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I. Yet another crisis of the universality of mathematical truth



The universality of mathematical truth

The truth conditions of a mathematical statement must be the object of unanimous

agreement

I Constitutive of the notion of mathematical truth itself

I Yet, constantly jeopardized

I When mathematicians disagree on the truth of some statements: a crisis of the

universality of mathematical truth



In the past

I The incommensurability of the diagonal and side of a square

∃x (x is a number ∧ x2 = 2)

and also x2 = −1

I The introduction of infinite series∑
n
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2
n = 2

∑
n

(−1)n = 0

and also infinitesimals

I The non-Euclidean geometries

The sum of the angles in a triangle equals the straight angle

I The independence of the axiom of choice

Every vector space has a basis

I Constructivity

If A ∪ B infinite, then A infinite or B infinite



All these crises have been resolved

The incommensurability of the diagonal and side of a square: rational numbers and real

numbers

Infinite series: limit



Non-Euclidean geometries: several solutions

I Di�erent spaces: truth of

On a space of zero curvature, the sum of the angles in a triangle equals
the straight angle

but not of

On a space of negative curvature, the sum of the angles in a triangle equals
the straight angle

I Axiomatic theories: E and H, truth of

E ` the sum of the angles in a triangle equals the straight angle

but not of

H ` the sum of the angles in a triangle equals the straight angle

Equivalent (soundness and completeness)



The second solution

I A true −→ Γ ` A true

I Truth conditions: for the statements of geometry −→ for arbitrary sequents

I Separation between the definition of the truth conditions of a sequent: the logical

framework and the definition of the various geometries as theories

I A logical framework: Predicate logic

I The various geometries defined in this logical framework



The axiom of choice

First solution: truth of

In a model of ZFC, every vector space has a basis

but not of

In a model of ZF, every vector space has a basis

Second: Every vector space has a basis consequence of the axiom of choice

First solution does not work:

- Too far from the original formulation

- Problem of the “absolute” theory in which this should be proved

Thus, second chosen, paving the way to Reverse mathematics



Constructivity

First solution: truth of

In a model valued in a Boolean algebra, if A ∪ B infinite, then A infinite or B infinite

but not of

In a model valued in a Heyting algebra, if A ∪ B infinite, then A infinite or B infinite

Again, too far from the original formulation and question of the “absolute” theory

Second: if A ∪ B infinite, then A infinite or B infinite consequence of the excluded middle



A third solution: Ecumenism

Changing the axioms while keeping the same symbols?

Axioms express the meaning of the symbols:

di�erent axioms −→ di�erent meanings −→ di�erent symbols (just like ∨ and ⊕)

The only “mistake” is not to accept or to reject the excluded middle, but to use the same

symbol for ∨ and ∨c

Nothing prevents from using them both

Truth of

Infinite(A ∪ B)⇒c Infinite(A) ∨c Infinite(B)

but not of

Infinite(A ∪ B)⇒ Infinite(A) ∨ Infinite(B)
√

2: Q vs. R already Ecumenical (mass vs. weight...)



Past crises (

√
2,

∑
n, non-Euclidean geometries, AC, Constructivism) have been resolved

But... yet another crisis: computerized proof systems



Computerized proof systems

Coq, Isabelle/HOL, PVS, HOL Light, Lean...

A major step forward in the quest of mathematical rigor

But jeopardizes, once again, the universality of mathematical truth

A proof of Fermat’s li�le theorem −→ a Coq proof of Fermat’s li�le theorem, a PVS

proofs of Fermat’s li�le theorem...

Each proof system: its own language and its own truth conditions

Yet another crisis to be resolved



II. Logical frameworks



A solution that (already) worked for several crises

Express the theories implemented in Coq, Isabelle/HOL, PVS, HOL Light, Lean... in

Predicate logic

I (if we are lucky) many common axioms and few di�erentiating the theories

I (if we are lucky) mixing the axioms di�erentiating the symbols (Ecumenism)

I analyze which proof uses which axiom (just like for the axiom of choice)

I try to find be�er proofs using less axioms (just like constructivization, Reverse

mathematics...)



A solution that (already) worked for several crises

Express the theories implemented in Coq, Isabelle/HOL, PVS, HOL Light, Lean... in

a logical framework

I (if we are lucky) many common axioms and few di�erentiating the theories

I (if we are lucky) mixing the axioms di�erentiating the symbols (Ecumenism)

I analyze which proof uses which axiom (just like for the axiom of choice)

I try to find be�er proofs using less axioms (just like constructivization, Reverse

mathematics...)



Beyond Predicate logic

In a century: some limitations of Predicate logic

Other logical frameworks: λ-Prolog, Isabelle, the Edinburgh logical framework, Pure

type systems, Deduction modulo theory, Ecumenical logic, Dedukti

In Dedukti

I Function symbols can bind variables (like in λ-Prolog, Isabelle, the Edinburgh

logical framework)

I Proofs are terms (like in the Edinburgh logical framework)

I Deduction and computation are mixed (like in Deduction modulo theory)

I Both constructive and classical proofs can be expressed (like in Ecumenical logic)



The two features of Dedukti

Dedukti is a typed λ-calculus with

I Dependent types

I Computation rules

Several implementations: Dkcheck, Lambdapi, Kocheck...

