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Robotics: Work = Dynamics = Basi

ns = Composition

Tasks: Architecture & Environment ‘

Task: prescribe and execute an exchange of energy

H [Kod, Annu. Rev. CRAS’21]

Closed Loop Dynamical System

with the environment < attractor basin

Compositions: reuse and recombine basins

= Newton (1687) — dynamics: F=ma

= Lord Kelvin (1888) — energy: didt E=P-D

= Lyapunov (1892) - stability: d/dt E =VE - f(x)
= Poincare’ (1895) — topology: oafaifl#t

« Conley (1978) — chain recurrence: R(¢')=[{A4A uA*}

* Robot programming: formal compositions of hybrid basins
* hybrid dynamics: make/break contacts; stabilize underactuated DoF

&

template dof

= compositions: parallel; sequential; hierarchical

Hybrid Basins: Conley’s Fundamental Thm.

= formal: correct-by-design < type theory & category

— - =

Physical “Beha" Dynamical “Letter,”

0 © | Lyapunov Function: ¥,
(instanc (model) Vector Field: g,
- - Obstacle Set: 0
= Goal Set: G -, |
| & x=h(y) ,
x = f(x,u)
mﬂ
Fho IR

Theorem (Conley's decomposition theorem for MHS)

Let H=(I,F,Z,¢,r) be a deterministic MHS. Assume that / is compact
and that Z is a trapping guard. Further suppose that, for every x € /,
there is an infinite or Zeno execution starting at x. Then the hybrid chain
recurrent set R(H) admits a Conley decomposition:

O

R(H) = ﬂ::Al JA® | A is an attracting set for H.}.

Furthermore, x, y € [ are chain equivalent if and only if either x,y € A or
x,y € A* for every attracting-repelling pair (A, A*).

||Theorem (Conley's fundamental theorem for MHS)"
Let H=(I,F,Z,¢,r) be a deterministic MHS. Assume that / is compact

and that Z is a trapping guard. Further suppose that, for every x € /,
"~ _there is an infinite or Zeno execution starting at x. Then there exists a

| |[complete Lyapunov function for H

[Kvalheim et al., SIADS’21]
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Outline

* Bottom Up: Reactive Letters to Syllables to Words of Energy Barrier Ascent
* Attractor Basin Compositions
* Environment Abstraction
e Agent Abstraction
* Joint Level Reactive Planning

* Top Down: Reactive Global Planning in Partially Known Environments
* Navigation Functions
* Environment Abstraction
* Integrating Reactive Motion Planners into Deliberative Architectures

* Toward a Physically Grounded Formal Language of Work
* First Steps: Hybrid Dynamical Systems Category
* On the Horizon: Hybrid Dynamical Systems Type Theory
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Outline

* Bottom Up: Reactive Letters to Syllables to Words of Energy Barrier Ascent

* Attractor Basin Compositions
* Environment Abstraction

e Agent Abstraction

* Joint Level Reactive Planning
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Attractor Basin Compositions of Behavior 2/
*[Hierarchical|(“templates & anchors”) (ruii & kod, se599)

[Schwind [ Saranli = -
et al ‘i“g et al. :
@ template dof

.
@(( \; | | ;‘ i~
1JRR’18]

[Buehler
etal.
CSM’90] @
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* Sequenced Transitions Vs. \Sequent|a \
[Topping

[Topping ot al.

et al.
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GRC: Represent the (Sagittal) Environment

[Johnson & Kod, ICRA 2013

Ground Reaction Complex

Assumptions: O ; -
Planar, Single Substrate '
2 Point Slippery Body ‘ Sy |
2 Sticky Toes e [ -
Massless Legs

Single orientation
16 “Environments”:

1 Aerial 3 DOF {0000}
2 Open chain 2 DOF {0100,0010}
2 Nose slide 2 DOF {1000,0001}

1 Standing 1 DOF {0110}
2 Crank-slider 1 DOF {0101,1010} @
2 Single link 1 DOF {0101,1010}

1 Sliding 1 DOF {1001}

4 Vertices 0 DOF {0111,1011,1101,1110}

o
ot
o
ot
S
_>>—1
o

0111 1110
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0110 e R < .
— Real Time AN, oK Real Time



Template-Reactive Energy Barrier Ascent

(0}

L,
Lo
[l (23]
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Stool

Common Contact Modes

(2n)* modes (“environments”) e.g.,

* e.g., k=2 legged machine

| Double ; e (DSL) |{2 ");

[Topping, et al., ISRR 2019]

a. Floating Torso (FT) b. Fore-Aft Slot Hopper (FSH) |c. Pinned Hip (PH)| _d. Pre- Grasp Cagc (PGC)

ST~ =
S

4.

