mgr : forall (c : company) (d : department c),

works_in c (manager c (secretary c d)) = d.

Proof. intros c d. rewrite <- eq_secretary. rewrite eq_manager. auto. Qed.

47

We may use Structure to organize data about a mathematical structure,

declare an instance of the mathematical structure,

and prove theorems about all instances of the mathematical structure.

Definition Z_abGrp := AbGrp Z Z0 Z1 Zopp Zadd

Mathematical structures

Structure abGrp : Type := AbGrp {

carrier : Type; zero : carrier;

opp : carrier → carrier; add : carrier → carrier → carrier;

add_assoc : associative add; add_comm : commutative add;

zero_idl : left_id zero add; add_oppl : left_inverse zero opp add }.

Theorem subr0 : ∀ (aG : abGrp) (x : carrier aG),

add aG x (opp aG zero) = x.

48

Unification

How can a proof assistant know how to apply

towards simplifying works (mgr (sec d)) to a department d unless we

explicitly specify works, mgr, sec as fields to of an instance of company?

How can a proof assistant know how to apply

towards simplifying (Zadd z (Zopp Z0)) to an integer z unless we

explicitly specify Zadd, Zopp, Z0 as fields of an instance of abGrp?

This is a problem in unification.

Theorem sec_mgr : forall (c : company) (d : department c),

works_in c (manager c (secretary c d)) = d.

Theorem subr0 : ∀ (aG : abGrp) (x : carrier aG),

add aG x (opp aG zero) = x.

works_in ?c = works
add ?aG = Zadd

49

As we build complex hierarchies of structures in knowledge graphs,

users should not be burdened by the tracking of structural information.

One solution is to declare some instances of a structure as canonical, e.g.

the set of integers can be viewed as an additive or multiplicative monoid,

but we could declare the additive monoid instance as canonical.

Coq adds each field of a canonical instance to a look-up table for unification.

(We could also use type classes in Coq but I’m agnostic.)

Canonical instances

Mahboubi, Assia, and Enrico Tassi. "Canonical structures for the working Coq user." In International

Conference on Interactive Theorem Proving, pp. 19-34. Springer, Berlin, Heidelberg, 2013.

Definition acme := Build_company empl dept works sec mgr eq_sec eq_mgr.

Canonical acme : company.

Definition Z_abGrp := AbGrp Z Z0 Z1 Zopp Zadd

Canonical Z_abGrp : abGrp.

employee ?c = empl => ? = acme
department ?c = dept => ? = acme
...

50

Verification vs enumeration

Given finite type 𝑇 (e.g. the world population) and 𝑡 ∶ 𝑇,

suppose we are interested in the subtype 𝑆𝑡 (e.g. the siblings of 𝑡).

Verification (e.g. checking that 𝑠 ∶ 𝑇 is a sibling)

is easier than synthesis (e.g. finding any sibling),

which is easier than enumeration (e.g. finding all siblings).

Verification specified with Boolean predicates 𝑝 ∶ 𝑡 ∶ 𝑇 → (𝑠 ∶ 𝑇) → bool.
Enumeration specified with enumeration functions 𝑓 ∶ 𝑡: 𝑇 → list 𝑇.

Equivalence between predicate and enumeration 𝑝 𝑡 𝑠 = true ↔ 𝑠 ∈ 𝑓 𝑡.

Of course, given a predicate 𝑝, we could enumerate by evaluating 𝑝 on all of 𝑇.

However, scheduling [Patterson 2020] can give us more efficient enumerations.

How to schedule by transporting between predicates and enumerations?

Patterson, Evan. “(Co)relational computing in Catlab: The operad of UWDs and its algebras”, MIT Categories Seminar, December 2020.

51

In the ssreflect library, the type reflect P b encodes the equivalence 𝑃 ↔ (𝑏 = true).

For example, this lemma states the equivalence 𝑏1 ∧ 𝑏2 ↔ (𝑏1 && 𝑏2 = true).

