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» What is negative information, and why do we care?
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- It pops up in practical applications, e.g., infeasibility results in robot motion planning.
- We asked: what is the corresponding categorical notion?

Idea: represent negative information by negative arrows called “norphisms,”
which complement the positive information of morphisms.

A nategory is a category with some additional structure for norphisms accounting,

Norphisms do not compose by themselves. They need a morphism as a “catalyst.”
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We can derive the norphism rules very elegantly using enriched category theory.
- Just like a P := (Set, x, 1) -enriched category provides the data for a small category, ...

- ... a PN-enriched category provides the data for a nategory,
where PN is a category based on De Paiva’s GC construction.

Conclusions: morphisms and norphisms are of the same substance.
Negative information can be “categorified” using enriched category theory.



Example: robot motion planning

~ Robot motion planning: find the optimal path between two robot configurations.
Paths should avoid obstacles and have a cost (e.g., fuel required, minimum time).

> As a category: objects are points in “free space,” and morphisms are paths with a cost.
Morphism composition concatenates the paths and “sums” the costs.



Example: Dijkstra’s algorithm

~ Dijkstra’s algorithm searches a path from start to goal that minimizes the traversal cost.
> Exploration is uninformed.

node priority CTC CTG
start 0.00 0.00 0.00
step O
| - - - L F 2
A E e
1 7 D | [ 2

start | g C M



A* (“A star”)

> A* searches a path from start to goal that minimizes the traversal cost.
> Exploration is informed:

- we have a heuristic: a lower bound on the cost-to-go from a node to the target.

node priority CTC CTG

start 9.00 0.00 9.00

f n V Z D J N V d2
e m u U o
d | t T b2
C Kk S S a2
b | r R /

start | q Yy C M Q goal



Example: robot motion planning

Robot motion planning: find the optimal path between two robot configurations.
Paths should avoid obstacles and have a cost (e.g., fuel required, minimum time).

As a category: objects are points in “free space,” and morphisms are paths with a cost.
Morphism composition concatenates the paths and “sums” the costs.

A complete algorithm can find a path (if it exists) positive information: morphism!
or give a certificate of infeasibility (if one doesn’t exist). what is this, categorically?

An optimal algorithm can find (if it exists) an optimal solution:
- afeasible path, plus... positive information: morphism!

- a certificate of optimality: there is no better path. what is this, categorically?

Search algorithms of the A* family achieve speed using heuristics:

lower bounds for the cost between two points.
what is this, categorically?



Absence of evidence vs evidence of absence

>~ More in general, it is common to have algorithms that run some kind of “inference”
procedure that produces “feasible points” (morphisms).

>~ At each instant, each morphism is either “proved”, “disproved”, or “unknown”.

absence of evidence

q

proved

evidence of absence

disproved

proved



Building intuition: the case of thin categories

> In a thin category, there is at most one morphism per hom-set.

> These are preorders that represent connectivity. (Motion planning without costs.)
» We postulate these semantics:
- Anorphisms n: X --+ Y implies that there is no morphism f: X —Y

- Amorphism f: X — Y implies that there is no norphism 7n: X -—+ Y

>~ We find that the norphisms rules are dual to the morphisms rules

T FiX Y 0¥ 57

X —X (feg): X —Z

X - X 0: X -2 Y : Obc
1 (n: X —->Y)V(m:Y --+Z)

Note: nonconstructive!



Norphisms composition needs morphisms as catalysts

>~ We constructively revisit the logic to obtain composition rules.

> The constraint splits into two rules of the type morphism + norphism — norphism:

Z Z . femn ylx "z
0 y = nl Ty o
x 7 x 7 vz

%,\g % g X 5 zly
n' Y — n! . Y f e o

: (s x Ty

» Norphism composition requires morphisms as catalysts.

> There is no norphism + norphism composition rule.
n:X->Y m:Y ->24Z
7. X > Z

> There is no “category of norphisms.”

>~ Norphisms are complementary to morphisms but obey different rules.