No typing rules today, but illustration of these features with examples



In a logical framework, you can

I Define your theory

I Check proofs expressed in this theory

A theory in Predicate logic: a language (sorts, function symbols, and predicate symbols)

and a set of axioms

A theory in Dedukti: a set of symbols (replace sorts, function symbols, predicate

symbols, and axioms) and a set of computation rules



III. Examples of axioms in Dedukti



Catching up with Predicate logic

Predicate logic is a sophisticated framework with notions of sort, function symbol,

predicate symbol, arity, variable, term, proposition, proof...

A typed λ-calculus is much more primitive

These notions must be constructed

A good exercise to start with, but also an interest in itself: the first book of Euclid’s

elements (originally formalized in Coq) can be expressed in Predicate logic + the axioms

of geometry and exported to many systems (Géran)



Terms and propositions: a first a�empt

I : TYPE

Prop : TYPE

function symbols: I → ...→ I → I
predicate symbols: I → ...→ I → Prop
connectives: Prop→ ...→ Prop→ Prop
∀ : (I → Prop)→ Prop

I ∀ binds (higher-order abstract syntax: ∀x A expressed as ∀ λx A)

I Symbol declarations only (no computation rules yet)

I Simply typed λ-calculus (no dependent types yet)

I Types are terms of type TYPE



Works if we want one sort

But if we want several (like in geometry: points, lines, circles...)

I1 : TYPE

I2 : TYPE

I3 : TYPE

Several (an infinite number of?) symbols and several (an infinite number of?) quantifiers

∀1 : (I1 → Prop)→ Prop
∀2 : (I2 → Prop)→ Prop
∀3 : (I3 → Prop)→ Prop



Making the universal quantifier generic

Something like

∀ : ΠX : TYPE, ((X → Prop)→ Prop)

But does not work for two reasons

I (a minor one) no dependent products on TYPE in Dedukti

I (a major one) many things in TYPE beyond I1, I2, and I3 (for example Prop)



Making the universal quantifier generic

I : TYPE I1 : TYPE, I2 : TYPE, I3 : TYPE

Set : TYPE

ι : Set ι1 : Set, ι2 : Set, ι3 : Set
El : Set→ TYPE

El ι −→ I El ι1 −→ I1, El ι2 −→ I2, El ι3 −→ I3
Prop : TYPE

∀ : Πx : Set, (El x → Prop)→ Prop

Uses dependent types and computation rules

Reminiscent of expression of Simple type theory in Predicate logic, universes à la Tarski...



Proofs

So far: terms and propositions. Now: proofs

Proofs are trees, they can be expressed in Dedukti

Curry-de Bruijn-Howard: P ⇒ P should be the type of its proofs

But not possible here P ⇒ P : Prop : TYPE is not itself a type

Prf : Prop→ TYPE

mapping each proposition to the type of its proofs: Prf (P ⇒ P) : TYPE

Not all types are types of proofs (for example I, El ι, Prop...)



Proofs

Brouwer-Heyting-Kolmogorov: λx : (Prf P), x should be a proof of P ⇒ P
But has type (Prf P)→ (Prf P) and not Prf (P ⇒ P)
Prf (P ⇒ P) and (Prf P)→ (Prf P) must be identified

A computation rule

Prf (x ⇒ y) −→ (Prf x)→ (Prf y)

In the same way

Prf (∀ x p) −→ Πz : (El x), (Prf (p z))

The function Prf is an injective morphism from propositions to types: it is the Curry-de

Bruijn-Howard isomorphism

If you want to express Predicate logic proofs, you know enough



Simple type theory (HOL4, HOL Light, Isabelle/HOL...): two features

I Propositions as objects

o : Set
El o −→ Prop

I Functions

; : Set→ Set→ Set
El (x ; y) −→ (El x)→ (El y)



More symbols

Pick cherries according to your taste

fst, snd

;d

Scheme, ↑, A

, Els,

A

π
⇒d

psub, pair, pair†

Prfc,⇒c,∧c,∨c, ∀c, ∃c

;o

>,⊥,¬,∧,∨, ∃

I, Set, ι, El, Prop, Prf
∀

⇒



Enough to express Predicate logic, Simple type theory, Simple type theory with

predicate subtyping, The Calculus of constructions...

More symbols: universes, universe polymorphism, predicativity, inductive types, cubical

type theory (Barras), set theory (Traversié)



IV. The benefits of universality



I Reverse engineering proofs

First book of Euclide’s Elements in Coq −→ in Predicate logic

Fermat’s li�le theorem in Matita −→ in constructive Simple type theory (Thiré)

Bertrand’s postulate in Matita −→ in Predicative type theory (Felicíssimo)

I Interoperability

The first book of Euclide’s element in Isabelle/HOL, TSTP...

Fermat’s li�le theorem in Isabelle/HOL, HOL Light, Coq, Lean, PVS...

Bertrand’s postulate in Agda

I Cross-verification

How can I check your formal proof without trusting your tool?



A social motivation: mathematicians and industrials more likely to develop proofs in

mathematics (possibly with some axioms they can debate) than in an exotic system

And a philosophical one: Universality has survived many crises: we ought not to give up

on it (and we do not need to)



How can you contribute?

Express your favorite theory in Dedukti: category theory, topos theory, modal logics,

quantum logics...

Contribute to understand Dedukti be�er: for example: Models and termination of

proof-reduction, ICALP 2017

(Continue to) Promote value driven research: Favor cooperation between proof systems,

rather than competition



Mathematics is necessarily always in crisis, and always in the process of resolving it.

Michel Serres


