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Different notions of models (1/2)
o Tarski models: [¢] € {0;1}
o Interprets classical provability (correctness/completeness)
o Intuitionistic realizability: [¢] € PB(A) [Kleene '45]
o Interprets intuitionistic proofs
o Independence results in intuitionistic theories
o Definitely incompatible with classical logic
e Cohen forcing: [¢] € B(C) [Cohen '63]
o Independence results, in classical theories
(Negation of continuum hypothesis, Solovay's axiom, etc.)
o Boolean-valued models: [[qﬁ]] eB [Scott, Solovay, Vopénkal]
o Classical realizability: [¢] € B(A.) [Krivine '94, '01, '03, '09-]

o Interprets classical proofs
o Generalizes Tarski models... and forcing!



Different notions of models (2/2)

HVM = Heyting-valued models = Kripke forcing
BVM = Boolean-valued models ~ Cohen forcing
TM = Tarski models

HVM ' Intuitionistic realizability
(with Partial Combinatory Algebras)

V=N # A=X
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The categorical tradition of realizability

o Categorical logic [Lawvere, Tierney '70]

e Hyperdoctrines = models of 1st order theories
(Slogan: 3/V are left/right adjoints!)

o Modern definition of the notion of topos
(generalizes Grothendieck'’s definition)

o Categorical realizability [Hyland, Johnstone, Pitts '80]
e Major input from forcing and Boolean-valued models [Scott]
o Effective topos [Hyland]
o Notion of tripos and tripos-to-topos construction [Pitts]

o Generalization to partial combinatory algebras (PCAs)

... but incompatible with classical logic

@ What about classical realizability?



Introduction
000@00

Implicative structures
000000000

The categorical problem

Separation

00000000

Topos
(Set-like category)

Tripos
(categorical model of HOL)

Implicative algebra

/

?

N

cHA
(cBA)

PcA = OCA

with filter

AKS

L

The implicative tripos Conclusion
00000000 (e}
Models of
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v

cHA = complete Heyting algebra
cBA = complete Boolean algebra
PCA = partial combinatory algebra
OCA = ordered combinatory algebra
AKS = abstract Krivine structure
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Unifying all kinds of models

Aim: Define an algebraic structure to encompass:

o Complete Heyting Algebras (for Heyting-valued models, Kripke forcing)

@ Complete Boolean Algebras (for Boolean-valued models, Cohen forcing)
@ Partial Combinatory Algebras  (for Intuitionistic realizability)
@ Ordered Combinatory Algebras (for Intuitionistic realizability)
@ Abstract Krivine Structures (for Classical realizability)
Implicative algebras can be used to construct:

o Categorical models (triposes, toposes)

@ Models of (intuitionistic/classical) set theory

Underlying ideas are reminiscent from earlier work of

@ Ruyer '07, Streicher '13 (and many others!)



© Introduction

© Implicative structures
© Separation
© The implicative tripos

© Conclusion



© Introduction

© Implicative structures

© Separation
@ The implicative tripos

© Conclusion



Introduction Implicative structures Separation The implicative tripos Conclusion
000000 0@0000000 00000000 00000000 (e}

Implicative structures

Definition (Implicative structure)

An implicative structure is a triple (27, <, —) where
(1) (&, <) is a complete (meet semi-)lattice

(2) (=) :9? — & is a binary operation such that:

(2a) a’ < a, bxb entails (a—b) < (a =) (a,a’,b,b' € o)
(2b) A(a—b) =a— A\ b (a€ o, BC )
beB beB

4

o Write L (resp. T) the smallest (resp. largest) element of &7

@ When B = &, axiom (2b) gives: (a — T)=T (a € &)
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Examples of implicative structures
e Complete Heyting algebras (<7, <), where — is defined by:
a—b = max{c cd (C A a) < b} (Heyting's implication)
+ complete Boolean algebras (as a particular case of Heyting algebras)

e Given a total combinatory algebra (P, -,k, s), we let:

o o/ = P(P)
eaxb:=aCd
ea—b:={2z€P:Vzx€a, z-x €b} (Kleene's implication)

Note: if we do the same with a partial combinatory algebra, we only get a
quasi-implicative structure, where (a — T) # T

+ similar construction for ordered combinatory algebras (OCA)

@ Given an abstract Krivine structure (A, IL,...,PL, 1), we let:
o o/ = P(II)
ea=<xb:=adbd
oa—b:=at-b (Krivine's implication)
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Viewing truth values as generalized realizers: a manifesto

