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Abstract

We lay out a language paradigm, QS, for quantum programming and quantum information theory – rooted
in the algebraic topology of stable homotopy types – which has the following properties, deemed necessary and
probably sufficient for the eventual goal of heavy-duty quantum computation:

• Application: in its 0-sector, QS is cross-translatable with the established quantum programming scheme
Quipper, including support for classical control (dynamic lifting via dependent linear types) such as by
quantum measurement outcomes which are handled monadically as in the widely used zxCalculus.

• Compilation: but QS is embedded in (is just syntactic sugar for) a universal quantum certification language
LHoTT, being a novel linear enhancement of the established formal (programming/certification) language
scheme of Homotopy Type Theory (HoTT).

• Certification: as such, QS introduces a previously missing method of formal verification of general classically
controlled quantum programs, e.g. it verifies quantum axioms such as the deferred measurement principle.

• Stabilization: in its higher sector, QS natively models hardware-level topologically stabilized quantum
computation such as by realistic anyonic braid gates, verifying their conformal field theoretic properties.

• Realization: in fact, QS naturally interfaces with the holographic quantum theory of topologically ordered
quantum materials that are thought to eventually provide topologically stabilized quantum hardware.

In developing these results we find a pleasant unification of quantum logic (linear types), epistemic modal
logic (possible worlds), quantum interpretations (many worlds), and twisted cohomology (parameterized spectra)
& motives (six-operations) – which may be of interest in itself. (“QS” stands both for “Quantum Systems
language” and for the sphere spectrum “QS0”.)

In companion articles [TQP][EoS], we further discuss topological quantum gates in and the categorical
semantics of LHoTT/QS.
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1 Introduction

We lay out an approach to a joint solution of the following open problems:

(I) The open problem of reliable quantum computing. While the hopes associated with quantum computing
(Lit. 2.1) are hard to overstate, experts are well-aware 1 that currently existing hard- and soft-ware paradigms are
unlikely to support the desired heavy-duty quantum computations beyond toy examples. The two fundamental
open problems that the field still faces are both rooted in the single most enigmatic and proverbial phenomenon
of quantum physics: the state collapse or decoherence phenomenon (Lit. 2.2), whereby the peculiar non-classical
properties of quantum systems on which rest the hopes of quantum computing are jeopardized by any measurement-
like interaction of the system’s environment. This means that scalably robust quantum computing requires:

(i) Topological hardware (Lit. 2.3) given by quantum materials whose registry-states are protected by an
“energy gap” from having any interaction with the environment below that range.

(ii) Verified software (Lit. 2.4) with compile-time certificates of correctness, since the traditional run-time
debugging of complex programs is impossible for quantum programs (causing collapse), while all the more
needed due to the complexity and intransparency of gate-level quantum circuits.

Both of these issues have been discussed separately, but the necessary combination has remained essentially
untouched until [TQP]; one will need a quantum programing language (Lit. 2.5) which is
(iii) certifiable and topological-hardware-aware, allowing the programmer to formally verify at compile-time

the correctness not (just) of high-level quantum programs, but of quantum circuits consisting of the peculiar
topological quantum gates that the topological quantum hardware actually provides.

For example, to state just the most immediate problem:

Topological quantum circuit compilation problem (Lit. 2.7).
Suppose a topologically ordered quantum material is finally developed which features su2-anyon states at
level ℓ, and given any quantum circuit written in the usual QBit-basis, then the quantum compilation
of this circuit onto the given hardware is the specification of a braid (an element of a braid group) such
that the holonomy of the suℓ2 Knizhnik-Zamolodchikov connection along the corresponding path in the
configuration space of defect points in the given quantum material may be conjugated onto the unitary
operator to which the quantum circuit evaluates, within a specified accuracy.

Here the relevant braids are humongous while having no recognizable resemblance to the quantum algorithm which
they are executing; for instance, a single CNOT gate (8) may compile to the following braid [HZBS07, Fig. 15]:

7→
CNOT gate

Hence future quantum programmers will anyways need (classical) computer assistance to compile their quantum
programs onto topological hardware. To make that intricate process fail-safe to reliably run on precious scarce
quantum resources, we need this computer algebra to be “aware” of the system specification and to certify its own
correctness relative to this specification.

And this is just for the simplest case of no classical control. The general problem is harder still:

The problem of certifying classical control. Even the most elementary quantum information protocols
involve mid-circuit measurement and classical control, such as in the quantum teleportation protocol (cf. §6.2):
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1[Sau17]: “small machines are unlikely to uncover truly macroscopic quantum phenomena, which have no classical analogs. This will
likely require a scalable approach to quantum computation. [...] based on [...] topological quantum computation (TQC) as envisioned
by Alexei Kitaev and Michael Freedman [...] The central idea of TQC is to encode qubits into states of topological phases of matter.
Qubits encoded in such states are expected to be topologically protected, or robust, against the ‘prying eyes’ of the environment, which
are believed to be the bane of conventional quantum computation.”

