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item Outline
1. Plethories
2. 2-plethories
3. Decategorify the simplest 2-plethory to get the most beautiful
object
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“Classically” (Tall-Wraith, Stacey-Whitehouse, Borger-Wieland), a
plethory consists of a (commutative) ring B

» Equipped with a lift ® as in

Ring

nghW)Set

» Together with a comonad structure on .

P Really, the same thing as a right adjoint comonad on Ring!
(notes 1, 2)
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Concrete description of lift
More concretely: the lift ¢ in

Ring

o

RlnghW)Set

amounts to putting a ring structure on hom-sets hom(B, R),
naturally in R:

m(R) : hom(B, R) x hom(B, R) — hom(B, R)

m(R) : hom(B + B, R) — hom(B, R)
(coproduct in category of commutative rings: tensor product)

m(—) : hom(B ® B, —) — hom(B, —)

uw:B— B®B ‘“comultiplication”
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Biring structure of plethory

» The lift ® in
Ring

RlnghW)Set
is the same thing as endowing hom(B, —) with a (natural)
ring structure (ring operations hom(B, —)" — hom(B, —)).
» By Yoneda, the lift ® is the same as endowing B with
co-operations, dual to ring operations:

1. Comultiplication 1 : B - B® B,

2. Co-additiona: B+ B®B

3. Co-zero o: B — Z (map to initial ring)
4. Co-onev:B—7Z

5. Co-negationv: B — B

satisfying conditions dual to ring axioms.
“Biring” B: co-ring object in (+)-monoidal category of rings.
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Comonad structure of plethory

(Ring 5 Ring 4 Set) = (hom(B, —) : Ring — Set)

Concretely, what is a comonad structure § : ® — P, e : ¢ — 17

ue & ueo
hom(B,—) — hom(B,®—)
1 — hom(B,®B)
B — oB

(ring homomorphism). Underlying function: UB — hom(B, B).
UB — Ring(B, B) — Set(UB, UB)
Binary operation (“plethysm")
UB x UB — UB.

Theorem: & % ®® is coassociative iff plethysm is associative
(notes 3, 4).
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Example

The simplest example: ® = 1gj,g : Ring — Ring.
» What is the ring B for the following diagram?

Ring

RlnghW)Set

» B = Z[x]. Because hom(Z[x], R) = UR.
Here B ® B = Z[x1] ® Z[x0] = Z[x1, x2].

» Coaddition o : B — B ® B: the unique ring map
Z|x] — Z[x1, x2] that sends x to x; + xo.

» Comultiplication p : B — B ® B: the map Z[x] — Z[x1, x2]
sending x to xyxo.

v

» Co-zero and co-one are the maps B — Z sending x — 0, 1.
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Plethysm for Z[x]
Here ® = 1jng. The map h: B — ®B is the identity map:
Zix] = oZx] 3 hom(Z[x], Z[x])
q(x) = alx) = (x—q(x))
x" = q(x)"
2n Pox" = 30, Pad(x)"
p— p(q(x))

Z|x] x Z[x] = Z[x]

(q(x), p(x)) = p(q(x))

“Plethysm is substitution monoidal structure”.
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» Closed under absolute colimits (giving 2-additive structure)
1. Biproducts = direct sums A® B,
2. ldempotent splittings: every idempotent e : A — A factors as a
retraction r : A — B followed by a section i : B — A, so that
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Categorifying the notion of rig: for us, a 2-rig is

» A Vect-enriched category C,
» Closed under absolute colimits (giving 2-additive structure)

1. Biproducts = direct sums A® B,

2. ldempotent splittings: every idempotent e : A — A factors as a
retraction r : A — B followed by a section i : B — A, so that
e = ir and ri = 1g. In that case have a coequalizer

» Equipped with a symmetric monoidal structure ® in the
Vect-enriched sense (giving 2-multiplicative structure).
Here A ® B automatically preserves absolute colimits in each of
the separate arguments A, B, i.e., 2-distributivity is automatic in

this context.
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The initial 2-rig is Vec, the category of finite-dimensional vector
spaces. The (unique up to isomorphism) map Vec — C sends the
1-dim space k to the monoidal unit /.

The free 2-rig on one generator: mimic the construction of the free
rig N[x] on one generator.

Form N[x] in two steps:

» First form the free commutative (multiplicative) monoid on
one generator x (monomials x").

