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Different notions of models (1/2)

Tarski models: JφK ∈ {0; 1}
Interprets classical provability (correctness/completeness)

Intuitionistic realizability: JφK ∈ P(Λ) [Kleene ’45]

Interprets intuitionistic proofs
Independence results in intuitionistic theories
Definitely incompatible with classical logic

Cohen forcing: JφK ∈ P(C) [Cohen ’63]

Independence results, in classical theories
(Negation of continuum hypothesis, Solovay’s axiom, etc.)


Boolean-valued models: JφK ∈ B [Scott, Solovay, Vopěnka]

Classical realizability: JφK ∈ P(Λc) [Krivine ’94, ’01, ’03, ’09–]

Interprets classical proofs
Generalizes Tarski models... and forcing!



Introduction Implicative structures Separation The implicative tripos Conclusion

Different notions of models (2/2)

HVM

BVM

TM

HVM = Heyting-valued models ≈ Kripke forcing
BVM = Boolean-valued models ≈ Cohen forcing
TM = Tarski models

Intuitionistic realizability
(with Partial Combinatory Algebras)

Classical realizability
(with Abstract Krivine Structures)

∀ = ∧ = ∩

∀ = ∩ , ∧ = ×
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The categorical tradition of realizability

Categorical logic [Lawvere, Tierney ’70]

Hyperdoctrines = models of 1st order theories
(Slogan: ∃/∀ are left/right adjoints!)

Modern definition of the notion of topos
(generalizes Grothendieck’s definition)

Categorical realizability [Hyland, Johnstone, Pitts ’80]

Major input from forcing and Boolean-valued models [Scott]

Effective topos [Hyland]

Notion of tripos and tripos-to-topos construction [Pitts]

Generalization to partial combinatory algebras (PCAs)

... but incompatible with classical logic

What about classical realizability?
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The categorical problem

Topos
(Set-like category)

Models of
set theory

cHA
(cBA) PCA AKS

cHA = complete Heyting algebra
cBA = complete Boolean algebra
PCA = partial combinatory algebra
OCA = ordered combinatory algebra
AKS = abstract Krivine structure

Tripos
(categorical model of HOL)

Implicative algebra

OCA
with filter
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Unifying all kinds of models

Aim: Define an algebraic structure to encompass:

Complete Heyting Algebras (for Heyting-valued models, Kripke forcing)

Complete Boolean Algebras (for Boolean-valued models, Cohen forcing)

Partial Combinatory Algebras (for Intuitionistic realizability)

Ordered Combinatory Algebras (for Intuitionistic realizability)

Abstract Krivine Structures (for Classical realizability)

Implicative algebras can be used to construct:

Categorical models (triposes, toposes)

Models of (intuitionistic/classical) set theory

Underlying ideas are reminiscent from earlier work of

Ruyer ’07, Streicher ’13 (and many others!)
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Implicative structures

Definition (Implicative structure)

An implicative structure is a triple (A ,4,→) where

(1) (A ,4) is a complete (meet semi-)lattice

(2) (→) : A 2 → A is a binary operation such that:

(2a) a′ 4 a, b 4 b′ entails (a→ b) 4 (a′ → b′) (a, a′, b, b′ ∈ A )

(2b)
k

b∈B

(a→ b) = a→
k

b∈B

b (a ∈ A , B ⊆ A )

Write ⊥ (resp. >) the smallest (resp. largest) element of A

When B = ∅, axiom (2b) gives: (a→ >) = > (a ∈ A )
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Examples of implicative structures

Complete Heyting algebras (A ,4), where → is defined by:

a→ b := max{c ∈ A : (cf a) 4 b} (Heyting’s implication)

+ complete Boolean algebras (as a particular case of Heyting algebras)

Given a total combinatory algebra (P, · , k, s), we let:

A := P(P )
a 4 b := a ⊆ b
a→ b := {z ∈ P : ∀x∈ a, z · x ∈ b} (Kleene’s implication)

Note: if we do the same with a partial combinatory algebra, we only get a
quasi-implicative structure, where (a→ >) 6= >

+ similar construction for ordered combinatory algebras (OCA)

Given an abstract Krivine structure (Λ,Π, . . . ,PL,‚), we let:

A := P(Π)
a 4 b := a ⊇ b
a→ b := a‚ · b (Krivine’s implication)
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Viewing truth values as generalized realizers: a manifesto

1 Elements of an implicative structure are primarily intended to
represent truth values. But since λ-abstraction and application
are definable in such a structure (cf next slide), we can see:

each realizer as a particular truth value;

each truth value as a generalized realizer

2 So that we get the ultimate Curry-Howard identification:

Realizer = Program = Formula = Type

3 In this setting, the relation a 4 b may read:

a is a subtype of b (viewing a and b as truth values)

a has type b (viewing a as a realizer, b as a truth value)

a is more defined than b (viewing a and b as realizers)