* e.g.,, n=4 annotated substrate segments

* geometric variables

» stick vs slip friction

= ~0[(2n)"1] different mode sequences
= ??~0[(2n)"!] sequence controllers ?? ®
 Compositional mode-reactive (edge-open loop)
ascent
* plan path (edge sequence) up GRC

* closed loop composition rules for m=4 templates

= 1 anchoring controller/template/mode
= ~O[m(2n)"] tuned controller compositions
(with guard-targeted basins)

* Needed : “universal” (sagittal plane) template with
automated anchoring controllers

= ~O[(2n)] tuned controller compositions
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Ascent via Anchored Template Words

. . [De et al. Access’22] [Topping & Kod (in prep)]
* Universal (sagittal plane) Template e== e e (i) 04 @)

= anchored via parallel composition N : (sa)
] in arbitra ry |imbed |amina “oi Bipedal Walking Stride Pitch Steady Brachiating Leap k

(>]

Handspring Leap Constant Pitch Velocit:

* Palette of templates
= pendula: 2 DoF CoM
° inverted
° hanging
= velocity regulated pitch
* Compositions
= programmed in template

= executed in anchor
= sample behaviors (vi) @ 270° (vi) @360°
B State trajectories
° tunable backflips (height matched to

pitching velocity)
° brachiating leaps

° sequential composition of brachiating
& hopping leaps

. S D

Aerial mode
— Wait mode
— Push mode
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X =>2X =>X =X

Q ) [ )

o PotentiIaI—Dissipative
Control [Lord Kelvin]

= all motion ends up
at extrema

“almost” all ends up
at minima

* Nondegenerate
Smooth Potentials
= point extrema [Morse]
= set extrema [Bott]

* Smooth Rotation
Group Potentials
" non-empty
minimum set
=" impljes non-empty
maximum set
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Toward GRC-edge Reactive Planning

[Topping & Kod (in prep)]

* From edge-open to edge-reactive

(Template RC Template plan  Template "re-plan” with composed substr)
ascent e ofe
= edge-open: detect missed edge 1P e %easymhesized
= today’s robots give up ® KN ?Sbke\ ¥
" edge-reactive template plan @w “/-\ A I‘H 1
° replace path (edge sequence) W

o with (sequentially pruned) Hasse diagram

" edge-reactive anchored execution
° detect mode
o deploy best reachable edge
° repeat until goal or dead-end

GRASP /%
Laborator y '(e‘

nsing lxlx«plmnlﬂ»

Fffgpenn

Lnomcu mg
Jll(




Outline

* Top Down: Reactive Global Planning in Partially Known Environments
* Navigation Functions
* Environment Abstraction
* Integrating Reactive Motion Planners into Deliberative Architectures
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. [Arslan &
Kod, IJRR’19]

. Reactlve NaV|gat|on etal., IJRR’22]

- Complete prlor kn OWIedge a. Object Detection I(Y;I:T:t;:l b. Keypoint Estimation
. . (Section 8.1.1) (Section 8.1.2)
— fully perception driven e 11
*  unknown sphere worlds 1J L 49, | 2z /100z Kerpoin l
= partially known worlds | Vinaienin Gy R s
. E . A h. - - Alf&"clxonxllp,lp -
merging Architecture e
— semantic perception sz o) [ 36
= learned obstacle classes | VTR 3 Mopped Spece Rovayesy
. ur_‘: (Section 6.1)
L] ] SemantIC SLAM . :d‘l ,v\”mv.(;”ml' -] l \()“I
— horizontal plane dynamics e [ I
. planar point particle Rt I ot @
= differential drive o e (RN, —

* Hierarchical composition =" ”; o O
— template © anchor

= fore-aft velocity © pogo-stick [VaSHOpOUlOS et al., RAL'20 ]
. pogo-stick & legged sagittal lamina

. legged sagittal lamina < spatial
quadruped

— reactive © deliberative
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Outline

* Toward a Physically Grounded Formal Language of Work
* First Steps: Hybrid Dynamical Systems Category
* On the Horizon: Hybrid Dynamical Systems Type Theory
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* Physical (top down): deformably reactive planners

Aim: Physically Grounded Form{aI\Language of Work

* Physical (bottom up): anchor—reactive templates

= detect mode
= deploy best reachable edge

= repeat until goal or dead-end ©

m e RC Template plan  Template "re-plan” with com “‘:]
[ Sl
Rl O =
AhPRC -S‘h zed plan: fdbk R \ H‘—E
25 @ \ %) T
@ g“%‘

=™

* Formal: “double category” of hybnd dynamical systems

= basins: Conley’s fundamental theorem

I)}

= deformation: “vertica

= sequential: “horizontal” directed systems

= hierarchical: “pullback” hybrid subdivisions

= parallel: still under development

Theorem (CGKS)
Hybrid systems form a double category 7 with 2-cells:

M £, N

» Objects: M, N, P, Q are continuous systems on
Riemannian manifolds

» Vertical arrows: f, g are smooth maps
» Horizontal arrows: H, H' are hybrid systems
» 2-cells: ¢ is a generalized hybrid semiconjugacy

[Culbertson et al. TAC'20]

hybrid semiconjugacies

Hybrid semiconjugacies

Directed systems

=

Hybrid subdivisions

-------

[Vasilopoulis et al., ICRA’21]

[Gustafson et al.(arXiv'21)]


http://arxiv.org/abs/2108.07625
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