© Elements of an implicative structure are primarily intended to
represent truth values. But since A\-abstraction and application
are definable in such a structure (cf next slide), we can see:

o each realizer as a particular truth value;

o each truth value as a generalized realizer
@ So that we get the ultimate Curry-Howard identification:
Realizer = Program = Formula = Type

© In this setting, the relation a < b may read:

e a is a subtype of b (viewing a and b as truth values)
e a has type b (viewing a as a realizer, b as a truth value)
e a is more defined than b (viewing a and b as realizers)

@ In particular: subtyping () = reverse Scott ordering (J)
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Encoding application & abstraction

Let o = (o, <, —) be an implicative structure

Definition (Application & Abstraction)

Given a,b € & and a function f : & — o/, we let:

ab = A{c ed :ax(b—o)} (application)
Af = A(a — f(a)) (abstraction)
acgl

o Properties:

Q@ Ifa<a and b ¥, then ab<a't’ (Monotonicity)
Q If f < g (pointwise), then Af < Ag (Monotonicity)
Q@ (Af)a = f(a) (B-reduction)
Q a < Az ax) (n-expansion)

Q abxc iff ax(b—c) (Adjunction)
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Encoding the A-calculus

Let & = (&, <, —) be an implicative structure

@ To each closed A-term t with parameters (i.e. constants) in 7,
we associate a truth value t € o7:

a? = a
Az.t)7 = Xaw~ (t{z:=a})?)
(tw)? = t9u?
o Properties:
o [-rule: If t—gt’, then ()7 <)
o n-rule: If t—,t, then ()7 = (t')”

@ Remarks:

o This is not a denotational model of the A-calculus!

o Map t — ¢t is not injective in general, even on Bn-normal forms
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Remarkable identities

@ In any implicative structure o7 = (&7, <, —) we have:

17 = (Az.2)? = A(a —a)

K9 .= (Azy.xz)? = A(a —b—a)
a,b

S = (zyz.zz(yz)? = A ((a—=b—¢c)— (a—b) >a—c)
a,b,c

+ similar equalities for C = Azyz.xzy and W = \zy . xyy

o By analogy, we let:

«? = A(((a —b) = a) = a) (Peirce’s Iaw)J

a,b

From this, we extend the encoding of the A-calculus to all A\-terms
enriched with the constant « (= proof-like A.-terms)
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Particular case: &7 is a complete Heyting algebra

Complete Heyting/Boolean algebras are the particular implicative
structures & = (&7, <, —) where — is defined from < by

a—b:= max{ce & : (cha)=<b}

Remark: Complete Heyting/Boolean algebras are the structures underlying forcing
(in the sense of Kripke or Cohen)

Proposition

When o7 = (&, <,—) is a complete Heyting/Boolean algebra:
Q Foralla,beo/: ab=a A D (application = binary meet)

Q@ For each closed \-term t: ()7 =T

© Moreover, when o7 is a Boolean algebra: c? =T
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Logical strength of an implicative structure

o Warning! We may have (1) = L for some closed \-term t.

Intuitively, this means that the corresponding term is inconsistent in
(the logic represented by) the implicative structure </

o We say that the implicative structure o7 is:

e intuitionistically consistent when (¢) # L for all closed A-terms

o classically consistent when (¢)¥ # L for all closed A-terms with

o Examples:

o Every non-degenerated complete Heyting algebra is int. consistent
o Every non-degenerated complete Boolean algebra is class. consistent
o Implicative structures induced by CAs/OCAs are int. consistent

o Every Krivine realizability structure whose pole L is coherent
(cf [Krivine'12]) is classically consistent



© Introduction

© Implicative structures
© Separation
@ The implicative tripos

© Conclusion



Introduction Implicative structures Separation The implicative tripos Conclusion
000000 000000000 0@000000 00000000

Separators (1/3)

Let o = (o, <, —) be an implicative structure

Definition (Separator)
A separator of &7 is a subset S C &7 such that:

(1) Ifae Sanda<b, thenbe S (upwards closed)
(2) K¥ = (Avy.z)? € S and S = (A\vyz.xz(yz2))? € S
(3) If (a—b)eSandac S, thenbe S (modus ponens)

We say that S is consistent (resp. classical) when L ¢ S (resp. «® € S)

Remarks:

@ Under (1), axiom (3) is equivalent to:
(3) Ifa,be S, thenabe S (closure under application)

@ In general, separators are not closed under binary meets
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Separators (2/3)

o Intuition: Separator S C &/ = criterion of truth (in &)

@ When & is a complete Heyting/Boolean algebra, a separator
is the same as a filter (since application = binary meet)

But in general, separators are not filters (not closed under binary meets)

Definition (Intuitionistic and classical cores)

The smallest intuitionistic/classical separators of <7 are:
SV(/) = {(t)“ :t closed A\-term} (intuitionistic core)
SR(e?) == t{(t) : t closed A\-term with c} (classical core)

writing 7B the upwards closure of a subset B C o/

@ Note that:
o When o7 is a complete Heyting algebra:  SP (/) = {T}
o When o7 is a complete Boolean algebra: S2(«/) = {T}
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Separators (3/3)

Separators can be used the same way as filters:

@ Separators are closed under A-constructions:

If ay,...,a, €S, then td(al,. c,ap) €S (for all A-terms t(a:l,...,:cn))J

@ We can define the separator generated by an arbitrary subset X:

Sep(X) = T{t“z‘/ : t closed A\-term with parameters in X} J

o We have SP(o/) = Sep(@) and S2(«/) = Sep({c?})
o Deduction lemma: (a — b) € Sep(X) iff b€ Sep(X U{a})

@ We can even define ultraseparators as the maximal consistent
separators. As for (ultra)filters, we have:

S C & is an ultraseparator iff g[S =2

Beware! Some ultraseparators S C .o are non-classical (i.e. «@ ¢ S)
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Interpreting first-order logic

e Formulas of first-order logic are interpreted by:

[¢ =] = [¢] = [¥]
[-¢] = [¢] = L

[oAv] = A(([e] = [¥] = a) — a)
aco

[bvel = A(([6] = a) = ([¢] — a) = a)
aco

Vzo(z)] = A[o(v)]
veH

Bro@] = \(A (6] ~a) — a)
acAvVEM

(where .# is the domain of the interpretation)

Theorem (Soundness)

If Fii (resp. Fik ¢), then [¢] € SY(#7) (resp. [¢] € S2())
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Implicative algebras

Definition (Implicative algebra)

An implicative algebra is a quadruple (&7, <, —, S) where
o (&, <,—) is an implicative structure

e S C . is a separator

@ The separator S C &7 induces a preorder of entailment:

akFsb = (a—b)es (for all a,b € &)

@ The poset reflection of (&, Fg) is written /S

Proposition

@ The poset o/ /S is a Heyting algebra
Q If «? € S, then &//S is a Boolean algebra

Remark: The induced Heyting algebra <7 /S is in general not complete
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Non deterministic choice and filters

@ In the theory of implicative algebras, separators play the same role
as filters in the theory of Heyting algebras.

However, separators S C &/ are in general not filters:

a,beS = abe s
a,belS # airbeS

o Given an implicative structure & = (&7, %, —), we let:

he = A (a—=b—=aid) (non deterministic choice)
a,beof
p-orﬂ = (L=>T->LA(T—>1L-—1) (parallel “or™)

Proposition (Characterizing filters)

© A separator S C & is a filter iff h es
@ A classical separator S C &7 is a filter iff p-or? € §
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Finitely generated separators and principal filters

Given a separator S C o7, the following are equivalent:

© S is finitely generated and M“ €

@ S'is a principal filter: S = 1t{O} for some © € S

(© is called the universal proof of S)

© The induced Heyting algebra &7 /S is complete, and the canonical

surjection [-]: .4/ — 4/ /S commutes with infinitary meets:
Aol = Aw
i€l iel

In model theoretic terms, this situation corresponds to a collapse of
(intuitionistic/classical) realizability into (Kripke/Cohen) forcing!
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The implicative tripos (1/2)

Let (o7, <, —,S) be an implicative algebra
@ For each set I, we observe that:

o The triple &7 = (77, <", =7) is an implicative structure, whose
ordering <! and implication —! are defined componentwise
(power implicative structure)

o The set of constant I-indexed families in .S generates a separator
S = {(ai)ier € 77 : (Is€S)(Viel)s<ai} C '
(uniform power separator)

So that we can let P(I) = JZfI/S[I] (induced Heyting algebra)

Theorem (Implicative tripos)