4 In particular: subtyping (4) = reverse Scott ordering (w)
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Encoding application & abstraction

Let A = (A ,4,→) be an implicative structure

Definition (Application & Abstraction)

Given a, b ∈ A and a function f : A → A , we let:

ab :=
k
{c ∈ A : a 4 (b→ c)}

λf :=
k

a∈A

(a→ f(a))

(application)

(abstraction)

Properties:

1 If a 4 a′ and b 4 b′, then ab 4 a′b′ (Monotonicity)

2 If f 4 g (pointwise), then λf 4 λg (Monotonicity)

3 (λf)a 4 f(a) (β-reduction)

4 a 4 λ(x 7→ ax) (η-expansion)

5 ab 4 c iff a 4 (b→ c) (Adjunction)
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Encoding the λ-calculus

Let A = (A ,4,→) be an implicative structure

To each closed λ-term t with parameters (i.e. constants) in A ,
we associate a truth value tA ∈ A :

aA := a
(λx . t)A := λ(a 7→ (t{x := a})A )

(tu)A := tA uA

Properties:

β-rule: If t�β t
′, then (t)A 4 (t′)A

η-rule: If t�η t
′, then (t)A < (t′)A

Remarks:

This is not a denotational model of the λ-calculus!

Map t 7→ tA is not injective in general, even on βη-normal forms
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Remarkable identities

In any implicative structure A = (A ,4,→) we have:

IA := (λx . x)A =
k

a

(a→ a)

KA := (λxy . x)A =
k

a,b

(a→ b→ a)

SA := (λxyz . xz(yz))A =
k

a,b,c

((a→ b→ c)→ (a→ b)→ a→ c)

+ similar equalities for C ≡ λxyz . xzy and W ≡ λxy . xyy

By analogy, we let:

ccA :=
k

a,b

(((a→ b)→ a)→ a) (Peirce’s law)

From this, we extend the encoding of the λ-calculus to all λ-terms
enriched with the constant cc (= proof-like λc-terms)
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Particular case: A is a complete Heyting algebra

Complete Heyting/Boolean algebras are the particular implicative
structures A = (A ,4,→) where → is defined from 4 by

a→ b := max{c ∈ A : (cf a) 4 b}

Remark: Complete Heyting/Boolean algebras are the structures underlying forcing
(in the sense of Kripke or Cohen)

Proposition

When A = (A ,4,→) is a complete Heyting/Boolean algebra:

1 For all a, b ∈ A : ab = af b (application = binary meet)

2 For each closed λ-term t: (t)A = >

3 Moreover, when A is a Boolean algebra: ccA = >
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Logical strength of an implicative structure

Warning! We may have (t)A = ⊥ for some closed λ-term t.

Intuitively, this means that the corresponding term is inconsistent in
(the logic represented by) the implicative structure A

We say that the implicative structure A is:

intuitionistically consistent when (t)A 6= ⊥ for all closed λ-terms

classically consistent when (t)A 6= ⊥ for all closed λ-terms with cc

Examples:

Every non-degenerated complete Heyting algebra is int. consistent

Every non-degenerated complete Boolean algebra is class. consistent

Implicative structures induced by CAs/OCAs are int. consistent

Every Krivine realizability structure whose pole ‚ is coherent
(cf [Krivine’12]) is classically consistent
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Separators (1/3)

Let A = (A ,4,→) be an implicative structure

Definition (Separator)

A separator of A is a subset S ⊆ A such that:

(1) If a ∈ S and a 4 b, then b ∈ S (upwards closed)

(2) KA = (λxy . x)A ∈ S and SA = (λxyz . xz(yz))A ∈ S

(3) If (a→ b) ∈ S and a ∈ S, then b ∈ S (modus ponens)

We say that S is consistent (resp. classical) when ⊥ /∈ S (resp. ccA ∈ S)

Remarks:

Under (1), axiom (3) is equivalent to:

(3′) If a, b ∈ S, then ab ∈ S (closure under application)

In general, separators are not closed under binary meets
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Separators (2/3)

Intuition: Separator S ⊆ A = criterion of truth (in A )

When A is a complete Heyting/Boolean algebra, a separator
is the same as a filter (since application = binary meet)

But in general, separators are not filters (not closed under binary meets)

Definition (Intuitionistic and classical cores)

The smallest intuitionistic/classical separators of A are:

