
How to Interpet Cotorsion

A linear control system is an underdeterminedsystem

of linear differential equations i.e systems some of
whose variables are free lie can he chosenarbitrarily
Remark In real life all controlsystems are nonlinear

To use linear methods systems have to be linearized

first
The free functions form the inputof the system
Manipulating the input one tries to guarantee a
desired behaviorof the system This requires an

output i.e output variables

Thus we have a system Z

a t A x t B ult
1
yet C alt D ult

Here x is the stateofthe system
u is the input

y is the output and
A B C D are matrices with constant orpolynomial or
analytic coefficients The basefield is IR or E

Mathematical models as we encounter them in practice may be 
expressed by ordinary or partial differential equations, they may 
involve the language of graphs or lattice diagrams, or require 
the notion of transfer function or a formal language.

“Paradigms and puzzles in the theory of dynamical systems”,
by Jan C. Willems  



fre

Symbolically the system is representedby a
formal diagram

a
Associated with Z is the dual system E

OC t Atac t CT ult
2

y t BTacct DTUCH

where T stands for the transpose

Systems could be multi dimensional Thus
we look at partial derivatives 8 and

after decoupling these symbols at the

differential operators of Together with
a choice of constant or functional coefficients
they form a

ring D of differential operators
A multidimensional system rewrites as

A AI O

where A is a finite matrix with entries in D
and I is a column nectar with entries in a

suitable class of functions



Thinking of x as unknown elements in a module we

have a system of linearequations in that module
and the solutions of this system are the solutions

of the original system of differential equations

at this point it is convenient to look at the
solutions of x not just in the chosen module
but in all D modules This yields a
solution space functor with values in
abelian groups

Bringing in functors

Proposition The solution space functor
S Mod D Ab

is representable The representing object M is

defined by the exact sequence

F At
s Fo s M a 0

In other words S L I Hom M L for
any D module L This is known as the

Mal grange isomorphism



Back to control systems

Two important featuresof a control system
are controllability and observability

Definition The system I is controllable if
it can be taken from any initial

state to anyfinite state by choosing
an appropriate input

Definition The system E is observable if the

stateof the system can be recovered

from the output

Theorem The dual system E B observable

igg ii
of the representing

module M

Proposition I is controllable if and only if
MhasnotorsionX

To speak of the torsion of a module one has
to make some assumptions on the ring
In the case when the ring is the ring



ofintegers or more generally a commutative

domain the torsion submodule of a module is

just the totality of all its elements that can

be annihiated by nonzero elementsof the
ring

Example let the ring be 2 It can be viewed

as a module over itself Its torsion submodule
consists of a single element O On the other

hand the torsion submodule of 2 4 integers
modulo 4 is the entire 2 4 since anyelement of it is annihilated by 4 E Z

Our goals now are

I To introduce a definitionof torsion that
would work for any module over anyring

1 To propose a conjectural algebraic
interpretation of observability

II To propose a functorial framework for
the duality between observability and
controllability



Redefining torsion M R 2020

The classical torsion was first observed and
named by H Poincaré in a topological context
around 1900 Aformal algebraic definition was

onlygiven in the 1920s

To generalize the classical torsion for
modules over commutative domains we return

momentarily to modules over 2 i e abelian

groups Then the torsion submoduleof an abelian
group A can also be defined as the kernel of
the localization map To wit embed 2 in the

rational numbers
O Z I Q

and tensor this sequence with A The kernel of
the resulting map is precisely TCA the

torsion submoduleof A

O TCA A I
AM A Q

Exactly the same procedure works over any
commutative domain just replace Q with the

field of fractionsof the domain
Now notice that I Q is the injective



envelopeof 2 In fact for our purposes it

suffices to notice that Q is injective and

more generally the same is true for the
field of fractions of any commutative domain
This motivates a general definitionof torsion

that works for arbitrarymodules over

arbitrary rings
Definition Let A be an arbitrary associative

ring with identity and A a

right A module To define the torsion
submodule s A e A do the following

View A as a leftmodule over itself A
Embed it into an injective I
0 i n A Z I

Tensor this sequence with A
A an A 02 A I

A

Take the kernel of Ao r

Thus we obtain a defining exact sequence
O S A A AM A I



Functors come into play
Let F N Mod Ab

be an additive functor from left A modules
to abelian groups Associated with F are its

right derived functors R F i 0 Of special
interest to us is the zeroth right derivedfunctor
and the canonical natural transformation