Definition (Nategory)

A locally small nategory C is a locally small category with the following additional
structure. For each pair of objects X, Y € Ob, in addition to the set of morphisms
Homc(X;Y), we also specity:

> A set of norphisms Nom¢(X;Y).
> An incompatibility relation, which we write as a binary function

xy « Nome(X;Y) X Home(X;Y) — Bool.
For all triples X, Y, Z, in addition to the morphism composition function
Sxyz » Home(X;Y) X Home(Y; Z) - Home(X; 2),
we require the existence of two norphism composition functions

—yy7 . Home(X;Y) X Nome(X; Z2) - Nome(Y; 2),
<xyz . Nome(X;Z) X Home(Y; Z2) - Nome(X;Y),

and we ask that they satisty two “equivariance” conditions:

yz([ een,2) = ixz(n, [ 58), (equiv-1)
xy(n =g, /)= ixz(n, [ 58). (equiv-2)

~ We call a nategory “exact” if:

yz([ e1,8) & ixz(n, [ §8)
xy(n =g, f) e ixz(n, f5g)



Canonical nategory constructions

> Here are some ways to get a nategory from a category C.

No norphisms One norphism (for semicats)
Nome(X;Y) =0 Nome(X;Y) :={-} Nome(X;Y) = {-}
xx (e, 1dy) = Ixxleddgr)y =1
XY('af): XY('af):
f o—e © — o f —e © — o
o o g Y ® —o- g - e
The combinatorial explosion ... with very weak inference rules
Nome(X;Y) = Pow(Home(X;Y)) Nome(X;Y) = Pow(Home(X;Y))
xy(n, f)=f €n xy(n, f)=f €n
f._.nzprejjl(n) feen=40

n...gzpost;(n) neg=90



pre’,

JXY . Nomc(X, Y) — POW(HOmc(X, Y))
n — f € Home(X;Y) @ ixy(n, )5

we find incompatibility with »

X > 7 X >/

_ - the norphism

X—=>Y X->Y

@

Ix;(n) €1 —n

-

Y->Z Y-»Z Y > Z Y > Z
/7 catalyst morphism
\ )
\I/
need to find a norphism here
we pull back incompatible morphisms
X->27Z X-2Z R X—>2Z X7
Ixz(n) | 4T —n ,»’/ X—-Y X-»Y 4« T—n
- f pre]?1
Y b Z Y > Z Y p 7 Y > Z
\ 4
v Txz(n =) &~/

-

-
-
-

X—=>Y X->Y

X—=Y X->Y

Y

n
YX - Z

foen

> /Z



Example: hiking on the Swiss mountains

Definition 5 (Berg). Let A: R? — RsobeaC I function, describing the elevation of a mountain. The set
with elements (a, b, h(a, b)) is a manifold M that is embedded in R>. Let o = [0y, 6y] C R be a closed
interval of real numbers. The category Berg;, ; 1s specified as follows:
1. An object X is a pair (p, v) € I M, where p = (pyx, Py, P;) is the position, v is the velocity, and
Z M is the tangent bundle of the manifold.
2. Morphisms are C! paths on the manifold.At each point of a path we define the steepness as:

s((p, V) = V;/1/VE+ V2. (18)
We choose as morphisms only the paths that have the steepness values contained in the interval o
Homgerg, . (X;Y) ={/f is a C! path from X to ¥ and s(f) C o}, (19)

3. Morphism composition is given by concatenation of paths.
4. Given any object, the identity morphism is the trivial self path with only one point.

IM



Norphisms in Berg

We take norphisms in Berg to be lower bounds on the path distance:

NomBerg(X; Y) 1= RyoU{+oo}

A morphism is incompatible if it violates the lower bound:

xy(1, ) = length(f) <n

An optimal path is a feasible path together with a lower bound on the distance:

f: X =Y length(f): XY
/ is optimal

Norphism composition rules:

Z 2 feen
7\ 7\ .
n' Y — n' "Y
f e+ = max{n — length(/), 0} x T x T
n - g = maxi{n — length(g), 0}
Z '\g Z g
7\ 7\
n' Y — n! LY
x ko
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Norphism schemas for Berg

The length of a path is never less than zero:
0: X ->X
The length of a path cannot be lower than the distance in 3D:
Ip' —p*ll: (p', v (PP VP
The length of a path cannot be lower than than the geodesic distance:
du(p',p?): (p',v') - (p* v?)