S 0
J (A ) := ↑{(t)A : t closed λ-term}
S 0
K(A ) := ↑{(t)A : t closed λ-term with cc}

(intuitionistic core)

(classical core)

writing ↑B the upwards closure of a subset B ⊆ A

Note that:

When A is a complete Heyting algebra: S0
J (A ) = {>}

When A is a complete Boolean algebra: S0
K(A ) = {>}
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Separators (3/3)

Separators can be used the same way as filters:

Separators are closed under λ-constructions:

If a1, . . . , an ∈ S, then tA (a1, . . . , an) ∈ S (for all λ-terms t(x1, . . . , xn))

We can define the separator generated by an arbitrary subset X:

Sep(X) := ↑
{
tA : t closed λ-term with parameters in X

}
We have S0

J (A ) = Sep(∅) and S0
K(A ) = Sep({ccA })

Deduction lemma: (a→ b) ∈ Sep(X) iff b ∈ Sep(X ∪ {a})

We can even define ultraseparators as the maximal consistent
separators. As for (ultra)filters, we have:

S ⊂ A is an ultraseparator iff A /S = 2

Beware! Some ultraseparators S ⊂ A are non-classical (i.e. ccA /∈ S)
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Interpreting first-order logic

Formulas of first-order logic are interpreted by:

Jφ⇒ ψK = JφK→ JψK

J¬φK = JφK→ ⊥

Jφ ∧ ψK =
k

a∈A

(
(JφK→ JψK→ a)→ a

)
Jφ ∨ ψK =

k

a∈A

(
(JφK→ a)→ (JψK→ a)→ a

)
J∀xφ(x)K =

k

v∈M

Jφ(v)K

J∃xφ(x)K =
k

a∈A

(k

v∈M

(
Jφ(v)K→ a

)
→ a

)
(where M is the domain of the interpretation)

Theorem (Soundness)

If `LJ φ (resp. `LK φ), then JφK ∈ S 0
J (A ) (resp. JφK ∈ S 0

K(A ))
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Implicative algebras

Definition (Implicative algebra)

An implicative algebra is a quadruple (A ,4,→, S) where

(A ,4,→) is an implicative structure

S ⊆ A is a separator

The separator S ⊆ A induces a preorder of entailment:

a `S b :≡ (a→ b) ∈ S (for all a, b ∈ A )

The poset reflection of (A ,`S) is written A /S

Proposition

1 The poset A /S is a Heyting algebra

2 If ccA ∈ S, then A /S is a Boolean algebra

Remark: The induced Heyting algebra A /S is in general not complete
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Non deterministic choice and filters

In the theory of implicative algebras, separators play the same role
as filters in the theory of Heyting algebras.

However, separators S ⊆ A are in general not filters:

a, b ∈ S ⇒ ab ∈ S
a, b ∈ S 6⇒ af b ∈ S

Given an implicative structure A = (A ,4,→), we let:

tA :=
k

a,b∈A

(a→ b→ af b)

p-orA := (⊥ → > → ⊥)f (> → ⊥ → ⊥)

(non deterministic choice)

(parallel “or”)

Proposition (Characterizing filters)

1 A separator S ⊆ A is a filter iff tA ∈ S
2 A classical separator S ⊆ A is a filter iff p-orA ∈ S



Introduction Implicative structures Separation The implicative tripos Conclusion

Finitely generated separators and principal filters

Theorem

Given a separator S ⊆ A , the following are equivalent:

1 S is finitely generated and tA ∈ S

2 S is a principal filter: S = ↑{Θ} for some Θ ∈ S
(Θ is called the universal proof of S)

3 The induced Heyting algebra A /S is complete, and the canonical
surjection [ · ] : A → A /S commutes with infinitary meets:[k

i∈I

ai

]
=

∧
i∈I

[ai]

In model theoretic terms, this situation corresponds to a collapse of
(intuitionistic/classical) realizability into (Kripke/Cohen) forcing!
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The implicative tripos (1/2)

Let (A ,4,→, S) be an implicative algebra

For each set I, we observe that:

The triple A I = (A I ,4I ,→I) is an implicative structure, whose
ordering 4I and implication →I are defined componentwise
(power implicative structure)

The set of constant I-indexed families in S generates a separator

S[I] :=
{
(ai)i∈I ∈ A I : (∃s∈S)(∀i∈ I) s 4 ai

}
⊆ A I

(uniform power separator)

So that we can let P(I) := A I/S[I] (induced Heyting algebra)

Theorem (Implicative tripos)

1 The correspondence I 7→ P(I) is functorial (in a contravariant way)

2 The functor P : Setop → HA is a tripos

Recall: Tripos = categorical model of higher-order logic
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The implicative tripos (2/2)

The above construction encompasses many well-known triposes:

Forcing triposes, which correspond to the case where (A ,4,→) is a
complete Heyting/Boolean algebra, and S = {>} (i.e. no quotient)

Triposes induced by total combinatory algebras... (int. realizability)

... and even by partial combinatory algebras, via some completion trick

Triposes induced by abstract Krivine structures (class. realizability)

As for any tripos, each implicative tripos can be turned into a topos
via the standard tripos-to-topos construction

Question: What do implicative triposes bring new w.r.t.

