Introduction 000000 Implicative structures

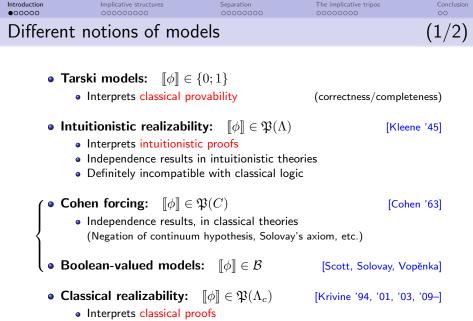
Separation 00000000 The implicative tripos

Conclusion 00

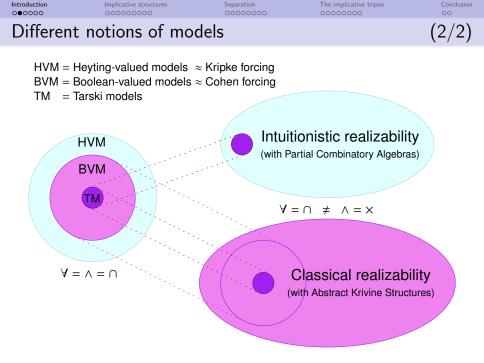
Implicative algebras: A new foundation for realizability and forcing

Alexandre Miquel

December 8th, 2022 - Topos Institute (Berkeley)



• Generalizes Tarski models... and forcing!



000000	00000000	0000000	0000000	00
<u> </u>		a		

The categorical tradition of realizability

Categorical logic

[Lawvere, Tierney '70]

[Hyland, Johnstone, Pitts '80]

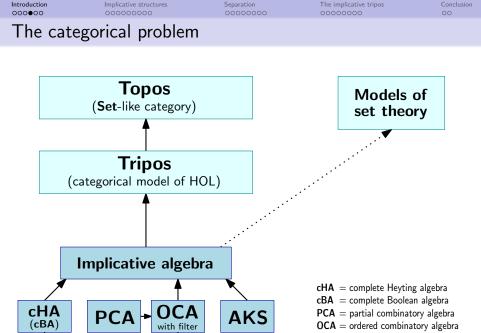
[Scott]

[Pitts]

- Hyperdoctrines = models of 1st order theories (Slogan: \exists/\forall are left/right adjoints!)
- Modern definition of the notion of topos (generalizes Grothendieck's definition)

Categorical realizability

- Major input from forcing and Boolean-valued models
- Effective topos [Hyland]
- Notion of tripos and tripos-to-topos construction
- Generalization to partial combinatory algebras (PCAs)
 - ... but incompatible with classical logic
- What about classical realizability?



AKS = abstract Krivine structure

Introduction	Implicative structures	Separation	The implicative tripos	Conclusion
000000	00000000	0000000	0000000	00
Unifying al	l kinds of mode	ls		

Aim: Define an algebraic structure to encompass:

- Complete Heyting Algebras
- Complete Boolean Algebras
- Partial Combinatory Algebras
- Ordered Combinatory Algebras
- Abstract Krivine Structures

- (for Heyting-valued models, Kripke forcing)
- (for Boolean-valued models, Cohen forcing)
- (for Intuitionistic realizability)
- (for Intuitionistic realizability)
- (for Classical realizability)

Implicative algebras can be used to construct:

- Categorical models (triposes, toposes)
- Models of (intuitionistic/classical) set theory

Underlying ideas are reminiscent from earlier work of

• Ruyer '07, Streicher '13

(and many others!)

Introduction	Implicative structures	Separation	The implicative tripos	Conclusion
00000	00000000	0000000	0000000	00
Plan				

Introduction	Implicative structures	Separation	The implicative tripos	Conclusion
000000	0000000	0000000	0000000	00
Plan				

Introduction

2 Implicative structures

3 Separation

4 The implicative tripos

5 Conclusion

Introduction	Implicative structures	Separation	The implicative tripos	Conclusion
000000	00000000	0000000	0000000	00
Implicative	structures			

Definition (Implicative structure)

An implicative structure is a triple $(\mathscr{A}, \preccurlyeq, \rightarrow)$ where