[DS22]: “The qubit systems we have today are a tremendous scientific achievement, but they take us no closer to having a quantum
computer that can solve a problem that anybody cares about. [...] What is missing is the breakthrough [...] bypassing quantum error
correction by using far-more-stable qubits, in an approach called topological quantum computing.”
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More importantly, beyond the cur-
rently available NISQ paradigm
(Lit. 2.8), serious quantum compu-
tation is expected (Lit. 2.9) to in-
volve a perpetual loop of classical
control operations on the quantum
computer (hybrid classical/quantum
computation). These are predomi-
nantly for quantum error correction
(§6.3) but also for purposes such
as repeat-until-success gates (§6.4)
– where subsequent quantum circuit
execution is classically conditioned
on run-time quantum measurement
results – also called “dynamic lift-
ing” (Lit. 2.9, namely of quantum
measurement results into the classi-
cal data register). This is schemati-
cally indicated on the right.

dynamic
lifting

d
ia
gr
a
m

ad
ap

te
d
fr
om

[N
P
W

07
,
F
ig
.
1]

Hence what is needed for reliable quantum computation is a certification language that knows about classical
data types and about linear/quantum data types and their dependency on classical data. This had been lacking:

The problem of embedded quantum languages.
Namely, for previous lack of a universal quantum pro-
gramming language, existing quantum circuit languages are
embedded into classical host languages ([RS20][GLRSV13]
[RPZ18][PZ19][HRHWH21][HRHLH21][ZBSLY23]) which
do not have native support for linear types (cf. Lit.
2.4) nor for classical control of quantum circuits. For in-
stance, basic protocol schemes such as quantum telepor-
tation (§6.2), quantum error correction (§6.3) or repeat-
until-success gates (§6.4) remain unverifiable with previous
technology.

Haskell, Coq, ...
Classical Type Theory

for universal classical computation

unverified linear type universe

QML, Quipper, QWIRE, ...
Quantum Circuit Language

for quantum logic cicuits

Solution by Linear Homotopy Type Theory. We argue here, as announced in [Sch22], that the novel type
theory LHoTT (§3) recently developed in [Ri22] (as anticipated in [Sch14b]) in extension of the classical language
scheme HoTT (Lit. 2.6) serves as the missing universal quantum programming/certification language. Our claim is
that LHoTT:

• Solves the old problem of constructing
combined classical/linear type theories
(cf. Lit. 2.4).

• Provides existing quantum program-
ming languages like Quipper with a
certification mechanism [Ri23].

• Natively supports quantum effects such
as dynamic lifting of run-time quantum
measurement (§4).

• Natively supports verification of realis-
tic topological quantum gates [TQP].

LHoTT

Linear Homotopy Type Theory
for universal quantum computation

HoTT

Homotopy Type Theory
for topological logic gates

QS

Quantum Systems Language
for quantum logic circuits

Topological Quantum Language

We argue that this makes LHoTT/QS the first comprehensive paradigm for serious quantum programming beyond
the NISQ area; see §7 for outlook.
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Concretely, LHoTT enhances the syntactic rules of classical HoTT by further
type formations which serve to exhibit every (homotopy) type E of the lan-
guage as secretly consisting of an underlying classical (intuitionistic) base
type B ≡ ♮E equipped, in a precise sense, with a microscopic (infinitesimal)
halo of linear/quantum data. As such, LHoTT may neatly be thought of as
the formal logical expression of a microscope that resolves quantum aspects
on structures that macroscopically appear classical. This way LHoTT embeds
quantum logic into classical logic in a way reminiscent of Bohr’s famous dic-
tum2that all quantum phenomena must be expressible in classical language.

Formally this is achieved by, first of all, adjoining to classical HoTT an ambidextrous modal operator ♮ [RFL21]
(an infinitesimal cohesive modality [Sch13, Def. 3.4.12, Prop. 4.1.9]), whose modal types (Lit. 2.14) are the purely
classical (ordinary) homotopy types, embedded bi-reflectively (92) among all data types (more in §3):
The presence of the ♮-modality exhibits general types
E : Type as microscopic/infinitesimal halos around
their underlying purely classical type ♮E : ClaType.
It is a profound fact (17) of∞-topos theory that mod-
els for such infinitesimal cohesion (see Lit. 2.10) are
provided by parameterized module spectra, in partic-
ular by flat∞-vector bundles (“∞-local systems”, see
[EoS]) which, in their 0-sector (Rem. 2.11), accommo-
date quantum circuit semantics (cf. §4.3) in indexed
sets of vector spaces (cf. §3.1) such as known from the
Proto-Quipper quantum language (Lit. 2.5).

bundles of linear
homotopy types

Type
e.g.
=

flat ∞-vector bundles
(∞-local systems)∫

X
sChX

K

purely classical
homotopy types ClaType

e.g.
=

{
X ∈ sSet-Grpd

}

♮
classical modality
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Linear homotopy theory as the organizing principle. Generally, our thesis (following [Sch14a][Sch14b][IHH])
is that the conceptual foundation not just of quantum computing but in fact of fundamental quantum physics
generally is in linear homotopy theory, by which we refer to what is alternatively known (Lit. 2.10):
• in algebraic topology as the indexed ∞-category of parameterized module spectra (cf. [EoS, Rem. 3.4.1]),
• in algebraic geometry essentially as the yoga of six operations on motives (cf. [EoS, pp. 41]),
• in higher topos theory as the theory of tangent ∞-toposes or Joyal loci,
• in cohomology theory as the subject of twisted generalized cohomology theory with its base change operations.
In the following we incrementally unwind what this means and how it relates to quantum systems and serves to
express quantum programming with topological effects.

