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Background: Algebraic geometry & Representation theory

G reductive complex algebraic group with Lie algebra g
N = {z € g | « is nilpotent in every representation of g}

Example: g = slo; N = {2 x 2 matrices with zero trace and determinant}

Proved theorems like...
Theorem (C. 2010)

Given functors D’ —*+ D 2L D' and t-structures on ) .
D’ and D'’ such that IC(C, =) : Mp,c (C) = Mp . (N)

Theorem (C. 2010)

For each orbit C' C A/, there is a fully faithful functor

(G1) 4™ is essentially surjective
and every simple perverse Poisson sheaf is of the form

(G2) thereisa ,t-structure on i, D’ induced by the e(C, F)
one on D
(G3) the t-structures on D’ and D’/ are compatible
(G4) j*f=0 = f factors through i, D’ Theorem (C 201 O)
(G5) ixD! ={X |ji*X =0} For a Poisson sheaf 7 = O ® L on an orbit C, we
have

then there is a unigue t-structure on D extending those

on D’ and D"/
LS PP H (Z0(0, 7)) = Oy ® £

LOU ISLANA STATE UNIVERSITS [C., Perverse Poisson Sheaves on the Nilpotent Cone, LSU, 2010]
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Categorical Probabilities (1960s+ : Lawvere, Huber, Giry, Doberkat, ...)
The Probability Monad P: Meas — Meas

Soh X — PX =/{all probability measures on X }

-ar X —Y — PX PY
Pn—>Pf 1

Kleisli Category of P @ Objects: measurable spaces

@ Morphisms: stochastic kernels X x ¥y — [0, 1]

o Composition: given X L v % z

(wﬂm®=L%%

Measg



(with K. Sturtz)

Many results of the flavor: “ * can be expressed as...”

Probability Theory Measg

Probability measure P

12

Morphism 1 — X

Measurable function X —f—> Y

x — &5y = Dirac measure

U -valued random variable

o]
Composition 1 SE o el

Regular conditional probability

Measg morphism

Conditional expectation

Diagram in Measg

Stochastic process

Functor 7 — Measg

1
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d is measurement data

o) T

XoR XoYX

Figure 17: The generic nonparametric Bayesian model for stochastic processes. Ix®0d; Sn

XoY

Theorem: (C, Sturtz, 2013)
Bayesian probability can be realized in

Measg
1
Top= IBH H
Py Pp
1 S

Figure 25: The generic parametric Bayesian model.

[C., Sturtz, Bayesian Machine Learning via Category Theory, arXiv, 2013]
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tit © fia [C., Sturtz, A Categorical Foundation for
+ ! Fte Bayesian Probability, ACS, 2014]
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Figure 40: The hidden Markov model viewed in P.



Original work

e Extremely useful for me in translating to a language | understood
e Not particularly immediately impactful on algorithmic development

Unsatisfying conclusions, but recently...
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Data Clustering
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Kleinberg (2002): There are no consistent'methods of clustering with partitions

e Rich (all partitions realizable)

—) e Scale-invariant

e |ntra/inter-cluster distance transformation invariant




Hierarchical Clustering

Category K- —’:;—.:jt/j” Morphisms: non-expansive maps
of Metric / </;,/</ g
Spaces [7\/’ d(f(z), f(y)) < d(z,y)

b Carlsson—Memoli (2008): There is a unique
functorial method (single-linkage clustering) for
assigning a hierarchical clustering to a metric space.

Q: Are there other useful categories of metric spaces
Category of , _ o o
Ultrametric with meaningful projections”

Spaces




Fibers are directed
complete posets under
ordering induced from
identity maps

Composition with functor
to Weight satisfies an
idempotency condition

\

(with D. Guralnik, J. Hansen, P. Stiller)

Theorem (C., Guralnik, Stiller, 2016):
There is an equivalence of categories Weight ~ Sieve.

“nice” subcategories of
weight spaces

I E i Sieve

{ “stationary” structuring } Wf hi /
eig —

maps to sieves

Corollary: There is no functorial clustering projection to cut metrics

[C., Guralnik, Hansen, Stiller, Consistency Constraints for Overlapping Data Clustering, arXiv, 2016]
[C., Guralnik, Stiller, Functorial Hierarchical Clustering with Overlaps, DAM, 2018]



Reality: almost no one uses this theory in practice

Did not address:

Cluster uncertainties e
Outlier detection/removal

Algorithm efficiency °
Choice of underlying metrics

Software implementations o
Convincing examples of value
Characterizations of useful e

clustering domains

Mismatch with practitioners’ needs

Opaque categorical language with
no clear interface for users
Consistency in this sense is
rarely considered in applications
Existing tools are often sufficient for
exploratory analysis

Simplifications were guided by
mathematical considerations

Lesson: “Nice theory — Applications” rarely brings near-term value



Compositional
problems in
robotics

()

N

[R. Burridge, et al, “Sequential Composition of Dynamically Dexterous Robot Behaviors,” IJRR 1999.]
[A. De, et al, “Parallel Composition of Templates for Tail-Energized Hopping” ICRA 2015.]