The following bounds hold due to the constraint on inclination:

p; —P; <O p; —p; >0
|pé o pgl/O—U : <p19 V1> "> <p23 V2> |p; o p%l/O—L : <p19 V1> "> <p29 V2>

Follow up: we can order schema axioms in partial order (“subnategories”?)



Different choices for norphisms for Berg

>~ We need to check the condition: optionally, the exactness condition:
yz([ e=1,8)= ixz(n, [ 52) yz([ e=1,8) & ixz(n, [ §2)
xy(n =g, /)= ixz(n,f52) xy(n=g, /) & ixz(n, [ §g)
NOmBerg(X; Y) .= RZO U {+OO} NomBerg(X; Y) = RU {+OO}
f een = max{n — length(f), 0} [ een =n—length(f)
n - g = maxi{n — length(g), 0} n - g =n— length(g)
v valid nategory v valid nategory
X not exact v exact
NOMBerg(X;Y) 1= Z U {+0o0} NOMBerg(X;Y) 1= Z U {+0o0}
f een = floor(n — length(f)) f een =round(n — length(f))
n -« g = floor(n — length(g)) n - g = round(n — length(g))
v valid nategory X not a nategory

X not exact X not exact



Definition (Enriched category)
Let (V, ®, 1, as, lu, ru) be a monoidal category, where as is the associator, lu is

the left unitor, and ru is the right unitor.
A V-enriched category E is given by a tuple (Obg, ag, g, Yg), Where

1. Obg is a set of “objects”.

2. agisafunction such that, forall pairs of objects X, Y € Obg,thevalue ag(X,Y)
is an object of V.

3. Bgisafunctionsuchthat,forallX,Y,Z € Obg, there exists a morphism fg(X,Y, Z)
of V, called composition morphism:

Pe(X,Y,Z): ag(X,Y)® ag(Y,Z) -y ag(X, 2).
4. yg is a function such that, for each X € Obg, there exists a morphism of V:
YE(X) ! 1 -y ag(X, X).
og(X,Y)® (og(Y,Z)® ag(Z,U)) Y (X, Y)®ag(Y,2))®ag(Z,U)

idggx,y)®PE(Y,Z U)l lﬁE(XJvZ)@idaE(Z,U)
ag(X,Y)® og(Y, U[}E x U UL o (X 2) @ aw(Z,U)

ag(X,Y)® ag (Y Yg (XY ch )'[%E Yo)z (X,X)® og(X,Y)

idag(x,y) ® R(Y)] / T E®)®idg

og(X,Y)® 1Q og(X,Y)



Lemma. A category enriched in P gives the data necessary to define a small
category, and vice versa.

Proof. We show one direction. Suppose that we are given a P-enriched category as a tuple (Obg,
g, P, YE)- We can define a small category C as follows:

e Set Obc := Obg.

« ForeachX,Y € Obg, let Hom¢(X;Y) = ag(X,Y).

« ForeachX,Y,Z € Ob¢, we know a function

Be(X,Y,Z) : Home(X;Y) ® Home(Y; Z) —ger Home(X; 2). (83)

The diagrams constraints imply that this function is associative.
Therefore, we use it to define morphism composition in C, setting 5x y , := Pg(X,Y, Z).

« For each X € Obc we know a function yg(X) : 1 —ge¢ Hom(X; X) that selects a morphism.
The diagrams constraints imply that such morphism satisfies unitality with respect to §x y .
Therefore, we can use it to define the identity at each object:

idy :=ye(X)(+). (84)




The G(C) construction

» The G(C) construction is due to De Paiva.

» It provides a nontrivial model of linear logic: all 4 connectives, 4 units, negations, and
modalities are distinct.

» See the recent post by Niu on the Topos website that clarifies the relation between G(C)
and Poly.

» Plan:
- We recall the definition of G(Set);
- We recall some of the monoidal products defined by De Paiva;

- 'We will define yet another one;

- We will use it as a target for enrichment.

Definition (PN)
We call PN the monoidal category (G(Set, Bool), LI).



Definition (G(Set))
An object of G(Set) is a tuple
<Q9 Aa >9

where: Q isaset, Aisaset, (' . ) —gel A 1s a relation.

