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> To develop a language in which to model opinions

» To (begin to) generalize the correspondence between category
theory and type theory to a correspondence with enriched
category theory on one side

» To obtain another generalization of Martin-Lof type theory
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What is an opinion?

» Logic of propositions
> Model with complete lattices (posets with all co/limits)
> Products (coproducts) represent conjunction (disjunction)
> The terminal object T (initial object L) represents the true
(false) proposition
> Write P < Q to mean that P implies Q.
> P holds when T < P.
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> Model with complete lattices (posets with all co/limits)
> Products (coproducts) represent conjunction (disjunction)
> The terminal object T (initial object L) represents the true
(false) proposition
> Write P < Q to mean that P implies Q.
> P holds when T < P.
» Logic of facts
> Model with up-sets (slices) of lattices.
> Given a lattice L of propositions, and a piece of evidence e € L,
e/L is the poset of propositions implied by e.
> More generally, we can take a subcategory E of L.
» Logic of opinions
> Model with fuzzy lattices and fuzzy up-sets
> Above, we answer “Is P < Q7" or “Does P hold?” with “yes”
or “no”, i.e., “0" or “1".
> Now we answer “Is P < Q7" or “Does P hold?” with a value
in an ordered monoid, for instance [0, 1].
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What is an opinion?

Proof irrelevant Proof relevant

Propositions Type theory

e Posets e Categories

e Categories enriched in {0,1} | e Categories enriched in Set

Opinions Fuzzy type theory

e Fuzzy posets e Fuzzy categories (?)

e Categories enriched in [0,1] | e Categories enriched in fuzzy sets,
sets with a function to [0, 1]

» Goal: develop the bottom-right box.
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Opinion dynamics (jww Robert Ghrist and Hans Riess)

> Previously, opinions were modeled by real-valued vectors.

» Opinion space was some real vector space.
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Opinion dynamics (jww Robert Ghrist and Hans Riess)

> Previously, opinions were modeled by real-valued vectors.
» Opinion space was some real vector space.

» Modeling things as vectors plugs you in to a lot of
computational tools,

» but it's akin to modeling propositional logic as {0, 1}-valued
vector space.

» Want to capture more of the structure with tailor-made
algebraic notion.
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Enriched categories

Booleans

» The natural ordering on the booleans B := {0, 1} forms a
category.

> |t has a monoidal structure given by multiplication.

» Thus, we can consider a B-enriched category C:

> a set of objects ob(C),
> for each pair x, y € ob(C), an object hom(x,y) of B,
> for each x € ob(C), a point 1 — hom(x, y)
> for each x,y,z € ob(C), a morphism
o : hom(x,y) - hom(y,z) — hom(x, z).
> such that ...
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> |t has a monoidal structure given by multiplication.
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We can interpret hom(x, y) as indicating whether or not x < y.
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Enriched categories

The interval

» The natural ordering on the interval I := [0, 1] forms a
category.

> |t has a monoidal structure given by multiplication.

» Thus, we can consider a I-enriched category C:

> a set of objects ob(C),
> for each pair x, y € ob(C), an object hom(x, y) of I,
> for each x € ob(C), a point 1 = hom(x, y)
> for each x,y,z € ob(C), a morphism
o : hom(x,y) - hom(y,z) < hom(x, z).
> such that ...

We can interpret hom(x, y) as indicating to what extent x < y.
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Enriched categories

> In general, we can replace B or I with any monoidal category,
but here we consider only monoidal categories which are
posets, i.e., ordered monoids M.

» Then, given an M-enriched category C (representing a space
of opinions) we ask that it has the enriched (fuzzy) versions of
all limits and colimits: all weighted limits and colimits.

» Then we consider a network of individuals, each with their
own opinion space and opinion that they are communicating,
and study dynamics.

> Encode the network as a graph, and consider a sheaf over it,
valued in the category of M-enriched categories.
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Weighted limits and colimits

» In a category, we can consider the product A x B of two
objects, A, B

» But the concept of ‘weighted limits" allows us to weight both
A and B by sets a and .

» The product with this weighting is then the product of
a-many copies of A and S-many copies of B (A% x¥ B)

> In a M-enriched category, to take a product of A and B, we
take weights «, 5 € M.

» Then A* A? B behaves like a conjunction of A scaled down by
« and B scaled down by (.
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Weighted meets and joins

Let:

S = "Alice likes strawberry ice cream.”

v

C = "Alice likes chocolate ice cream.”

v

B = “Alice likes chocolate ice cream better than strawberry
ice cream.”

a€[0,1]

v
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Weighted meets and joins

Let:
» S = “Alice likes strawberry ice cream.”
» C = "“Alice likes chocolate ice cream.”

» B = "Alice likes chocolate ice cream better than strawberry
ice cream.”

» a€[0,1]
Then we can consider:
» *S = “Alice likes strawberry ice cream with intensity «.”
» BLA®S = “B and ©S".
We can prove a ‘fuzzy modus ponens':
» (B*A®S < C) =aand (BIA®S <°C) =1
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Fuzzy concepts

Let:
» P = "l like the iPhone.”
» Q = "l like the Galaxy.”
» R = "l like the Pixel.”
» S={P,Q,R}
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Fuzzy concepts

Let:
» P = "| like the iPhone.”
» @ = "l like the Galaxy.”
» R = "l like the Pixel."
» S={P,Q,R}

= We can consider the presheaf M-category [S, M| whose
objects are functions S — M.