(...)
HC-Linear quantum theory. In this scheme, conventional quantum information theory happens in the C-linear
form of linear homotopy theory (see [EoS]) where parameterized HC-module spectra are equivalent to flat ∞-
bundles of chain complexes, also known as ∞-local systems. Here the higher structure of chain complexes serves to
capture topological quantum effects [TQP], but in the 0-truncated sector these are just set-indexed complex vector
spaces of the form familiar from the categorical semantics of the quantum language Quipper; and much of our
discussion below focuses on laying out the structures in this 0-truncated C-linear sector in much detail, showing that
it is a streamlined and convenient context for traditional quantum information theory and for quantum computing
with classical control. At the same time, since all structures (such as quantum measurement effects) are encoded
modally/monadically, this discussion straightforwardly generalizes away from the C-linear 0-truncated sector.

(...)
KR-Linear quantum theory. However, besides the higher topological generalization it provides, linear homotopy
theory also exists beyond the C-linear sector, encompassing homotopy-theoretic enhancements of linear algebra once
known as brave new algebra, where the ground ring C is replaced by a ring spectrum representing a multiplicative
generalized cohomology theory. We had already argued in [SS23b] that the precise description of topologically
ordered phases of quantum materials requires linearity over the equivariant ring spectrum KR, but here (in §5) we
explain that, even more fundamentally, the probabilistic content of quantum theory emerges in KR-linear homotopy
theory. Practically this means, as we will explain, that our language LHoTT natively supports quantum circuits
not just of pure but also of mixed states (density matrices).

(...)

2[Bohr1949, pp. 209]: “however far the phenomena transcend the scope of classical physical explanation, the account of all evidence
must be expressed in classical terms”. For background and commentary see also [Sche73, p. 24].
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(II) The open problem of formalizing quantum epistemic logic. With the need for a universal and verifiable
quantum programming language established, the next open problem is that of language design, which here we mean
in a fundamental paradigmatic way:

Given that dependent type theory is the fundamental paradigm for certified programming in general (Lit. 2.4),
what makes it applicable to certification of quantum effects such as quantum measurement (Lit. 2.2)?

Notice here that a universal quantum programming language has to accurately reflect the logical content of
quantum physics, where the act of formulating a quantum program is as well that of recounting, in formalized
language, the physical process of its execution, including processes of quantum measurement and hence including
the curious nature of quantum epistemology. In this sense, we may claim that:

Finding a universal quantum programming language means finding a formal language for quantum epistemology.

The role of modal logic. Stated this way, we need not look much further for guidance on the matter, since the
formal language paradigm for dealing with questions of epistemology has long been understood to be modal logic
(Lit. 2.13), where the usual logical connectives are accompanied by formal expressions for qualified modes in which
propositions may hold, such as necessarily (□) or possibly (♢) namely (which is the perspective of relevance here:)
for all or any measurement outcome that may be obtained, or possible world w (as the modal logician says) that
one may find oneself in, one of the many worlds (as the quantum philosopher says):

Set of many possible worlds
(of measurement outcomes)

W : Set ,

W -dependent
proposition

P : PropW

yields that

⊢

“P holds necessarily”
(no matter the outcome/world)

□P ≡ ∀w P (w)
♢P ≡

“P holds possibly”
(for some outcome/world)

∃w P (w)


is a

:

W -independent
proposition

Prop ↪→ PropW (2)

If here we think of classical propositions as certain data types (namely of data that certifies their assertion),
then it is natural to generalize this from modal logic to modal type theory (Lit. 2.14) where we consider any
W -dependent data types:3

Type of many possible worlds
(of measurement outcomes)

W : Type ,

W -dependent
data type

D : TypeW

yields that

⊢

type of D-data for
every world/outcome

□D ≡
∏
w D(w)

♢D ≡
type of D-data

for any world/outcome

∐
w D(w)


is a

:

W -independent
data type

Type ↪→ TypeW (3)

Epistemic modal logic as Dependent type theory. Remarkably, in this more general form (3) the system
simplifies since this epistemic modal type theory is just plain dependent type theory with the W-dependent type
formation rules viewed not as adjoints but equivalently as (co)monadic modalities (Lit. 2.15, 2.14):

We observe in §4.1 that possible-world semantics for modal
logic (in its “S5” flavor with which we are concerned here)
is equivalently that induced by dependent type formation
along any context extension. Conversely, this means to ob-
serve (Rem. 4.1) that one may think of standard dependent
type theory as epistemic modal type theory with a univer-
sal system of epistemic modal operators indexed by types of
“many possible worlds” W : Type. From this perspective,
the tradition in formal logic to refer to the large type Type
of small types as the “universe” gains some vindication.