Pr F R F

Recall that Pr is an isomorphism if and only
j F is left exact and that pr is an isomorphism

on injectives
D F'man

ILEgiteffabitzstathythmatiamadefiningsequence

O F F Pe F

Remand F is the largest subfunctorof F vanishing
on injectives

The componentsof F admit a simpledescription To

compute F B on a left A module B do the

following



Embed B in an injective I
O B 2 I

Apply F
FCB FID FCI

Take the kernel F B Ker Fiz

Thus we have a defining sequence
O FCB FCB FH FCI

Specializing to the case F A and B D
we have proved
Theorem

1 20 SCA AO GA D

We have achieved the firstof the three goals
mentioned above we have a general definition
of torsion

Introducing cotorsion M R 2020

Nettuno rsion of an arbitrary
module over an arbitrary ring

Remark Unlike torsion the notion of cotorsion does
not have a historicalprototype



This will be done by dualizing the notion of
torsion This is possible because torsion was

defined functorially
First we replace F A by a dual

functor F l i c Insteadoftaking the injective
stabilization AG take the projective
stabilization f c

The projective stabilization E of an additive
functor F is defined as the co kernel of
the canonical natural transfer main
Lo F tr IF E s 0

And as the last step instead of F a takeE n

Definition The co torsion of a module C is

defined by
glc I A

Because C C is a contravariant functor
the right hand side of the defining formula is
related to injectives not projectives

Fact f n Tc where the latter

denotes for historial reasons Hom modulo injectives
i e ATC hic sea c whereICR c denotesthesubgroup
of all maps A C factoring through injectives



of p g gh t

Eat Since N C E C Ch c f hic is

isomorphic to C modulo the trace of
of injective modules in C i.e we mod out

the submodule of C generated by the
images of all homomorphisms from all

injectives into C
In particular q is a quotientof the identity
functor
We have thus achieved our second goal
we have a definition of co torsion that

works for arbitrary modules over

arbitrary rings

Ethan have short exact sequencesof
endofunctors
O S H s 0 and

o g ti g o

It can be shown that s is a radical ie 55 0

and that q is a co radical lie a radical on

the opposite category i e g g o



The Auslander Grus on Jensen duality
Recall that a functor F Mod A A b

is said to be finitelypresented if it is defined
by an exact sequence

B CA F O

The totality of all such functors is an abelian

category The same is true for functors
finitelypresented by finitely presented modules
and viewed as functors on the category mod N

of finitely presented modules

A module is said to be finitely presented
if it is the cokernel of a homomorphism
between finitely generated free modules
We denote this functor category by
f p modN A b

The Auslander Crusan Jensen duality D
relates f p mod NP Ab and fp mod n Ab

f p mod ND AFI p mod a Ab



Given a functor F the value of DF on B

is given by
D F B Nat F B

A similar formula defines DF on natural

transformations
DF 12 Nat x Bo

Propertiesof D

D D is contravariant

2 D interchanges Hom's and tensorproducts

3 D is exact

The next result shows that torsion is completely
determined by co torsion on the other side

Theorem D E s 0
MR 2020

Returning now to the two short exact

sequences of endofunctors we have Dq s

by the theorem just started D H 41 is always
true Therefore by the exactness of D we have

Gary DE 5



Symbolically
0 7 q I G O

D
i

O 7 5 Y S s 0

Going back to control systems the torsion
submodule of the module M associated with
a system corresponds to the part of the
system that cannot be controlled That part is
known as the autonomyof the system
Assuming now that our torsion s could

be viewed as the autonomyfunctor it

is natural to suggest that s should be
the controllable part functor
The duality between the observability and

controllability leads us to a conjecture
that the above corollary provides a functorial
framework for such a duality In
particular q should be viewed as
a functorial descriptionof the notion of
observability



Back to modules

The preceding corollary is a duality on functors

which must be evaluated on the same module

on the left and on the right Is there a duality
that desends to modules The answer is yes

Assume that A is an algebra over a

commutative ring R This R could be Z so

this assumption does not impose any restrictions
Let I be an injective R module and

Dj Home Y

T gg Di A B B D CAD DX

Here A OB stands for AO B

Now specialize to the case B D

Corollary D SCA q D CA and similar

to the above

DÉADECDAD A

Conjecture For a suitable choiceof J D CA should

representthe system dual to the system representedbyA



and q DotA should be the observable part

of the dual system
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