» Then form the free commutative (additive) monoid on that
(polynomials ag + a1 x + ... + apx" with coefficients in N).
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The free 2-rig

Analogously, to form the free 2-rig Vec[x] on one generator:

» First form the free symmetric monoidal category on one
generator (permutation groupoid P with objects [n],
non-empty homs are hom([n], [n]) = S,),

» Then form the free Cauchy-complete Vect-enriched category
on that:

1. “Vectorialize” the homs S,: get group algebras kS,.
2. Close up under finite direct sums:

hOm(Z a,-[i], Z bj[l]) = Z a,-b,-kS,-

3. Close up under idempotent splittings. If char(k) = 0, one gets
arbitrary functors

P — Vec

of finite support.
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Example
In k[S2], let o be the transposition. Define idempotent maps
e_, et : k[Sz] — k[Sz] given by multiplying by %(1 to0), eg.,

) 1-0\> 1-20+0%2 2-20 1-o0
4 4 2

> — — —

Let E_ be the corresponding idempotent splitting (retract) in
Vec|[x]:

x®2 5 E 5 x®2,

If C is any 2-rig, with an object V/, the 2-rig map Vec[x] — C that
sends x to V also sends the retract E_ to a retract

V®2 5 E (V) — V&2,
usually denoted E_(V) = A?(V). If E, is the retract

corresponding to e, = %(1 + o), then we similarly have a retract
E. (V) of V®2 usually denoted E, (V) = S?(V).
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Analogous to the biring structure on Z[x], there is a 2-birig
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2-birig structure
Analogous to the biring structure on Z[x], there is a 2-birig
structure on Vec|x|:
» (2-)coproducts of 2-rigs are like tensor products. If C and D
are 2-rigs, then their coproduct C X D is the closure under
biproducts, idempotent splittings of the tensor C ® D, where

(C® D)((c1, ch), (c2, d2)) = C(c1, 2) ® D(dh, ca).

» We have Vec[x;] X Vec[xp] ~ Vec[x1, x2]. This is the same as
the category of finitary functors

P x P — Vec.

» The 2-birig co-addition is the unique 2-rig map

Vec[x] — Vec[x1, x2] that sends x to x; @ xo.
» Co-multiplication Vec[x] — Vec[x1, x2] sends x to x1 ® xo.
» 2-birig co-zero, co-one Vec[x] — Vec send x to 0, k.
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2-plethysm structure

2Rig

/ lumg B = Vec[x]

9 :1 — 11 corresponds to a 2-rig map h = id : Vec[x] — 1Vec|x].
This corresponds in turn to the canonical 2-rig map

Vec[x] — 2Rig(Vec[x], Vec[x])
Q — (x— Q)
XN Ly QO
Ynanx®T e 37, anQY"

(A—r>E—i>A)b—>(AOQ—>EOQ—>AoQ)



2-plethysm structure

De-currying, we obtain a functor (2-plethysm)

Vec[x] x Vec[x] — Vec[x]

(QE)—EoQ

Theorem: The 2-plethysm functor is associative up to coherent
isomorphism. It is part of a (plethystic) monoidal category
structure on Vec[x]. (Compare “substitution product” of Joyal
species.)
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The "“trivial” 2-plethory 1 : 2Rig — 2Rig descends, through
decategorification, to a highly nontrivial rig-plethory Rig — Rig!

General idea: if B is a 2-rig, and if H(B) is the set of isomorphism
classes of objects of B, then ® and & on B induce a rig structure
on H(B). This rig is denoted J(B).
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Decategorification

The "“trivial” 2-plethory 1 : 2Rig — 2Rig descends, through
decategorification, to a highly nontrivial rig-plethory Rig — Rig!

General idea: if B is a 2-rig, and if H(B) is the set of isomorphism
classes of objects of B, then ® and & on B induce a rig structure
on H(B). This rig is denoted J(B).

Very roughly: have a product-preserving functor
J: 2Rig — Rig
But what do we do with the 2-cells of 2Rig?

Definition: If C is a 2-category (a Cat-enriched category), then
Cho is the ordinary (Set-enriched) category obtained by applying

Cat ¥ Gpd 8 Set

to the Cat-valued homs of C.
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Decategorification

The 1-cells of Cy are the 2-isomorphism classes of 1-cells of C.

Proposition: If C is a category, regarded as an object of Caty,,
then

hom(1, —) : Catp, — Set
takes C to (mpcore)(C).
Corollary: If C is a 2-category, and ¢, d are objects, then
hom(1,C(c,d)) = Chol(c, d)
regarding the category C(c, d) as belonging to Catp,.