TypeW Type

♢
W

possibility modality

⊥

□
W

necessity modality

dependent “sum”∐
W

×W

∏
W

dependent product

⊥

⊥
(4)

While for classical intuitionistic type theory, this perspective may be of interest to the analytic philosopher
(see [Co20, Ch. 4]), we next claim that applied to linear dependent type theory the same perspective solves the
practical problem of formalized quantum epistemology relevant for universal quantum programming/certification:

3We write “
∐

w” for the (non-linear) type formation traditionally referred to as “dependent sum” and traditionally denoted “
∑

w”,
since the latter symbol is borrowed from linear algebra, an (unnecessary) abuse of notation that becomes untenable after our passage
from classical intuitionistic to actual linear dependent type theory.
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Quantum epistemic logic as Linear dependent type theory. The point is that in linear dependent type
theory LHoTT the situation (4) has an immediate analog ([Ri22, §2.4]) asW -dependent classical intuitionistic types
are replaced by W -dependent linear types (quantum data types): In this case and assuming W is finite (as it is
for any realistic quantum measurement) their linear/quantum nature makes the dependent (co)product adjoints
coincide (“ambidexterity”, Lit. 2.16) on the direct sum of linear types, this reflecting the superposition principle
of quantum physics:

W : FinClaType ⊢
Frobenius monad of

quantum epistemic logic
(§4.2) proves principles
as deferred measurement

(Prop. 4.16)

QuTypeW QuType

♢
W

linear possibility

≃

□
W

linear necessity

direct sum

⊕W

⊕W

direct sum

⊥

⊥

9W

linear randomness

≃

⃝
W

linear indefiniteness

Classical context ??
Frobenius monad
as in zxCalculus
gives effect-logic for
quantum gates §4.3

(5)This means equivalently that in the linear case the (co)monadic modal operators coincide, ♢
W
≃ □W

, 9W
≃ ⃝

W
,

to form a pair of Frobenius monads (cf. Prop. 4.14), reflecting the monadic nature of quantum measurement as
known from the zxCalculus (Lit. 2.16). It may be satisfactory to observe that the modal-logical expression of this
situation reflects Gell-Mann’s principle of quantum compulsion (cf: [Bu76, p. 31]: “In quantum physics anything
that is not forbidden [i.e, possible] is compulsory [i.e., necessary].”):

Finite classical type
of many possible worlds
(measurement outcomes)

W : FinClaType ,

W -dependent
quantum data type

D : QuTypeW

yields that

⊢

linear sum

⊕
w
Dw

♢D □D

∼

∼
the possible is necessary

principle of quantum compulsion
∼

is a

:

W -independent
quantum data type

QuType ↪→ QuTypeW (6)

We suggest thinking of this as a Yoneda-Lemma-type statement: The derivation of (5) is so elementary that it
borders on being tautological, and yet as an organizing principle for quantum effects we will find it to be ubiquitous,
for instance in implying the deferred measurement principle (Prop. 4.16) or the commuting diagram (7) below,
which arguably makes precise many words [Te98] written in the informal literature on the matter. This leads one
to wonder: Had history proceeded differently, could systematic development of combined modal and linear logic
have led pure logicians to discover the rules of quantum information theory independently of experimental input?

Formal logic of quantum measurement effects. Remarkably, unwinding the logical rules of this epistemic
quantum logic (6) reveals that it knows all about the state collapse after quantum measurement including formal
proof of its equivalence to branching into “many worlds” (Lit. 2.2):

The hexagon of quantum
epistemic entailments.
A commuting diagram (130)
of implications in the quan-
tum modal logic (4) for the
case of a QBit-measurement-
controlled quantum gate G• on
a quantum register of the form
H ≡ □BitH• = H0 ⊕H1

(e.g. H=H⊗QBit if Hi = H).

Classical
register

quantum
register H K

b : Bit ⊢ H ⊕ ⊕ K
H K

□Bit♢BitH• □Bit♢BitK•

□BitH• ♢BitK•

H• K•

b : Bit ⊢ H Hb Kb K∑
b′∈Bit

|ψ
b′ ⟩ |ψ

b
⟩ 7→ Gb|ψb

⟩

QBit-measurement
branching (pp. 70)

QBit-controlled
quantum gate

dynamic
lifting

G0 δb0P0

P1

⊕
G1

δb1

□Bit♢BitG•

quantum effects Everett-style
obt□Bit♢

BitK•□Bit

(
ret

♢Bit

H•

)

obt□BitH•

classically controlled
quantum computing cycle

G•

quantum effects Copenhagen-style
ret

♢Bit

K•

Gb

7→

QBit-measurement
collapse (pp. 67 )

quantum gate conditioned
on classical control logic

dynamic
QBit-state
preparation

(7)

Moreover, the (co)monadic formalization of quantum measurement in the zxCalculus (Lit. 2.16) derives from
this formulation (cf. Prop. 4.14, Rem. 4.18). Using standard translation (Lit. 2.15) of such (co)monadic effects
into programming language constructs yields (in §6) a quantum certification language QS embedded in LHoTT.
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(III) The open problem of strongly-correlated quantum materials. Interestingly, these fundamental
theoretical problems at the foundations of quantum computing closely relate to a glaring open problem in condensed
matter and quantum field theory (Lit. ...):

Namely in asking for topological-hardware-aware quantum languages, we are effectively asking for a formal
language of topologically ordered phases of matter (Lit. ...). But since these are strongly interacting (strongly-
correlated) quantum systems, they tend to fall outside the established scope of what traditional perturbativemethods
of quantum field theory apply to. The problem of understanding non-perturbative strongly-coupled quantum
systems is a general one, which is might be most famous for its guise of the confinement problem in elementary
particle physics, where it has been pronounced a mathematical Millennium Problem by the Clay Mathematics
Institute.