A morphismr: (O, Ay, Cq) =¢gc (Q,, Ay, C5) is a pair of maps

r =(r,, "),
ry o Q1 <set U2,

Pt i Ay —set Az,
that satisty the property
Vg 1 Qy Vay @ Ay 1y(g)Cray = qpCarf(ay).
Morphism composition is defined component-wise:
(r§s), = 5,57,

(rgs)1j = ri g s,

The identity at (Q, A, C) is given by id,o, 4,y = (ido, id4).



Definition (Category G(Set, B))
Let B be a category with finite products and coproducts. An object of the category
G(Set, B) is a tuple

(Q, A, 1),

where () is a set; A is a set, « is a function
. Q XA — ObB
A morphismr : (Qy, Ay, k1) — (Q,, Ay, 15) is a tuple of three functions

r =(rb,rﬁ, )
ry o Qq «set U2,

rf T A —ger Ay,
1102 1 Qg,a1 T Ary = 1(rp(q2), a1) —p z(qz,rﬂ(al)).

The composition of the above morphism r with s : (Q,, A,, 1) — (O3, Az, ©3)
is defined as follows:

(rss), =5, 57,
(rss) =rfs5s,
(r 8 S) : <q39 a1> = (Sb(q3)9 al) 8]3 (q39 rﬁ(al))

More explicitly,

(I'SS) : <q39a1> =

(G 57)as), ay) B0 )

The identity at (Q, A, x) is given by (id(, id 4, (g, a) = id,(;.0))-

i
Q3,7 (al))> 2(g3, (,,11 : sﬂ)(al))-




Definition (G(Cat,B))
Given a category B, an object of G(Cat, B) is a tuple

(Q, A, x),
where O is a category, A is a category, « is a functor
. QP x A - B.
A morphismr : (O, Ay, ©1) 2 gcat (OQ2, Ay, ©5) is a tuple
r=(r, ")

where
> 1, . () > cat Q1 1S a functor,
> 7 A1 —cat A, 1S a functor,

> is a natural transformation between two functors
F,G: Q" xA; - B,
defined as

F=(ry Xid,) § %1,
G = (id o X %) § 765
2



Definition (G(Cat,B))
Given a category B, an object of G(Cat, B) is a tuple

(Q, A, 1),

where O is a category, A is a category, « is a functor
A morphismr : (O, Ay, ©1) 2 gcat (OQ2, Ay, ©5) is a tuple
r=(r, ")

where : ,
not weird anymore!

> 1, . Q) =gt 01 1S a functor,
b

> . Ay —=cat A5 1S a functor,

> is a natural transformation|between two functors
F,G: Q" xA; - B,

defined as

F=(ry Xid,) § %1,
G = (id o X %) § 765
2



A monoidal product

Definition (Monoidal product )
The action on the objects is defined as follows:

(Q1, Ay, 11) % (Qq, Ag, 163) = (01 X Qg, Ay X Ay, 161 # %3)

1% % L (g1, g2), (a1, az)) P 11(q1, 1) Xg ©2(92, A3),
where X is the product of two objects in B. The monoidal unit is
]~>X< — <{'}a {'}a >a . <'9 '> = 1B°

The product of r : (Qq, Ay, 11) — (Q3, Az, x3) and 81 (Qy, Ay, 3) — (Q4, Ay,
4) 18

rx7 s (Qp X Qy, Ay X Ay, iy 5 5) — (03 X Qg, Az X Ay, i3 % iy)

(r x"8), =1, X 5,
(r %~ s)ﬁ = rf x5t
(r78)" 1 ({3, qa), (a1, a2)) = 17°(q3,07) X;; (94, az).



... another one...

Definition (Monoidal product Q)
The action on the objects is defined as follows:

(Q1, A1, 11) @ (OQy, Ay, 16p) = (sz X Q?la Ay X Ay, 1 @ 1)

1 2 1 {{q1> G271, az)) P 1(g1(az), a1) Xg 12(g2(aq), az),

where X is the product of two objects in B. The monoidal unit is
lg = 5h 15 1), D (e 0) = 1p.