We apply the lemma to transport a proof of (a && b = true) to a proof of ab : a /\ b.

Transport by reflection

Inductive reflect (P : Prop) : bool -> Prop :=

| ReflectT (p : P) : reflect P true

| ReflectF (np : ~ P) : reflect P false.

a, b : bool

ab : a /\ b

========================

true ==> (a == b)

subgoal 2 is:

false ==> (a == b)

Lemma example a b :

a && b ==> (a == b).

Proof.

case: andP => [ab|nab].

Lemma andP (b1 b2 : bool) : reflect (b1 /\ b2) (b1 && b2).

52

We use the type (qreflect qt qe) to encode the equivalence between

membership in a subtype (n \of qt) and membership in a list (n \in qe).

Suppose we have relations 𝑅1, 𝑅2 and their enumerations 𝐸𝑖 𝑠 = 𝑡 𝑡 𝑅𝑖 𝑠 }.
Define relation 𝑅3 by 𝑢 𝑅3 𝑠 ⇔ ∃ 𝑡, 𝑢 𝑅2 𝑡 ∧ 𝑡 𝑅1 𝑠 . Let 𝐸3 𝑠 = 𝑢 𝑢 𝑅3 𝑠 }.
The next theorem says that 𝐸3 𝑠 is the union of 𝐸2 𝑡 over all 𝑡 ∈ 𝐸1 𝑠 .

With more equivalences like qChainP, the proof assistant can derive enumerations

for new queries by decomposing them into patterns and applying reflections.

Transport by reflection

Definition qreflect {qb : query_pred} (qt : query_subType qb)

(qe : query_enum) := ∀ (n : node), reflect (n \of qt) (n \in qe).

Theorem qChainP _ _ _ _

(_ : ∀ (n:node), qreflect (qr1 n) (qe1 n))

(_ : ∀ (n:node), qreflect (qr2 n) (qe2 n)) : ∀ (s u : node),

reflect (exists2 t : node, (t \of qr1 s) & (u \of qr2 t))

(u \in flatmap (fun t => qe2 t) (qe1 s)).

53

Decentralized knowledge

ent:sales

ent:ruth

ent:kris

ent:alan

ent:tech

o
c
t:m

g
r

ont:mgr

ont:mgr

PREFIX ent: <http://acme.com/entity#>

PREFIX ont: <http://acme.com/ontology#>

In linked data, knowledge is not

centralized in one database where

we can derive inductive types.

Moreover, access rights prevent

a user from reading all available

entries in the knowledge graph.

Inductive empl :=
| alan
| ruth
| kris.

Inductive dept :=
| sales
| tech.

54

Universe management

ent:sales

ent:ruth

ent:kris

ent:alan

ent:tech

o
c
t:m

g
r

ont:mgr

ont:mgr

PREFIX ent: <http://acme.com/entity#>

PREFIX ont: <http://acme.com/ontology#>

The universe of a user is thus built

up by axiomatic types and terms in

the same way a theory is built up in

a logical framework.

Modules are imported to construct

types on top of this user universe.

Users may share universes and

branch off at different levels.

Polymorphism is necessary for

localizing types at different levels.

Axiom empl : Type.
Axiom alan : empl.
Axiom ruth : empl.
Axiom kris : empl.

Axiom dept : Type.
Axiom sales : dept.
Axiom tech : dept.

55

Conclusion

56

Program synthesis

Key research areas to fulfill the dream of

using proof assistants for program synthesis.

• Transport

• Unification

• Theory management

• Universe management

57

Diversity, equity, inclusion

Information is power. Code is access to power.

People are stripped of power by inability to code,

or inability to control information because of code

(e.g. platforms for social networks, gig economy).

• Diversity of voices, products, services

• Equal access to resources and growth

• Inclusion in supportive communities

58

https://shaoweilin.github.io/

Questions?

59