It may seem overambitious that in a treatise on quantum programming, we should have anything to say about
problems in quantum field theory, but we offer the inclined reader an argument (exposition in [IHH], more details
in [SS23b, Rem. 2.6][SS23a]) that the solutions to these fundamental problems share a common root in linear
homotopy theory (in the sense of p. 5) and as such lend themselves to formulation in LHoTT.

(...)
Certainly no background from [IHH] is assumed here, but the reader familiar with this angle of fundamental

physics may understand the present discussion as comprehensively expanding on the general picture of quantum
theory used there.

(...)

Outline:
§3 on the linear type system and its formalization in LHoTT,
§4 on the induced monadic quantum (measurement) effects,
§5 on generalization to mixed states and quantum probability,
§6 on pseudocode for an embedded quantum language QS.
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2 Background

This section provides background information and pointers to the literature on various subjects referred to in the
main text. All items here are separately well-known to their respective experts but not always easy to comprehen-
sively glean from the literature. We pause at times to point out the remaining gaps that we address in the main
text. The reader may or may not want to read this section linearly; we will refer back to here as the need arises.

Literature 2.1 (Quantum computation and Quantum information processing).
The basic idea of quantum computation and quantum information processing is to exploit, for the purpose of machine
computation and information processing, the peculiar laws of quantum physics (Lit. 2.2) – which are obeyed by
undisturbed (Lit. 2.3) microscopic systems.

The general idea of quantum computation was originally articulated by Yuri Manin [Ma80][Ma00], Paul Benioff
[Be80], and Richard Feynman [Fey82][Fey86], brought into shape by David Deutsch [De89], shown to be potentially
of dramatic practical relevance by Peter Shor and others [Sh94][Si97]... if sufficient quantum coherence could be
technologically retained (cf. Lit. 2.3), which has so far been achieved only marginally (Lit. 2.8).

Textbook accounts of the general principles of quantum computation and quantum information theory include:
[NC10][RP11][BCR18][BEZ20]. Impressions of the state of the field may be found in [Pr22]. An exposition leading
up to the following discussion may be found in [Sch22].

The idea of quantum gates. It is a stan-
dard concept in computer science to speak of logic
gates (e.g. [GMSW21, §1]) for operations on clas-
sical memory/registers (typically but not necessar-
ily on a set of “bits”, hence of Boolean “truth val-
ues”, whence the name) – where the terminology sug-
gests but need not imply that this is an elementary
operation performed by some computing machine
under consideration. The evident analog in quan-
tum computation (Lit. 2.1) is that of quantum logic
gates ([Fey86][De89][BBCDMSSSW95], often called
just “quantum gates”, for short) which are linear
maps acting on some quantum memory/registers –
typically imagined to be constituted by “qbits” (66).
In classically controlled quantum computation (Lit.
2.9) one is dealing with classically controlled quan-
tum gates (e.g. [NC10, §4.3]) that read/write a com-
bination of classical and quantum data.

GATE
...

...n
in

Input
registers

n
out

Output
registers

Bit×
nin

Bit×
nout

Logic gate {0, 1} × · · · × {0, 1}︸ ︷︷ ︸
set of

tuples of
nin bits

{0, 1} × · · · × {0, 1}︸ ︷︷ ︸
set of

tuples of
nout bits

QBit⊗
nin

QBit⊗
nout

Quantum
logic gate

C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
Hilbert space of

tensor products of
nin qbits

C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
Hilbert space of

tensor products of
nout qbits

Boolean function

(unitary)
linear map

A basic example of a (controlled, quantum) logic gate is the controlled NOT gate [De89, Fig. 2] (CNOT for short, cf.
[NC10, §1.3.2]) which operates on a pair of (q)bits by inverting the second conditioned on the first; see figure (8).

Quantum measurement gates. One also wants to regard the oper-
ation of quantum measurement itself (Lit. 2.2) as a quantum gate (e.g.
[NC10, p. xxv]), whose input is quantum data but whose output is the
classical measurement result.

QW W
0 1

Notice that the proper data-typing (Lit. 2.4) of a quantum measurement gate is more subtle than that of an
ordinary logic gate, since the actual measurement outcome is not determined by the gate’s input data (and hence
not knowable at “compile time” of a quantum program) but is a fundamentally indefinite result, more akin to
operations otherwise considered in the field of (classical but) nondeterministic computation (e.g. [Sip12, §1.2]).

Beware that this is not a side issue but part of the crux of quantum computation: On the one hand, the
stochastic nature of quantum measurement is a fundamental principle of physics (certainly of presently accessible
physics, see Lit. 2.2) and not just a reflection of incomplete knowledge about a quantum system (in contrast
to, for instance, the case of classical thermodynamics). Moreover, state collapse under quantum measurement is
not just a subjective update of expected probabilities, in that it objectively serves as an operational logic gate in
quantum computations (such as in quantum teleportation §6.2 and quantum error correction §6.3), to the extent
that any quantum computation may be realized by exclusively using (quantum state preparation and) quantum
measurement gates (known as “measurement-based quantum computation”; cf. [Nie03][BBDRV09][Wei21]).