I ¥ ‘ [A. De, et al, “A Universal Template for Pitch Steady Behaviors in Planar Floating-Torso Locomotion Models,” In Prep, 2020.]
" l ’ ‘ [V. Vasilopoulos, et al, “Sensor-Based Reactive Execution of Symbolic Rearrangement Plans by a Legged Mobile Manipulator”

IROS 2018.]
[T. Topping, et al, “Quasi-Static and Dynamic Mismatch for Door Opening and Stair Climbing” ICRA 2017.]



Emerging Calculus of Behaviors

Floating Torso Fore-Aft Slot Hopper Pinned Hip Pre-Grasp Cage
, B 7 w ' \”’ 3 End-Effector Point Finger o
— =, 1 o / " b
*( E . g > \ E‘yéi ;_‘ / ) / //// 0 7
z X 7 N Zr[ r’ - 1 = [ "'L ; 7 //

ETX P =
e =
&= e g —
el k& - Y — 9
= 4+ T e T xP =

[Topping et al., ISRR 2019]



Primary Constructions for Hybrid Systems

Transformations

r
0.

o
-.e

[Vasilopoulos, Koditschek, 2018]

4

A hybrid semiconjugacy a: H — K is:
(1) a graph morphism a: G(H) — G(K)
(2) maps of active sets a,: I — IK

XH ,’.H

e H
FHE — Y ,TRH zH— I((e)
au‘ ‘Tav as(e)|zglJ Jal(n)
K K
FK — TFE Z,,(< — = It(rx(r:))
X, Ta(e)

Hybrid semiconjugacies

Sequential Composition

‘_\
Cd/

[Burridge, Rizzi, Koditschek, 1999]

\ 4

H
A directed system Hi ENS Y Hf consists of

U'an
N
H;

f
_ e /\w"( )
@) e -~ 7T\
(A ,W .
//r:l_\//'/)‘—t\/‘ o \ “"'/I X ;::I
v Fe 4 ) =

Image source: Alongi and Nelson, Recurrence and Topology. AMS, 2007

Directed systems

[C., Gustafson, Koditschek,

(with P. Gustafson, D. Koditschek, P. Stiller)

Templates & Anchors

TEMPLATE

L

Use as a guide or

Make policies for 5
target for control

neuromechanical
control

I B CO: )/

.. Add degrees of
77 72 51’777

freedom (joints,
ANCHOR

muscles) from
[Koditschek, Full, 1999]

Collapse dimensions’
by trimming away
degrees of freedom
(seek synergies

and symmetries)

animal to reveal
mechanisms

t

p
e

Hybrid subdivisions

Stiller, Formal Composition of Hybrid Systems, TAC, 2020]



A hybrid system H consists of

Angular velocity

1. a directed graph G = (V,E,s,t);

0.6

. 0.8 10
and ground

04
Angle between block

2. for each continuous mode v € V,

&) (cos(a(l — z)) + &= < 1)
<0) A0 <z <1)

e an ambient manifold M,

e a vector field X, on M,

il =T
iy = —Lsin (a1 — 1))

] =1
&y = Lsin(a(1 + 1))

e an active set [, C M,

I]SO

e a flow set F, C I,

[Image: Lygeros et al., "Dynamical properties of hybrid automata.,” 2003].

3. for each reset ¢ € E, a guard set Z. C I;,) and an associated reset
map re: Ze = L)

* We work here in (a cat. equiv. to) the category of directed reflexive graphs.



A hybrid semiconjugacy a: H — K is: Notes:

(1) a graph morphism a: G(H) — G(K)

(2) maps of active sets a,,: [2 — IK

XH
FH —~ . TFpH

Oy TOAU

FK — L TFK
> 6

Flow Compatibility Condition

* Conjugacy, submersions, embeddings
straightforward
Technical tools necessary to allow for
practically-relevant subsets of manifolds
(smooth sets)

Homsg(A, B) = (‘;)"1%1141 {f € Homm(U, Ma) | f(A) C B}

K 1K
Zafe) ® > Lifage))
ale)

Reset Compatibility Condition



Hybrid executions as semiconjugacies

[De, Koditschek, 2015]

o I,

Flight

I
72,73 Ty = 0O Stance

Vertical hopper Hyqp
Hybrid Time Trajectory

Theorem (Pappas, Lerman, CGSK)
Semiconjugacies from hybrid time trajectories encode all
executions of the codomain system.




S-Mode 2

[De, Koditschek, 2015]

| I I
70 =0 1 T2, T3 Ty =10

Slicing a Continuous Systems



A template-anchor pair is a span T £ S 'y A such that
» pis a hybrid subdivision;
» /is a hybrid embedding;
> i(S) is attracting in A.