• Write \perp (resp. op) the smallest (resp. largest) element of \mathscr{A}

• When
$$B = \emptyset$$
, axiom (2b) gives: $(a \to \top) = \top$ $(a \in \mathscr{A})$

	£ :			
000000	0000000	0000000	0000000	00
Introduction	Implicative structures	Separation	The implicative tripos	Conclusion

Examples of implicative structures

• Complete Heyting algebras (\mathscr{A},\preccurlyeq), where \rightarrow is defined by:

 $a \to b \ := \ \max\{c \in \mathscr{A} \ : \ (c \curlywedge a) \preccurlyeq b\} \qquad (\mathsf{Heyting's implication})$

- + complete Boolean algebras (as a particular case of Heyting algebras)
- Given a total combinatory algebra $(P, \cdot, \mathbf{k}, \mathbf{s})$, we let:

•
$$\mathscr{A} := \mathfrak{P}(P)$$

• $a \preccurlyeq b := a \subseteq b$
• $a \rightarrow b := \{z \in P : \forall x \in a, \ z \cdot x \in b\}$ (Kleene's implication)

Note: if we do the same with a partial combinatory algebra, we only get a quasi-implicative structure, where $(a \to \top) \neq \top$

- + similar construction for ordered combinatory algebras (OCA)
- Given an abstract Krivine structure $(\Lambda,\Pi,\ldots,\mathsf{PL},\bot\!\!\!\bot),$ we let:

•
$$\mathscr{A} := \mathfrak{P}(\mathbf{\Pi})$$

•
$$a \preccurlyeq b := a \supseteq b$$

• $a \to b := a^{\perp} \cdot b$

(Krivine's implication)

Introduction	Implicative structures	Separation	The implicative tripos	Conclusion
000000	00000000	0000000	0000000	00
Viewing	truth values as	generalized r	ealizers: a man	ifesto

- Elements of an implicative structure are primarily intended to represent truth values. But since λ -abstraction and application are definable in such a structure (cf next slide), we can see:
 - each realizer as a particular truth value;
 - each truth value as a generalized realizer
- So that we get the ultimate Curry-Howard identification:

Realizer = Program = Formula = Type

- **③** In this setting, the relation $a \preccurlyeq b$ may read:
 - a is a subtype of b (viewing a and b as truth values)
 - a has type b (viewing a as a realizer, b as a truth value)

(viewing a and b as realizers)

- $\bullet \ a$ is more defined than b
- In particular: subtyping $(\preccurlyeq) =$ reverse Scott ordering (\sqsupseteq)

En en l'anne				
000000	00000000	0000000	0000000	00
Introduction	Implicative structures	Separation	The implicative tripos	Conclusion

Encoding application & abstraction

Let $\mathscr{A} = (\mathscr{A}, \preccurlyeq, \rightarrow)$ be an implicative structure

Definition (Application & Abstraction) Given $a, b \in \mathscr{A}$ and a function $f : \mathscr{A} \to \mathscr{A}$, we let: $ab := \bigwedge \{c \in \mathscr{A} : a \preccurlyeq (b \to c)\}$ (application) $\lambda f := \bigwedge (a \to f(a))$ (abstraction)

• Properties:

If
$$a \preccurlyeq a'$$
 and $b \preccurlyeq b'$, then $ab \preccurlyeq a'b'$ (Monotonicity)If $f \preccurlyeq g$ (pointwise), then $\lambda f \preccurlyeq \lambda g$ (Monotonicity)(λf) $a \preccurlyeq f(a)$ (β -reduction) $a \preccurlyeq \lambda(x \mapsto ax)$ (η -expansion) $ab \preccurlyeq c$ iff $a \preccurlyeq (b \rightarrow c)$ (Adjunction)

Introduction	Implicative structures	Separation	The implicative tripos	Conclusion
000000	00000000	0000000	0000000	00
Encoding the λ -calculus				

Let $\mathscr{A} = (\mathscr{A}, \preccurlyeq, \rightarrow)$ be an implicative structure

• To each closed λ -term t with parameters (i.e. constants) in \mathscr{A} , we associate a truth value $t^{\mathscr{A}} \in \mathscr{A}$:

$$\begin{array}{rcl} a^{\mathscr{A}} & := & a \\ (\lambda x \, . \, t)^{\mathscr{A}} & := & \boldsymbol{\lambda} (a \mapsto (t\{x := a\})^{\mathscr{A}}) \\ (tu)^{\mathscr{A}} & := & t^{\mathscr{A}} u^{\mathscr{A}} \end{array}$$