We discover a natural way for dealing with formal typing of quantum measurement below in §4.3.
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Controlled NOT gate
(reversible XOR gate)

Bit2 Bit2

{0, 1} × {0, 1} {0, 1} × {0, 1}

Quantumly controlled
quantum NOT gate

QBit⊗
2

QBit⊗
2

C2 ⊗ C2 C2 ⊗ C2

Classically controlled
quantum NOT gate

Bit×QBit Bit×QBit

{0, 1} × C2 {0, 1} × C2

(b1, b2) 7−→
(
b1,

if b1 then ¬ b2
else b2

)

=
(
b1, b1 xor b2

)
(0,0) 7→ (0,0)
(0,1) 7→ (0,1)
(1,0) 7→ (1,1)
(1,1) 7→ (1,0)

∑
b1,b2

q
b1,b2

|b1⟩⊗|b2⟩ 7−→
∑

b1,b2

q
b1,b2

|b1⟩⊗|b1 xor b2⟩

|0⟩⊗|0⟩ 7→ |0⟩⊗|0⟩
|0⟩⊗|1⟩ 7→ |0⟩⊗|1⟩
|1⟩⊗|0⟩ 7→ |1⟩⊗|1⟩
|1⟩⊗|1⟩ 7→ |1⟩⊗|0⟩

(
b1,
∑
b2

q
b2
|b2⟩

)
7−→

(
b1,
∑
b2

q
b2
|b1xorb2⟩

)

(0,|0⟩) 7→ (0,|0⟩)
(0,|1⟩) 7→ (0,|1⟩)
(1,|0⟩) 7→ (1,|1⟩)
(1,|1⟩) 7→ (1,|0⟩)

(8)

Deferred measurement principle. Since quantum measurement turns quantum data into classical data, it
intertwines quantum control with classical control. Concretely, a statement known as the deferred measurement
principle asserts that any quantum circuit containing intermediate (mid-circuit) quantum measurement gates fol-
lowed by gates conditioned on the measurement outcome is equivalent to a circuit where all measurements are
“deferred” to the last step of the computation

B0 1

F

G

deferred
measurement

principle←−−−−−−−−−−−−→

B0 1

F

G
(9)

(In the practice of quantum computation this principle can be used to optimize quantum circuit design. More
philosophically, it is interesting to notice that the issue of epistemological puzzlement in quantum interpretations,
Lit. 2.2, can always be thought of as postponed indefinitely.)

The theoretical status of the deferred measurement principle had remained somewhat inconclusive. Available
textbooks (e.g. [NC10, §4.4]) and numerous authors following them are content with inspecting a couple of examples
while leaving it open what precisely the principle should state in generality, a situation recently criticized in [GB22a,
§1]. A more precise form of the deferred measurement principle is briefly indicated in [Sta15, p. 6] and proposed
there as an “axiom” of quantum computation. We prove below (Prop. 4.16) that the deferred measurement
principle (9) is verified in the data-typing of quantum processes provided in LHoTT.

Notice that the content of this equivalence between intermediate and deferred measurement collapse (9) is not
trivial without a good formalization; in fact it has historically been perceived as a paradox, namely this is essentially
the paradox of “Schrödinger’s cat” (where the cat plays the role of the intermediate controlled quantum gate).
Moreover, the same paradox, in different words, was influentially offered in [Ev57a, pp. 4] as the main argument
against the “Copenhagen interpretation” and for the “many-worlds interpretation” of quantum physics (cf. Lit.
2.2). Note that our same formalism which proves (9) also proves the equivalence (7) of these two “interpretations”.
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qRAM Models. Classical computing in its familiar universal form is based, in one way or another, on the model
of a Random Access Memory (“RAM”, cf. (36) below), abstracted as a Mealy machine [Me55]:

read-in RAM
& input data

RAM×D RAM×D′ write RAM
& output data

program interacting with
Random Access Memory

(10)

Starting with [Kn96], authors envisioned that quantum computing should similarly support a “qRAM model”
[GLM08a][GLM08b], the basic idea being that data in qRAMmay form quantum superpositions and may coherently
be read/written in this form. As with the deferred measurement principle above, existing literature discusses this
concept not in general abstraction but by way of concrete examples (see for instance [Ar+15, Fig. 9][PPR19, Fig.
1][PCG23, Fig. 4]4). From these one gathers that a quantum circuit of nominal type H → K but with access to a
qRAM Hilbert space QRAM is de facto a quantum circuit of this form (a “circuit-based qRAM” [PPR19]):

read-in qRAM
entangled with

input quantum data
QRAM⊗H QRAM⊗H′

write qRAM
entangled with

output quantum data

quantum program
interacting with qRAM

(11)

In §4.3 we obtain (149) a formalized account/typing of qRAM and its equivalence to controlled quantum circuits.

Literature 2.2 (Epistemology of quantum physics and its formalization). The curious epistemology5

of quantum physics occupied already the founding fathers of quantum theory [EPR35][Bohr1949] and the philo-
sophical attitudes towards them were eventually canonized as interpretations of quantum physics [Me73][Sche73].
Later experimental advances in quantum physics only verified the nature of the theory and thus reinforced the
epistemological puzzlement [GRZ99].