S

TEMPLATE

Use as a guide or
target for control

@
=

Add degrees of
freedom (joints,
muscles) from
animal to reveal
mechanisms

Make policies for
neuromechanical
control

r

Collapse dimensions
by trimming away
degrees of freedom
(seek synergies

and symmetries)

p 1

T A

Template-anchor relationship as a span

Theorem (CGKS).Template-anchor pairs are weakly associatively composable.

0

=51 x4, 52

Pog

Y
/\

)\
AN

e

Example: hybrid limit cycle in grounded vertical hopper

ANCHOR [Koditschek, Full, 1999]
[ ]
p . .
| subdivision attracting
subsystem

Flight

Stance

Vertical hopper Hyop

[De, Koditschek, 2015]




Conley’s “Fundamental Theorem”
Theorem (Norton): Every flow on a compact metric space
decomposes into a chain-recurrent part and a gradient-like

the eye-like attractor
~ basin of the attractor
part.

FIGURE 1. The Bowen example.

[Baladi, Bonatti, Bernard, 1999]

\/\/’J‘T\/ o R N A hybrid (&, T)-chain is roughly an
/'\/ ’ #(x) h ‘ execution with allowable €-jumps
'  after each reset

Classical (g, T)-chains _ )
 after flowing for > T time

Image source: Alongi and Nelson, Recurrence and Topology. AMS, 2007.

Theorem (Gustafson, Kvalheim, Koditschek, 2019)

Every hybrid system with compact state space satisfying a guard-set
contraction property decomposes into a chain-recurrent part and a
gradient-like part.




H o, \\( 4
A directed system H; “_"— H¢ consists of S

/-—-—‘i%
C,/

T 1)t Key observations
/ \ 1. State spaces not sufficient interfaces
0 Initial and final systems include dynamics

2. Standard executions do not compose well

1 f 0 (g, T)-chains do compose!
[ Generalizes topological or measure theoretic
Initial subsystem Final subsystem approaches
3. “Same” system could have many applications

0 Different initial or final subsystems
0 Specifying new interface into system

where Hf is an (g, T)-sink in



Structural Results ====) Double Category of Hybrid Systems

Hybrid semiconjugacy composition

Sequential composition

AN
[ - ~N

Hy Hy Hy © Hy

M-"—N N "—K M K

f‘ QU lg ® gl Cz\U/ kh e fh@@gau hh

PN\ Q Q- \>L P L
H) Hj H) ® H
o
Hj

PO Q

# C’\U , Category H:
< g > objects are hybrid systems

SNST > vertical category encodes hybrid semiconjugacy
£y > horizontal category encodes sequential composition
I > has products and fiber products along hybrid
H .

A~~~ submersions
> fibered over category of graphs
frof| G OC{J lg’Og » framed bicategory if we allow reset relations
p b > associative template composition via spans

Theorem (CGKS)

Hybrid systems, directed systems
and hybrid semiconjugacies form
a cartesian and cocartesian
double category .

DSG (1.1)
F1.(1)

[Example: Topping, Vasilopoulos, De, Koditschek, 2019]



Simple Type Theory for Mobile Manipulation

Type Steady-state behavior

Free no navigational goals

. : “Free type theory”
Object stay near .the object onTobot bshaviors
Target, maintain position atz € X

Nest inhabit the nest

Operational Semantics

A
o N
Type  Continuous system (M, X) Morphism Reactive hybrid system
Free (R2,0) A — Object  Fuav(4) = (R2, Xy) = (Be(A), Xl p.(a))
Object (Be(A), Xdlp.(a)) A — Target,  Fnav(A) = (R?, X;) — (Bc(z), XilB.(x))
Target, (Be(x),Xt|BE(z)) A — Nest  Fuay(A) = (R, X,,) = (Be(r), XulB.(r+)) [Image:Vasilopoulos, 2021]
Nest (Be(r*), XnlB.(r)) A — Free Foav(A) = (R?,0)

[Gustafson, C., Koditschek, Hybrid dynamical type theories for navigation, 2021]

Implementation: https://github.com/PaulGustafson/HybSys



Choosing the right abstractions and simplifications

Examples:

1. More abstract and elegant formulations meet grounded approaches

o Diffeological spaces, Frolicher spaces (exponential objects)

o Manifolds with (generalized) corners (flows on products and subsets of smooth manifolds)

2. Simplifications

o Not useful for us: gradient systems on surfaces, Morse systems, cobordisms, directed spaces
o  Still useful for us: only trivially coupled systems, no zeno behavior, no differential inclusions,

restricting to nonblocking, deterministic systems

T pivee)

[De, Koditschek, 2018]

[Guralnik, 2020]




Concluding thoughts

1. Theorems of the form “* can be expressed as...” are not worth much in
applications unless accompanied by meaningful machinery

2. Not every problem requires formalization/axiomatization

3. Working with practitioners continually is critical to making useful simplifying
assumptions, abstractions, and interfaces