The product of r : (Qy, Ay, 1) — (03, A3, xk3) and 81 (Qy, Ay, 1) — (Qy, Ay,
4) 18

R Ay A Ay A
r® s: (07 X0, Ay X Ay, icp @ cp) = Q3 X Q7 Az X Ay, 103 @ 14)

(r®'s), =(s" =37, rfs—3s,),
r® s)ﬂ = rf x5t
(r ®'8)" & (g3, qa), (a1, a2)) = 7 (5" 3 g3)(az), ay) X5 ((r* 5 g3)(ay), ay):



... and another one...

Definition (Monoidal product %)
The action on the objects is defined as follows:

(Q1, A1, %61) B (Qy, Ag, 163) = (01 X Oy, A?Z ><A§1, 1 W Ko)

1 > 1 {91, 92, (a1, a2)) = 11(q1(az), a) +5 ©2(92(ay1), az),

where +5 is the coproduct of two objects in B. The monoidal unit is
1?8) — <{'}a {'}9 >9 . <'9 '> = OB'

The prOdUCt of r: <Q19A19 1> — <Q39A39 3>9 S . <Q29A29 2> — <Q49A49 4> 1S

r%¥’s: <Q1XQ29A?2XA§13 1 2>—><Q3XQ4,A§4><AS3, 3 7 K4)

(r X S), = 1y, X5y,

K
r®'s) = (s, 5—3r"r,5—35s"),
(% 8)" ¢ (g5, Gad (a1 @) = 1 (e ) 5 (s 1),

where + is the coproduct of two morphisms in B.



...and the one we need!

Definition (Monoidal product LI)
The action on the objects is defined as follows:

(Q1, A1, 1) L {Qy, Ag, 1) = (sz X Qflw‘h X A, 1 LI 7cp)

1 L 2 (g1, g2), (aq, az)) P 11(g1(as), aq) +5 ©2(g2(a1), az)
The monoidal unit is
1LI — <{'}9 {'}9 >9 : <'9 '> = OB'

The prOdUCt ofr: <Q19A19 1> — <Q33A39 3> and s : <Q29A29 2> — <Q49A49
4) 18

A A A A
ris: (Q7F XQy0, Ay X Ay, ieq Lieg) — Q5% X Q7 Az X Ay, 163 LI y)

(rLrs), = (s s—35r,rf 5—35,),
(rLr s)ﬁ = rf x5t
(rLr's) : (93, qa), (a1, a3)) & (Sﬂ 5 q3(asz), ap) +i3 (”ﬁ s q3(ay), az).



Norphisms by enrichment

Definition (PN)
We call PN the monoidal category (G(Set, Bool), LI).

Proposition. A PN-enriched category provides the data necessary to specity
a nategory. However, not all nategories can be specified by the data of a PN-
enriched category, because the nategory produced has two additional neutrality
properties:

idy een =1, (neut-1)
n - idy = n, (neut-2)
two “distributivity” conditions:
(f§8)een=gee(f een), (dist-1)
n-(gsh)={M-=h)-g, (dist-2)

and a “mixed associativity” condition
foee(n-=h)=(f een)-=nh, (assoc)

which are not necessarily satisfied by all nategories.



Some steps from the proof

>~ The enrichment gives, for each pair of objects X, Y, a tuple
OCE(X, Y) — <Q9 Aa >

which we use to define Hom, Nom, and i:

O(E(Xa Y) — <N0mC(Xa Y), HOmc(X, Y)a XY>

>~ For each object X, we have a morphism

YE(X) : 1pn —=pn ag(X, X)

in our case:

Ir = )/E(X) : <{'}9 {'}9 > — PN <H0mC(XaX)3 NOmc(X,X), XX>

the forward part picks a morphism that, given the other conditions, is the identity.
The other conditions are vacuous.

~ Next up: composition operations..