• Properties:

- β -rule: If $t \twoheadrightarrow_{\beta} t'$, then $(t)^{\mathscr{A}} \preccurlyeq (t')^{\mathscr{A}}$
- η -rule: If $t \twoheadrightarrow_{\eta} t'$, then $(t)^{\mathscr{A}} \succcurlyeq (t')^{\mathscr{A}}$

Remarks:

- This is not a denotational model of the $\lambda\text{-calculus!}$
- Map $t\mapsto t^{\mathscr{A}}$ is not injective in general, even on $\beta\eta\text{-normal}$ forms

Introduction	Implicative structures	Separation	The implicative tripos	Conclusion
000000	000000000	0000000	0000000	00
Remarka	ble identities			

• In any implicative structure $\mathscr{A} = (\mathscr{A}, \preccurlyeq, \rightarrow)$ we have:

$$\begin{split} \mathbf{I}^{\mathscr{A}} &:= \ (\lambda x \,.\, x)^{\mathscr{A}} &= \ & \bigwedge_{a} (a \to a) \\ \mathbf{K}^{\mathscr{A}} &:= \ (\lambda xy \,.\, x)^{\mathscr{A}} &= \ & \bigwedge_{a,b} (a \to b \to a) \\ \mathbf{S}^{\mathscr{A}} &:= \ & (\lambda xyz \,.\, xz(yz))^{\mathscr{A}} &= \ & \bigwedge_{a,b,c} ((a \to b \to c) \to (a \to b) \to a \to c) \end{split}$$

+ similar equalities for ${\bf C}\equiv\lambda xyz\,.\,xzy$ and ${\bf W}\equiv\lambda xy\,.\,xyy$

• By analogy, we let:

$$\mathbf{c}^{\mathscr{A}} := \bigwedge_{a,b} (((a \to b) \to a) \to a)$$
 (Peirce's law)

From this, we extend the encoding of the λ -calculus to all λ -terms enriched with the constant α (= proof-like λ_c -terms)

Introduction	Implicative structures	Separation	The implicative tripos	Conclusion
000000	000000000	0000000	0000000	00
Particular	case: <i>A</i> is a co	omplete Heyt	ing algebra	

Complete Heyting/Boolean algebras are the particular implicative structures $\mathscr{A} = (\mathscr{A}, \preccurlyeq, \rightarrow)$ where \rightarrow is defined from \preccurlyeq by

$$a \to b := \max\{c \in \mathscr{A} : (c \land a) \preccurlyeq b\}$$

Remark: Complete Heyting/Boolean algebras are the structures underlying forcing (in the sense of Kripke or Cohen)

Proposition

When $\mathscr{A} = (\mathscr{A}, \preccurlyeq, \rightarrow)$ is a complete Heyting/Boolean algebra:

• For all $a, b \in \mathscr{A}$: $ab = a \land b$ (application = binary meet)

2 For each closed
$$\lambda$$
-term t : $(t)^{\mathscr{A}} = \top$

(3) Moreover, when \mathscr{A} is a Boolean algebra: $\mathbf{c}^{\mathscr{A}} = \top$

Introduction	Implicative structures	Separation	The implicative tripos	Conclusion
000000	00000000	0000000	0000000	00
Logical	strength of an im	plicative st	ructure	

• Warning! We may have $(t)^{\mathscr{A}} = \bot$ for some closed λ -term t.

Intuitively, this means that the corresponding term is inconsistent in (the logic represented by) the implicative structure \mathscr{A}

- We say that the implicative structure \mathscr{A} is:
 - intuitionistically consistent when $(t)^{\mathscr{A}} \neq \bot$ for all closed λ -terms
 - classically consistent when $(t)^{\mathscr{A}} \neq \bot$ for all closed λ -terms with \mathfrak{c}

• Examples:

- Every non-degenerated complete Heyting algebra is int. consistent
- Every non-degenerated complete Boolean algebra is class. consistent
- Implicative structures induced by CAs/OCAs are int. consistent
- Every Krivine realizability structure whose pole ⊥ is coherent (cf [Krivine'12]) is classically consistent