Quantum measurement. Concretely, the core issue is that what otherwise appears to be the epistemologically
complete state of a quantum system – traditionally denoted “|ψ⟩”, being an element of some Hilbert space H –
determines in general only the probability of which measurement outcome w :W (which “world”) will be observed
upon measuring a given property of the system, while only right after the observation of a given w the quantum
state appears to have “collapsed” along its linear projection onto a subspace of states with definite property w
([vonNeumann1932, §III.3, §VI][Lü51], cf. [Sche73, §IV][Om94, pp. 82][Re22, (A.2)]):

Hw1

space of quantum states
with definite property w1Hilbert space of all

quantum states
of the given system

H ≃ □W
H• ≡

direct sum decomposition
in measurement basis W

⊕
w′:W
H

w′

Hwn

space of quantum states
with definite property wn

...

linear projectio
n

linear projection

(12)

To some extent this “state collapse” is formally just as expected (cf. [Ku05, §1.2][Yu12]) in a classical but prob-
abilistic theory, where measurement of a random variable leads one to adjust the subjectively expected probability
distribution according to Bayes’ Law for updating conditional probabilities — except that Kochen-Specker-Bell
theorems (e.g. [CS78][Ku05, §1.6.2][Mo19, §5.1.2]) show that (under very mild assumptions) generally no actual
classical probability distribution can underlie a pure quantum state, hence that quantum states are not just a
stochastic approximation to a more fundamental classical reality (cf. [Sche73, p. 140]).

Moreover, it seems untenable to regard the “state collapse” as just a subjective adjustment of expectation,
since it is an operational component of experimentally realizable quantum communication protocols (cf. Lit. 2.1
and §4.3, such as in the quantum teleportation protocol recalled in §6.2); so much so that there is a paradigm of
measurement-only quantum computation (cf. [Nie03][BBDRV09][Wei21]) where the computational process consists
entirely of a sequence of such measurement-induced state collapses — in this practical sense the state collapse (12)
is an objective reality.

Quantum epistemologies. The debates on what to make of the situation continue to this day (from the vast
literature, see for instance [Om94][Bo08]), whence practicing physicists tend to just disregard the epistemological
issue, an attitude that became proverbial under the catch-phrase “shut up and calculate” [Me89].
Among the main attitudes of quantum philosophers towards the issues are:

4A transparent example is discussed at https://quantumcomputinguk.org/tutorials/implementing-qram-in-qiskit-with-code
5Here “epistemology” – the theory of kowledge – refers to what can in principle (cf. [Fi07, p. 121]) be known about the (quantum)

universe or any model or part of it, say about a given (quantum) computing machine, which in practice concerns the question of what
can in principle be computed with a given quantum protocol, all imperfections of experiments and of experimenters disregarded.
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• Copenhagen epistemology: Quantum/classical divide. The original “Copenhagen interpretation” (e.g.
[Pr83, p. 99][Om94, p. 85]) pronounces a conceptual frontier or divide between quantum objects and their clas-
sical observers according to which recognizable result of any quantum measurement are, and must be reasoned
about as, classical states.

• Everett’s epistemology: Branching into Many worlds. An increasingly popular “many-worlds interpre-
tation” (following H. Everett [Ev57a][Ev57b][dWG73]) rejects a separate classical component of quantum theory
and instead asserts (informally and hence ambiguously, cf. [Te98]) both that the quantum state does never “re-
ally” collapse and at the same time that the universe successively “branches” into “many-worlds” inside which
it nonetheless “appears” to observers to have collapsed in all possible ways.

The reader uneasy with making sense of any of this we invite to §4, where we present a modal quantum logic
(cf. Lit. 2.13) which arguably makes precise these two epistemological attitudes and as such allows to prove
their equivalence, cf. (7). In particular, the perceived paradox which Everett offers [Ev57a, pp. 4] to dismiss the
Copenhagen interpretation and to motivate the “many-worlds” interpretation is arguably resolved by the deferred
measurement principle (9), which becomes provable in quantum modal logic (Prop. 4.16).

Many possible worlds. Previously, several authors (e.g. [Bu76][Sk76, §III][Ta00, p. 101][No02, p. 22][Gi03,
§8][Ter19][Wi20][AA22]) have vaguely wondered about or suggested a relation between these “many worlds” of
quantum epistemology and the “possible worlds” in the sense classical modal logic (Lit. 2.13) but no formalized
such discussion has previously been proposed. In particular, no previous author has considered this question with
respect to a linear modal logic (cf. Lit. 2.4). (Beware that philosophers also speak of a modal interpretation of
quantum mechanics6 which shares some similarity in vocabulary but does not refer either to modal logic nor to
many-worlds.)

The need for formalization. Indeed, in the time-honored spirit of Galileo, Kant, Hilbert, Wigner (“The book of
nature is written in the language of mathematics.”) one may have suspected that the fault causing epistemological
troubles is not with quantum theory itself, but with speaking about it in ordinary informal language (Bohr 1920:
“When it comes to atoms, language can only be used as in poetry.”), whence their resolution lies instead in adopting
a mathematical language of non-classical formal logic more appropriate for expressing microscopic quantum reality.
In fact, a universal quantum programming language should essentially be just such a formal language, and in
formulating it we do need to find a way to formally reflect the phenomenon of quantum measurement:

The verified programming of a quantum algorithm
is the act of accurately recounting in formalized language

the physical quantum process that executes it, and conversely.