Decategorification

Proposition: There is a product-preserving lift J of the bottom

composite in
/ \LURIg

2Righo H Cath0 *> Set

Namely, if R is a 2-rig, then Upo(R) is a rig object in Catpo, and
the functor hom(1, —) is product-preserving (hence preserves rig
objects). Hence the set

H(R) = hom(1, Uno(R))

carries rig structure. This rig is J(R).



Decategorification

Proposition: There is a product-preserving lift J of the bottom

composite in
/ \LURIg

2Righo H Cath0 *> Set

Namely, if R is a 2-rig, then Upo(R) is a rig object in Catpo, and
the functor hom(1, —) is product-preserving (hence preserves rig
objects). Hence the set

H(R) = hom(1, Uyo(R))
carries rig structure. This rig is J(R). We let Ay = J(Vec[x]).

H(R) = hom(1, 2Rig(Vec[x], R)) = 2Rigno(Vec[x], R)
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5)
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A is a birig
Theorem: J : 2Rign, — Rig preserves copowers of Vec[x]. (note
5)

For example, J(Vec[x]®?) = J(Vec[x])®? = A$?,

This result allows us to define a birig structure on A; = J(Vec[x]).
For example, start with 2-coaddition

a : Vec[x] — Vec[x] X Vec[x]

Apply J:
J(a) : J(Vec[x]) — J(Vec[x] X Vec[x])

Compose:

J(Vec[x]) ) J(Vec[x] ¥ Vec[x]) = J(Vec[x]) ® J(Vec[x])

co-add : /\+ — /\+ (039 /\+



Rig-plethory structure on A

The birig structure on A provides a lift ¢

Rig
o

Rl%o—>m(/\+, Set



Rig-plethory structure on A,

The birig structure on A provides a lift ¢

Rig
2
ngw—>m(/\+, Set

We want a comonad structure on ®: a comultiplication
0:® — &b and counit £ : & — 1R;,.

Recall that U® — UPP amounts to structure map

h: U/\+ — ng(/\+,/\+)



Rig-plethory structure on Ay = J(Vec|x])

2Righo —=— Catpo L’_>)Set

H
H(R) = 2Rigpo(Vec[x], R)
H(Vec[x]) = 2Righo(Vec[x], Vec[x])
UJ(Vec|x]) = 2Righo(Vec|x], Vec[x])



Rig-plethory structure on Ay = J(Vec|x])

2Righo —=— Catpo L’_>)Set

H
H(R) = 2Rigpo(Vec[x], R)
H(Vec[x]) = 2Rigpo(Vec[x], Vec[x])
UJ(Vec|x]) = 2Righo(Vec|x], Vec[x])

Compose:

UJ(Vec[x]) = 2Righo(Vec[x], Vec[x]) — Rig(J(Vec[x]), J(Vec[x]))
UA. — Rig(Ay, Ay)



Theorem: The (rig) map

UNy — Rig(A+,A\4)

gives rise to an associative plethystic multiplication

U/\+ X U/\+ — U/\+,

compatibly with the birig structure (note 4), so that it defines a
coassociative transformation § :  — ®® that is part of a
rig-plethory (a right adjoint comonad on Rig).



Theorem: The (rig) map

UNy — Rig(A+,A\4)

gives rise to an associative plethystic multiplication

U/\+ X U/\+ — U/\+,

compatibly with the birig structure (note 4), so that it defines a
coassociative transformation § :  — ®® that is part of a
rig-plethory (a right adjoint comonad on Rig).

The ringification
N=7nN,

(the Grothendieck ring Ko(Vec[x])) similarly carries a canonical
plethory structure, i.e., there is a canonical lift ® : Ring — Ring of
hom(A, —) : Ring — Set with a comonad structure. (note 6)



Theorem: The (rig) map

UNy — Rig(A+,A\4)

gives rise to an associative plethystic multiplication

U/\+ X U/\+ — U/\+,

compatibly with the birig structure (note 4), so that it defines a
coassociative transformation § :  — ®® that is part of a
rig-plethory (a right adjoint comonad on Rig).

The ringification
N=7nN,

(the Grothendieck ring Ko(Vec[x])) similarly carries a canonical
plethory structure, i.e., there is a canonical lift ® : Ring — Ring of
hom(A, —) : Ring — Set with a comonad structure. (note 6)

A \-ring is then a ®-coalgebra. (notes 7, 8)



Thank you!