Introduction	Implicative structures	Separation	The implicative tripos	Conclusion
000000	00000000	0000000	0000000	00
Plan				

1 Introduction

3 Separation

4 The implicative tripos

Introduction	Implicative structures	Separation	The implicative tripos	Conclusion
000000	00000000	0000000	0000000	00
Separators	5			(1/3)

Let
$$\mathscr{A} = (\mathscr{A}, \preccurlyeq, \rightarrow)$$
 be an implicative structure

Definition (Separator)

A separator of \mathscr{A} is a subset $S \subseteq \mathscr{A}$ such that:

(1) If
$$a \in S$$
 and $a \preccurlyeq b$, then $b \in S$ (upwards closed)

(2)
$$\mathbf{K}^{\mathscr{A}} = (\lambda xy \, . \, x)^{\mathscr{A}} \in S$$
 and $\mathbf{S}^{\mathscr{A}} = (\lambda xyz \, . \, xz(yz))^{\mathscr{A}} \in S$

(3) If
$$(a \rightarrow b) \in S$$
 and $a \in S$, then $b \in S$ (modus ponens)

We say that S is consistent (resp. classical) when $\perp \notin S$ (resp. $\mathfrak{c}^{\mathscr{A}} \in S$)

Remarks:

• Under (1), axiom (3) is equivalent to:

(3') If $a, b \in S$, then $ab \in S$ (closure under application)

In general, separators are not closed under binary meets

Introduction	Implicative structures	Separation	The implicative tripos	Conclusion
000000	00000000	0000000	0000000	00
Separators				(2/3)

• Intuition: Separator $S \subseteq \mathscr{A} =$ criterion of truth (in \mathscr{A})

• When *A* is a complete Heyting/Boolean algebra, a separator is the same as a filter (since application = binary meet)

But in general, separators are not filters (not closed under binary meets)

Definition (Intuitionistic and classical cores)

The smallest intuitionistic/classical separators of \mathscr{A} are:

$$S_J^0(\mathscr{A}) := \uparrow \{(t)^{\mathscr{A}} : t \text{ closed } \lambda \text{-term} \}$$
 (intuitionistic core

 $S_{K}^{0}(\mathscr{A}) := \uparrow \{ (t)^{\mathscr{A}} : t \text{ closed } \lambda \text{-term with } \mathbf{c} \}$

(classical core)

writing $\uparrow B$ the upwards closure of a subset $B\subseteq \mathscr{A}$

- Note that:
 - When \mathscr{A} is a complete Heyting algebra: $S_J^0(\mathscr{A}) = \{\top\}$
 - When \mathscr{A} is a complete Boolean algebra: $S_K^0(\mathscr{A}) = \{\top\}$

Introduction	Implicative structures	Separation	The implicative tripos	Conclusion
000000	00000000	0000000	00000000	00
Separators				(3/3)

Separators can be used the same way as filters:

• Separators are closed under λ -constructions:

If $a_1, \ldots, a_n \in S$, then $t^{\mathscr{A}}(a_1, \ldots, a_n) \in S$ (for all λ -terms $t(x_1, \ldots, x_n)$)

• We can define the separator generated by an arbitrary subset X:

 $\operatorname{Sep}(X) := \uparrow \{ t^{\mathscr{A}} : t \text{ closed } \lambda \text{-term with parameters in } X \}$

- We have $S_J^0(\mathscr{A}) = \operatorname{Sep}(\varnothing)$ and $S_K^0(\mathscr{A}) = \operatorname{Sep}(\{\mathfrak{a}^{\mathscr{A}}\})$
- Deduction lemma: $(a \rightarrow b) \in \operatorname{Sep}(X)$ iff $b \in \operatorname{Sep}(X \cup \{a\})$
- We can even define ultraseparators as the maximal consistent separators. As for (ultra)filters, we have:

 $S \subset \mathscr{A}$ is an ultraseparator iff $\mathscr{A}/S = \mathbf{2}$

Beware! Some ultraseparators $S \subset \mathscr{A}$ are non-classical (i.e. $\mathfrak{c}^{\mathscr{A}} \notin S$)