Derivation of morphism composition operations

For each triple X, Y, Z, enrichment gives a morphism of PN

ﬁE(Xa Ya Z) : OCE(Xa Y) ®PN OCE(Ya Z) — PN OCE(Xa Z)
unrolling:

SxyZz - <NXY’ HXY’ XY> ®PN <NYZ’ HYZ’ YZ> —PN <NXZ’ HXza XZ>

H

. H
SxyZ - <NXY Yz X NYZ xY, HXY X Hyza XY YZ> —PN <NXZ’ sza XZ>

The forward part recovers morphism composition:
sP: Home(X;Y) X Home(Y; Z) - Home(X; Z)
The backward part gives the morphism composition functions:

- . N X H — Ny,
Sb:N SN H XZ YZ XY

H
YZ XY
XZ XY X NYZ

—: Hyy XNyz = Nyy
The last component can be evaluated to get:

(1, (f>8)) : (ixy Uiyz){(1n = =), (—e=1)),{f, &) 2Bool ixz(, [ §2)
expanding:

(1, (f>8)) ¢ ixy(n =g, f) +g,.1 lyz([ ==1,8) =Bool xz(", [ §8)

which is equivalent to 2 morphisms:
(580t ixy(n =g, ) =Bool ixz(11, [ §8) yz(f e=1,8) = ixz(n, [ 58)
(1, (S, 8) ¢ Iyz(f e=1,8) =Bool ixz(1, [ §8) xy(n =g, f)=ixz(n, [ 5g)



Norphisms by enrichment

Definition (PN)
We call PN the monoidal category (G(Set, Bool), LI).

Proposition. A PN-enriched category provides the data necessary to specity
a nategory. However, not all nategories can be specified by the data of a PN-
enriched category, because the nategory produced has two additional neutrality
properties:

(neut-1)
(neut-2)
two “distributivity” conditions:
(f§8)een=ges(f o), (dist-1)
n-(gsh)={M-=h)-g, (dist-2)
and a “mixed associativity” condition
foee(n-=h)=(f een)-=nh, (assoc)

which are not necessarily satisfied by all nategories.



DP

> A morphism in DP is a design problem, an expert

Definition (Design Problem)
A design problem (DP) is a tuple (F, R, d), where F, R are posets and d is a mono-
tone map of the form

d: F° X R —p,s Bool.

» The composition in DP is given by

Definition (Series composition)
Letd: P +— Qande: Q — R be design problems. We define their series
composition (dse) . P—+ Ras:

(dse): PP xR —pys Bool
(p*,ry =\ dp" g Aelq,r)
q

> Norphisms (nesign problems) are infeasibility relations
Example: you cannot build a perpetual motion machine

> These are still monotone maps, now stating infeasibility

n: FXR® —-p. Bool.



>

v

>

v

v

Morphisms and norphisms in DP

Start from d: F-——-R andn: F - R.

Compatibility ensures that there are no contradictions
rr(n,d)=3f € F,reR: d(f,r) An(f,r)

How do design problems and nesign problems compose?

Starting from n: P —+> Qand d: R—+—Q

(n - d)(p,r) = \/ n(p,q) A d(r, ).

q€Q

Starting from d: Q——P and n: Q-+ R

(d —n)(p,r) = \/ d(g, p) A (g, 7).

q€Q



Morphisms and norphisms in DP

v

Let’s consider the example of two dams

v

Consider posets P=Q =R = (R[J], §>
>~ Dams transform potential energy into kinetic energy

~ Let’s say we have feasibility and infeasibility information about a dam

d: R+—Q n: P+ Q

d(r,q) n(p,q)

b

r-1.1<gq p-12>q

> These produce a nesign problem (n-d): P+ R describing infeasibility between
kinetic energies: can I get 10 J from 9 J? No!

(n - d)(10,9) = \/ n(10,q) A d(9,q)
9€Q

- \/(9.9 <g<12)=T.
geQ



v
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Conclusions and future work

Negative information can be categorified using negative arrows (norphisms).

(as opposed to using some logic on top of category theory...)

Norphisms behave fundamentally differently than morphisms.

They compose using morphisms as catalysts.

v

v

. . fon no_ 8

XY 0:Y > Z vix Sz X 57zly
9 X = 7 —e -

(/58) v/ x ' TPy

“Nategories” generalize categories to account for the norphism machinery.

We can derive the norphism rules very elegantly using enriched category theory.

- Just like a Set-enriched category provides the data for a small category, ...

... a PN-enriched category provides the data for a nategory.

» Future work

PN enrichment is too strong; induces more properties.
Surveying natural norphism structures in the wild.
Explore more the idea of algorithms producing both positive and negative information.

Generalization to higher-level concepts. What would a “nunctor” be?