= It is the completion of S under weighted co/limits.

> The elements are of the form
P*APQATR or ((P,a),(Q,B),(R,))

for av, B,y € [0,1].
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Fuzzy type theory (jww Shreya Arya, Greta Coraglia, Sean
O’Connor, Hans Riess, Ana Tendrio)

> In the last section, we fuzzified propositional logic by seeing it
as a part of category theory, and fuzzifying the enrichment
from B to I or M.

» Now we fuzzify Martin-Lof type theory by a similar route.
» People might have multiple reasons for their opinions, so this
seems appropriate.
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Simple type theory

There is an equivalence of categories between simply typed
A-calculi and cartesian closed categories.

’ STLC \ CCC
type A object A
term x : A b(x) : B | morphism b: A— B
conjunction A A B product A x B
implication A= B exponential BA
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Simple type theory

There is an equivalence of categories between simply typed
A-calculi and cartesian closed categories.

’ STLC \ CCC
type A object A
term x : A b(x) : B | morphism b: A— B
conjunction A A B product A x B
implication A= B exponential BA

To fuzzify this, we consider on the right-hand side Set(M)-enriched
categories.
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Fuzzy sets

Set(M) is the category whose
» objects are pairs (X,v) where X isasetand v : X - M

» morphisms (X,v) — (Y, u) are functions f : X — Y such
that v(x) < p(fx) for all x e X

It inherits a monoidal structure from the ones on Set and M:
g (X7V)®(X7M) = (X X Y,l/-/,l,)
» The monoidal unit is (x,1).
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Fuzzy categories

Definition
A Set(M)-enriched category C consists of

> a set of objects ob(C),

» for each pair x,y € ob(C), an object hom(x, y) of Set(M),
for each x € ob(C), a point (1, %) — hom(x, y)

> i.e., an element of hom(x,y) with value 1

» for each x,y,z € ob(C), a morphism
o : hom(x,y) ® hom(y, z) — hom(x, z).
> i.e., a function o : hom(x, y) x hom(y, z) — hom(x, z) such
that |f]g] < [g o f|

such that ...

v

v

» Now there can be multiple morphisms/reasons of a
type/opinion, but each one comes with some intensity.
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Dependent type theory

» We've talked about propositional logic and the simply typed
A-calculus, and their categorical interpretations.
» Our goal is actually dependent type theory.
> Proof relevant first-order logic.
> Types can be indexed by other types, just as predicates in
first-order logic are indexed by sets.
> In propositional logic, we have types/propositions A, in
simply-types A-calculus, we have terms/proofs
x : At b(x) : B, and in dependent type theory we have
dependent types x : A B(x).
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Display map categories

Definition

A display map category is a pair (C, D) of a category C and a class
D of morphisms (called display maps) of C such that

>

>

>

C has a terminal object =
every map X — = is a display map
D is stable under pullback

The objects interpret types, the morphisms interpret terms,
and the display maps interpret dependent types, and sections
of display maps interpret dependent terms.

From a dependent type x : B — E(x), we can always form
Fm: X.8E(x) — B, and this is represented by the display
maps.
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display map categories

Definition

A display map category is a pair (C, D) of a

category C and a class D of morphisms (called display maps)
of C, , such that

» C has a terminal object =
» every map X — = is a display map
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Fuzzy terms

» The objects of a fuzzy display map category represent types
(or contexts).

» The display maps d : E — B represent dependent types.

> In non-fuzzy display map categories, terms are represented as
sections of display maps. Now our sections are fuzzy.
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Fuzzy terms

» The objects of a fuzzy display map category represent types
(or contexts).

» The display maps d : E — B represent dependent types.

> In non-fuzzy display map categories, terms are represented as
sections of display maps. Now our sections are fuzzy.

Definition
An «a-fuzzy section of a fuzzy display map is a section with value
at least «.

» These represent terms x : B - s 1o E(x).
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Substitution / weighted pullbacks

In the definition of fuzzy display-map category, we ask that the

class of display maps is stable under particular weighted pullbacks.

o —  F

Ll

A—f.B

» We choose the weight on A to be the singleton with value 1
and the weight on B to be the singleton with the value of f.

» Thus, the vertical maps have the same value (1), as do the
horizontal maps.
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Structural rules

Foctx (C_Em p)

I ox:AA ctx

I x:AAFx:1A (Var)

[MA-BType [+AType
I x:A,A-B Type

[ x:AA-BType [hanA
I,Ala/x]-B[a/x] Type

Theorem

(Wea kty)

(SUbStty)

=AType
FIx:Actx (C_ EXt)
s, A
M-s:gA

(Cons)

IA- b:ﬁ B T+HAType
Ix:AA-b:gB

(Wea ktm)

[ x:AA-b:gB  Ta:n A
I,Ala/x]+-bla/x]:sB[a/x]

(Substtm)

Fuzzy display map categories validate these rules.
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Future work

Goals and questions

» Add type formers, like weighted conjunction

» Do we want to fuzzify other relations in type theory, like
equality?

» Use this to study opinion dynamics
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Thank you!
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