000000	000000000	00000000	00000000	00
000000	00000000	00000000	0000000	00
Introduction	Implicative structures	a de como de co	The implicative tripos	Conclusion

Interpreting first-order logic

• Formulas of first-order logic are interpreted by:

$$\begin{split} \llbracket \phi \Rightarrow \psi \rrbracket &= \llbracket \phi \rrbracket \to \llbracket \psi \rrbracket \\ \llbracket \neg \phi \rrbracket &= \llbracket \phi \rrbracket \to \bot \\ \llbracket \phi \land \psi \rrbracket &= \bigwedge_{a \in \mathscr{A}} ((\llbracket \phi \rrbracket \to \llbracket \psi \rrbracket \to a) \to a) \\ \llbracket \phi \lor \psi \rrbracket &= \bigwedge_{a \in \mathscr{A}} ((\llbracket \phi \rrbracket \to a) \to (\llbracket \psi \rrbracket \to a) \to a) \\ \llbracket \forall x \phi(x) \rrbracket &= \bigwedge_{v \in \mathscr{M}} \llbracket \phi(v) \rrbracket \\ \llbracket \exists x \phi(x) \rrbracket &= \bigwedge_{a \in \mathscr{A}} (\bigwedge_{v \in \mathscr{M}} (\llbracket \phi(v) \rrbracket \to a) \to a) \end{split}$$

(where \mathcal{M} is the domain of the interpretation)

Theorem (Soundness)

 $\text{If} \quad \vdash_{\mathsf{LJ}} \phi \quad (\text{resp.} \vdash_{\mathsf{LK}} \phi), \quad \text{then} \quad [\![\phi]\!] \in S^0_J(\mathscr{A}) \quad (\text{resp.} \; [\![\phi]\!] \in S^0_K(\mathscr{A}))$

Introduction	Implicative structures	Separation	The implicative tripos	Conclusion
000000	00000000	00000000	0000000	00
Implicative	algebras			

Definition (Implicative algebra)

An implicative algebra is a quadruple $(\mathscr{A}, \preccurlyeq, \rightarrow, S)$ where

- $(\mathscr{A}, \preccurlyeq, \rightarrow)$ is an implicative structure
- $S \subseteq \mathscr{A}$ is a separator
- The separator $S \subseteq \mathscr{A}$ induces a preorder of entailment:

$$a \vdash_S b :\equiv (a \to b) \in S$$
 (for all $a, b \in \mathscr{A}$)

• The poset reflection of (\mathscr{A}, \vdash_S) is written \mathscr{A}/S

Proposition

• The poset \mathscr{A}/S is a Heyting algebra

 $If <math> \mathfrak{C}^{\mathscr{A}} \in S, then \ \mathscr{A}/S is a Boolean algebra$

Remark: The induced Heyting algebra \mathscr{A}/S is in general not complete

	1 .		1 (1)		
000000		00000000	00000000	0000000	00
Introduction		Implicative structures	Separation	The implicative tripos	Conclusion

Non deterministic choice and filters

• In the theory of implicative algebras, separators play the same role as filters in the theory of Heyting algebras.

However, separators $S \subseteq \mathscr{A}$ are in general *not* filters:

$$\begin{array}{rcl} a,b\in S & \Rightarrow & ab\in S \\ a,b\in S & \not\Rightarrow & a \land b\in S \end{array}$$

• Given an implicative structure $\mathscr{A} = (\mathscr{A}, \preccurlyeq, \rightarrow)$, we let:

$$\begin{split} & \mathbb{A}^{\mathscr{A}} & := \bigwedge_{a,b \in \mathscr{A}} (a \to b \to a \land b) & \text{(non deterministic choice)} \\ & \mathsf{p-or}^{\mathscr{A}} & := (\bot \to \top \to \bot) \land (\top \to \bot \to \bot) & \text{(parallel "or")} \end{split}$$

Proposition (Characterizing filters)

2 A classical separator $S \subseteq \mathscr{A}$ is a filter iff p-or $\mathscr{A} \in S$

Introduction	Implicative structures	Separation	The implicative tripos	Conclusion
000000	00000000	0000000	0000000	00
Finitely g	enerated separ	ators and pri	ncipal filters	

Theorem

Given a separator $S \subseteq \mathscr{A}$, the following are equivalent:

- ${\small \bullet} \hspace{0.1 in} S \hspace{0.1 in} \text{is finitely generated and} \hspace{0.1 in} \mathbb{h}^{\mathscr{A}} \in S$
- **2** S is a principal filter: $S = \uparrow \{\Theta\}$ for some $\Theta \in S$

(Θ is called the universal proof of S)

Interinduced Heyting algebra 𝔐/S is complete, and the canonical surjection [·]: 𝔐 → 𝔐/S commutes with infinitary meets:

$$\left[\bigwedge_{i \in I} a_i\right] = \bigwedge_{i \in I} [a_i]$$

In model theoretic terms, this situation corresponds to a collapse of (intuitionistic/classical) realizability into (Kripke/Cohen) forcing!

Introduction	Implicative structures	Separation	The implicative tripos	Conclusion
000000	00000000	0000000	0000000	00
Plan				

1 Introduction

2 Implicative structures

Separation

4 The implicative tripos

5 Conclusion

Introduction	Implicative structures	Separation	The implicative tripos	Conclusion
000000	00000000	0000000	0000000	00
The imp	(1/2)			

Let $(\mathscr{A}, \preccurlyeq, \rightarrow, S)$ be an implicative algebra

- For each set *I*, we observe that:
 - The triple 𝔄^I = (𝔄^I, ≼^I, →^I) is an implicative structure, whose ordering ≼^I and implication →^I are defined componentwise (power implicative structure)
 - $\bullet\,$ The set of constant I-indexed families in S generates a separator

$$S[I] := \{(a_i)_{i \in I} \in \mathscr{A}^I : (\exists s \in S) (\forall i \in I) \, s \preccurlyeq a_i\} \subseteq \mathscr{A}^I$$

(uniform power separator)

So that we can let $\mathbf{P}(I)$:= $\mathscr{A}^I/S[I]$ (induced Heyting algebra)

Theorem (Implicative tripos)

- **(**) The correspondence $I \mapsto \mathbf{P}(I)$ is functorial (in a contravariant way)

Recall: Tripos = categorical model of higher-order logic

- The above construction encompasses many well-known triposes:
 - Forcing triposes, which correspond to the case where $(\mathscr{A}, \preccurlyeq, \rightarrow)$ is a complete Heyting/Boolean algebra, and $S = \{\top\}$ (i.e. no quotient)
 - Triposes induced by total combinatory algebras... (int. realizability) ... and even by partial combinatory algebras, via some completion trick
 - Triposes induced by abstract Krivine structures (class. realizability)
- As for any tripos, each implicative tripos can be turned into a topos via the standard tripos-to-topos construction
- Question: What do implicative triposes bring new w.r.t.
 - Forcing triposes (intuitionistic or classical)?
 - Intuitionistic realizability triposes?
 - Classical realizability triposes?

000000	00000000	0000000	0000000	00
Introduction	Implicative structures	Separation	The implicative tripos	Conclusion

Characterizing some implicative triposes

Theorem (Characterizing forcing triposes)

Let $\mathbf{P}: \mathbf{Set}^{\mathsf{op}} \to \mathbf{HA}$ be the tripos induced by an implicative algebra $(\mathscr{A}, \preccurlyeq, \rightarrow, S)$. Then the following are equivalent:

 ${f 0}$ The tripos ${f P}$ is isomorphic to a forcing tripos

 $\textbf{@ The separator } S \subseteq \mathscr{A} \text{ is a principal filter of } \mathscr{A}$

 $\textbf{③ The separator } S \subseteq \mathscr{S} \text{ is finitely generated and } \mathbb{h}^{\mathscr{A}} \in S$

Slogan: Forcing = non-deterministic realizability

Theorem (Classical implicative triposes)

Each tripos induced by a classical implicative algebra $(\mathscr{A},\preccurlyeq,\rightarrow,S)$ is isomorphic to a tripos induced by an abstract Krivine structure

Classical implicative algebras $\, \sim \,$ Abstract Krivine Structures (same expressiveness)

Introduction 000000	Implicative structures	Separation 00000000	The implicative tripos	Conclusion OO
Higher-o	rder completen	ess		(1/2)

Implicative triposes encompass all the well-known (intuitionistic/classical) forcing & realizability triposes

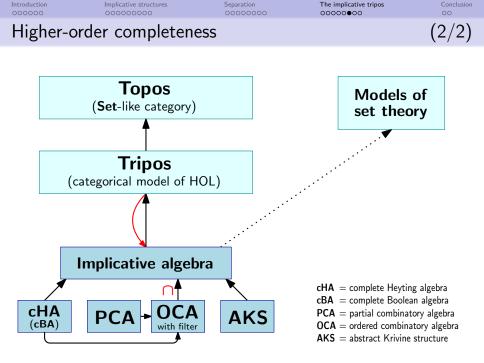
But do they encompass all triposes?