Forcing triposes (intuitionistic or classical)?

Intuitionistic realizability triposes?

Classical realizability triposes?
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Characterizing some implicative triposes

Theorem (Characterizing forcing triposes)

Let P : Setop → HA be the tripos induced by an implicative algebra
(A ,4,→, S). Then the following are equivalent:

1 The tripos P is isomorphic to a forcing tripos

2 The separator S ⊆ A is a principal filter of A

3 The separator S ⊆ S is finitely generated and tA ∈ S

Slogan: Forcing = non-deterministic realizability

Theorem (Classical implicative triposes)

Each tripos induced by a classical implicative algebra (A ,4,→, S) is
isomorphic to a tripos induced by an abstract Krivine structure

Classical implicative algebras ∼ Abstract Krivine Structures (same expressiveness)
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Higher-order completeness (1/2)

Implicative triposes encompass all the well-known (intuitionistic/classical)
forcing & realizability triposes

But do they encompass all triposes?

Theorem (Higher-order completeness/Representation)

Each Set-based tripos is (isomorphic to) an implicative tripos

Note: From the point of view of foundations, the above theorem expresses
that a whole tripos (= structured proper class) can be described by a single
implicative algebra (= structured set) ⇒ Reduction of complexity

Explains a fortiori why we succeeded to turn well-known triposes
(induced by HAs, OCAs, AKSs, etc.) into implicative triposes

Since implicative algebras have the same expressiveness as OCAs
with filters, the completeness theorem also holds for the latter
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Higher-order completeness (2/2)

Topos
(Set-like category)

Models of
set theory

cHA
(cBA) PCA AKS

cHA = complete Heyting algebra
cBA = complete Boolean algebra
PCA = partial combinatory algebra
OCA = ordered combinatory algebra
AKS = abstract Krivine structure

Tripos
(categorical model of HOL)

Implicative algebra

OCA
with filter

∩
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First-order completeness (1/2)

Implicative algebras can be used to interpret 1st-order theories as well

Given an implicative algebra A , define the notion of A -model of a
1st-order language L (resp. of a 1st-order theory T ) as expected

Implicative model = A -model for some implicative algebra A

Proposition (Soundness)

If T ` φ, then M |= φ in all implicative models M of T

Theorem (Strong completeness for implicative models) [M. 2022]

For each classical 1st-order theory T , there is a full implicative model M
(over some classical implicative algebra) that captures T :

T ` φ iff M |= φ (φ closed)

Strong completeness theorem already holds for Boolean-valued models,
but the proof relies on the completeness theorem of 1st-order logic
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First-order completeness (2/2)

Let T be a consistent (classical) 1st-order theory

From the strong completeness theorem, there is a full implicative
model M (over some classical implicative algebra A ) such that:

T ` φ iff M |= φ (φ closed)

Moreover the implicative algebra A is consistent since the theory T is

Picking some ultraseparator U ⊇ SA , get a Tarski model M : U :

T ` φ implies M :U |= φ (φ closed)

Therefore we get:

Factorization of 1st-order completeness

FO-theory Impl. model Tarski model

T ` φ ⇐⇒ M |= φ U
=⇒ M :U |= φ

(constructive) (non constr.)



Introduction Implicative structures Separation The implicative tripos Conclusion

Plan

1 Introduction

2 Implicative structures

3 Separation

4 The implicative tripos

5 Conclusion



Introduction Implicative structures Separation The implicative tripos Conclusion

Conclusion

Implicative algebra = an algebraic structure to factorize model-theoretic
constructions underlying forcing and realizability (intuitionistic & classical)

Idea: Truth values can be manipulated as generalized realizers

Proof = Program = Type = Formula

Each implicative algebra induces an implicative tripos, and this
correspondence is surjective (up to isomorphism)

In this structure: forcing = non deterministic realizability

Classical implicative algebras ∼ Abstract Krivine Structures

Ongoing work:

Conjunctive & disjunctive algebras [Miquey ’20]

Evidenced Frames [Cohen-Miquey-Tate ’22]

The category of implicative algebras: which notion of morphism?

Implicative models of (I)ZF set theory
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