Notes

1. Or a left adjoint monad on Ring. (String diagrams show that
the left adjoint of a comonad carries a monad structure, and dually
the right adjoint of a monad carries a comonad structure; the
back-and forths are mutually inverse.) Moreover, in this case the
category of coalgebras of the comonad is equivalent to the
category of algebras of the monad: the forgetful functor from
either is both monadic and comonadic.

2. If ® is a right adjoint, then so is U®, and any right adjoint to
Set is representable: U® = hom(B, —). Conversely, by an adjoint
lifting theorem, any lift of a representable through U : Ring — Set
must be a right adjoint. The same applies to any monadic
category U : C — Set in place of U : Ring — Set.



Notes

3. Of course there is also the counit € : ® — 1. We have
U1 = hom(Z[x],—). Thus

ue 5 u1
hom(B,—) — hom(Z[x], )
Z|x] — B.

The composite

1 vzx - uB

picks out an element ¢ of UB. This element is a unit for plethysm
iff € obeys the comonad counit equations.



Notes

4. H: U® — UdP corresponding to h: B — ®B is of the form
H=Ud: Ud — UdD, iff H preserves the ring operations (induced
from biring structure). E.g., here preservation of multiplication:

hom(B, —)? —+ hom(B, ®—)>2
multl lmult
hom(B, —) — hom(B, ®—)
In terms of co-multiplication p, this is equivalent to

B— " o8B

ul lzb(u) , Where
h
BoB —2s &(B® B)

. . h .
B BoB 2 0(BeB) = B " 0"

a¢(i2)¢(B ® B)



Notes

5. Theorem: Let nq,..., n, be natural numbers. If char(k) =0,
then every irrep of k[S,, x ... S,,] is a tensor product p; ® ... ® pp
of irreps p; of k[Sp,] that are determined uniquely up to
isomorphism. [J

Now J(Vec[x]) is a free N-module on isomorphism classes of irreps
of symmetric groups, so that J(Vec[x])®P is a free N-module on
p-tuples of such classes. Meanwhile J(Vec[x]®P) consists of
isomorphism classes of functors P*P — Vec of finite support. The
canonical rig map

J(Vec[x])®P — J(Vec[x]¥P)

is the N-module map that freely extends the mapping

(o1l Iop) = [1 ® .. @ pp)

Since this mapping is a bijection by the theorem, the canonical rig
map is an isomorphism.



Notes

6. The main problem is to define the co-negation co-operation on
A. This is explained in section 7 of the paper, but in outline, one
considers the 2-rig G of Z,-graded Vec[x]-objects (Cy, C1), with
the usual symmetry that involves a sign change when permuting
homogeneous elements of odd degree. Then J(G) is a rig of pairs
([Go], [C1]) and there is a well-defined rig map

0:J(G) = A

taking ([Co], [G1]) — [Co] — [G1]. Form the 2-rig map
¢_ : Vec[x] — G that takes x to (0, x). This behaves something
like a categorified co-negation. Form the rig composite

A = J(Veclx]) "% ug) & A

and freely extend this rig map to a ring map A — A. This gives the
desired co-negation on the biring A. The proof that this works uses
a “categorified Euler formula”.



Notes

7. Or again, as in Note 1, the algebras of a left adjoint monad.
This is the more usual tack taken (as in Borger-Wieland). The
point is that there is an equivalence between left adjoint
endofunctors on Ring and birings; since left adjoint endofunctors
compose, there is a monoidal structure on Ladj(Ring), which may
be transferred across the equivalence

Ladj(Ring) ~ Biring

to give a monoidal product on Biring, usually denoted ®. Then a
plethory may be defined to be a biring B with a ®-monoid
structure. In that case, a A-algebra may be defined to be an
algebra for the monad

¥V =A® —:Ring — Ring

that is left adjoint to the comonad . Incidentally, this comonad is
know as the “big Witt functor W"; W-coalgebras are the same as
N-algebras.



Notes

8. To be sure, this is not the usual way of presenting A-rings! One
of the virtues however is making explicit the conceptual reason for
why the usual examples (virtual differences of group reps, of vector
bundles, etc.) form A-rings: it's because Vec[x] acts tautologically
on any 2-rig via Schur functors, analogous to how the polynomial
ring Z[x| acts tautologically on any ring R by the unique ring map
Z[x] — Func(R, R) sending x to 1g (where the codomain carries
the pointwise ring structure).

The usual way is to define a A-ring as a ring R together a series of
operations A’ : R — R that abstract exterior power operations
(exterior powers giving a main example of Schur functors). These
A-operations obey a complicated set of equations which may be
found in many texts; we do not reproduce them here.