Theorem (Higher-order completeness/Representation)

Each Set-based tripos is (isomorphic to) an implicative tripos

Note: From the point of view of foundations, the above theorem expresses that a whole tripos (= structured proper class) can be described by a single implicative algebra (= structured set) \Rightarrow Reduction of complexity

- Explains *a fortiori* why we succeeded to turn well-known triposes (induced by HAs, OCAs, AKSs, etc.) into implicative triposes
- Since implicative algebras have the same expressiveness as OCAs with filters, the completeness theorem also holds for the latter



Introduction	Implicative structures	Separation	The implicative tripos	Conclusion
000000	00000000	0000000	00000000	00
First-ord	er completenes	5		(1/2)

Implicative algebras can be used to interpret 1st-order theories as well

- Given an implicative algebra A, define the notion of A-model of a 1st-order language L (resp. of a 1st-order theory T) as expected
- Implicative model = \mathscr{A} -model for some implicative algebra \mathscr{A}

Pro	oposition	(Sound	lness)	
lf	$\mathscr{T}\vdash\phi$,	then	$\mathscr{M} \models \phi$	in all implicative models ${\mathscr M}$ of ${\mathscr T}$

Theorem (Strong completeness for implicative models)[M. 2022]For each classical 1st-order theory \mathscr{T} , there is a full implicative model \mathscr{M} (over some classical implicative algebra) that captures \mathscr{T} :

$$\mathscr{T} \vdash \phi \quad \text{ iff } \quad \mathscr{M} \models \phi \qquad (\phi \text{ closed})$$

• Strong completeness theorem already holds for Boolean-valued models, but the proof relies on the completeness theorem of 1st-order logic

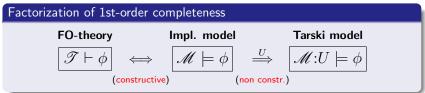
- Let \mathscr{T} be a consistent (classical) 1st-order theory
 - From the strong completeness theorem, there is a full implicative model \mathscr{M} (over some classical implicative algebra \mathscr{A}) such that:

$$\mathscr{T} \vdash \phi \quad \text{ iff } \quad \mathscr{M} \models \phi \qquad (\phi \text{ closed})$$

Moreover the implicative algebra $\mathscr A$ is consistent since the theory $\mathscr T$ is

• Picking some ultraseparator $U \supseteq S_{\mathscr{A}}$, get a Tarski model $\mathscr{M} : U$: $\mathscr{T} \vdash \phi$ implies $\mathscr{M}: U \models \phi$ (ϕ closed)

Therefore we get:



Introduction	Implicative structures	Separation	The implicative tripos	Conclusion
000000	00000000	0000000	00000000	•0
Plan				

1 Introduction

- 2 Implicative structures
- 3 Separation
- The implicative tripos

Introduction	Implicative structures	Separation	The implicative tripos	Conclusion
000000	00000000	0000000	0000000	00
Conclusion				

Implicative algebra = an algebraic structure to factorize model-theoretic constructions underlying forcing and realizability (intuitionistic & classical)

• Idea: Truth values can be manipulated as generalized realizers

$$Proof = Program = Type = Formula$$

- Each implicative algebra induces an implicative tripos, and this correspondence is surjective (up to isomorphism)
- In this structure: forcing = non deterministic realizability
- ullet Classical implicative algebras $~\sim~$ Abstract Krivine Structures

Ongoing work:

- Conjunctive & disjunctive algebras
- Evidenced Frames
- The category of implicative algebras: which notion of morphism?
- Implicative models of (I)ZF set theory

[Miquey '20] [Cohen-Miquey-Tate '22]