@ The correspondence I — P(I) is functorial (in a contravariant way)
@ The functor P : Set®® — HA s a tripos

Recall: Tripos = categorical model of higher-order logic
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The implicative tripos (2/2)

@ The above construction encompasses many well-known triposes:

e Forcing triposes, which correspond to the case where (&7, <, —) is a
complete Heyting/Boolean algebra, and S = {T}  (i.e. no quotient)

o Triposes induced by total combinatory algebras... (int. realizability)
. and even by partial combinatory algebras, via some completion trick

o Triposes induced by abstract Krivine structures (class. realizability)

@ As for any tripos, each implicative tripos can be turned into a topos
via the standard tripos-to-topos construction

@ Question: What do implicative triposes bring new w.r.t.
e Forcing triposes (intuitionistic or classical)?
o Intuitionistic realizability triposes?

o Classical realizability triposes?
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Characterizing some implicative triposes

Theorem (Characterizing forcing triposes)

Let P : Set®® — HA be the tripos induced by an implicative algebra
(#,<,—,5). Then the following are equivalent:

@ The tripos P is isomorphic to a forcing tripos

@ The separator S C &/ is a principal filter of o

© The separator S C .¥ is finitely generated and h e §

Slogan: Forcing = non-deterministic realizability

Theorem (Classical implicative triposes)

Each tripos induced by a classical implicative algebra (&, <, —,S) is
isomorphic to a tripos induced by an abstract Krivine structure

Classical implicative algebras ~ Abstract Krivine Structures ~ (same expressiveness)
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Higher-order completeness (1/2)

Implicative triposes encompass all the well-known (intuitionistic/classical)
forcing & realizability triposes

But do they encompass all triposes?

Theorem (Higher-order completeness/Representation)

Each Set-based tripos is (isomorphic to) an implicative tripos

Note: From the point of view of foundations, the above theorem expresses
that a whole tripos (= structured proper class) can be described by a single
implicative algebra (= structured set) = Reduction of complexity

o Explains a fortiori why we succeeded to turn well-known triposes
(induced by HAs, OCAs, AKSs, etc.) into implicative triposes

@ Since implicative algebras have the same expressiveness as OCAs
with filters, the completeness theorem also holds for the latter
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(2/2)
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set theory

v

cHA = complete Heyting algebra
cBA = complete Boolean algebra
PCA = partial combinatory algebra
OCA = ordered combinatory algebra
AKS = abstract Krivine structure
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First-order completeness (1/2)

Implicative algebras can be used to interpret 1st-order theories as well

@ Given an implicative algebra o7, define the notion of 27-model of a
1st-order language % (resp. of a 1st-order theory J7) as expected

@ Implicative model = @7-model for some implicative algebra .o/

Proposition (Soundness)

If ¢, then .# | ¢ in allimplicative models .# of 7

Theorem (Strong completeness for implicative models)

For each classical 1st-order theory .7, there is a full implicative model .#
(over some classical implicative algebra) that captures J:

Tk iff M= P (¢ closed)

@ Strong completeness theorem already holds for Boolean-valued models,
but the proof relies on the completeness theorem of 1lst-order logic
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First-order completeness (2/2)

Let .7 be a consistent (classical) 1st-order theory

@ From the strong completeness theorem, there is a full implicative
model .# (over some classical implicative algebra /) such that:

TE o iff M= P (¢ closed)

Moreover the implicative algebra < is consistent since the theory .7 is

@ Picking some ultraseparator U 2 S/, get a Tarski model .# : U:
Tk implies MU =@ (¢ closed)

Therefore we get:

Factorization of 1st-order completeness

FO-theory Impl. model Tarski model

= |ME=d| = | AMUE

(constructive) (non constr.)
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Conclusion
Implicative algebra = an algebraic structure to factorize model-theoretic

constructions underlying forcing and realizability ~ (intuitionistic & classical)

o ldea: Truth values can be manipulated as generalized realizers

Proof = Program = Type = Formula J

@ Each implicative algebra induces an implicative tripos, and this
correspondence is surjective (up to isomorphism)

@ In this structure: forcing = non deterministic realizability

o Classical implicative algebras ~ Abstract Krivine Structures

Ongoing work:
e Conjunctive & disjunctive algebras [Miquey '20]
o Evidenced Frames [Cohen-Miquey-Tate '22]
@ The category of implicative algebras: which notion of morphism?
o Implicative models of (I)ZF set theory
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