It is towards this practical goal that here we care about quantum epistemology and may explain why we have
more to say about quantum physics beyond quantum computation

Bohr toposes. Another proposal in the direction of formalized quantum epistemology may be recognized in
[AC95] (in parallel and independently to the development of quantum/linear logic, Lit. 2.4). A variant of this
proposal that gained some popularity is to use the internal logic of canonically ringed (co)presheaf toposes over the
site of commutative subalgebras of a given C∗-algebra of quantum observables (“Bohr toposes”, following ideas of
[BHI98], for review see [Nui12][La17, §12]). The achievement of this approach is to show that the step from classi-
cal/commutative to quantum/noncommutative probability theory (of which a good account is in [Gl09][Gl11]) may
be understood as the logical internalization of the classical axioms into a Bohr topos [HLS02]. While conceptually
quite satisfactory, the practical relevance of this perspective has arguably remained elusive. In particular, it does
not readily translate to a formal quantum (programming) language.

The approach which we take below is also ultimately (higher) topos-theoretic but otherwise rather complemen-
tary to Bohr toposes. In fact, one may understand Bohr toposes as formalizing the Heisenberg picture of quantum
physics – where conceptual primacy is given to the algebras of quantum observables – while here we are concerned
with the equivalent but “dual” Schrödinger picture where the primary concept is the spaces of quantum states:
These being exactly the linear types that give this article its title. We indicate the connection to algebras of
observables below in §5 but a detailed discussion needs to be given elsewhere.

Literature 2.3 (Topological quantum computation).
(For extensive motivation, explanation and referencing of topological quantum computation see the companion
article [TQP].) The practical promise of quantum computation (Lit. 2.1) hinges on the achievability of fairly

6Cf. plato.stanford.edu/entries/qm-modal
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undisturbed quantum processors which are sufficiently robust against the inevitable interaction with their environ-
ment. There are essentially two approaches toward robust quantum computation:

(i) Quantum error correction: Operate on error-prone quantum hardware, but with software that implements
enough redundancy to allow reading intended signals out of noisy background (cf. §6.3).

(ii) Topological error protection: Operate on intrinsically stable quantum hardware which prevents errors
from occurring in the first place.

In all likelihood, the eventual practice will be a combination of both approaches, since topological hardware error-
protection achievable in the laboratory will itself have imperfections. Conversely, some quantum-error correction
algorithms essentially consist of simulating topological quantum hardware on non-topological hardware, e.g. [Iq+23].
However, the peculiarities of topological quantum gates had previously no genuine representation in quantum
programming languages and were principally un-verifiable (cf. Lit. 2.4) until we argued, in the companion article
[TQP], that realistic topological quantum gates are naturally modeled by homotopy typed languages (Lit. 2.6), such
as classical HoTT and, more accurately, by LHoTT (§3).

Literature 2.4 (Formal (quantum) software verification and dependent (linear) data typing).
(For extensive exposition and referencing of the classical case see the companion article [TQP].)
The benefit or even necessity of formal software verification methods [CC09][Me11] (often abbreviated to just
“formal methods”, cf. [WLBF09]) — hence of computer-checked proof at compile-time of correct behavior of critical
software — is evident [HN19] and as such increasingly of interest for instance to the crypto-reliant industry (e.g.
[Hed18][VYC22][Qu23]) and the military (e.g. MURI:FA95501510053). Nevertheless, in less critical applications
of classical computation the overhead associated with formal verification is still widely traded for the possibility of
incrementally de-bugging faulty software during application.

Need for verification of quantum programs. However, such run-time debugging is no longer a sustainable op-
tion when it comes to serious quantum computation, due ([VRSAS15, p. 6][FHTZ15][Ra18]7[YF18][MZD20][YF21])
to its:

• drastically higher complexity,
• drastically higher run-time cost,
• impossibility of run-time inspection.

The last point is the fundamental one, enforced by the quantum laws of nature (state collapse under measurement,
Lit. 2.2), but the other two points will in practice be no less forbidding.

Accepting the need for (quantum) software verification, its implementation of choice is by data typing (which
for quantum data means “dependent linear typing” discussed in §3):

Formal verification by data typing. A profound confluence of computer science and pure mathematics occurs
with the observation [ML82] that formal software verification is not only amenable to constructive mathematical
proof but fundamentally equivalent to it – every constructive mathematical proof may be understood as pseudocode
for a program whose output is data of the type of certificates of the truth of the given statement, a profound
tautology known as the BHK (Brouwer–Heyting–Kolmogorov) correspondence, or similar.

Accordingly, formal verification/proof languages are (dependently) typed in that every piece of data they handle
has assigned a precise data type which provides the strict specification that data has to meet in order to qualify
as input or output of that type ([ML82][Th91][St93][Lu94][Gu95][Co11][Ha16]). The abstract theory of such data
typing is known as (dependent-)type theory and the modern flavor relevant here is often called Martin-Löf type
theory in honor of [ML71][ML75][ML84]; for more elaboration and introduction see also [Ho97][UFP13].

Once this typing principle is adhered to, the distinction vanishes between writing a program and verifying its
correctness. Moreover, such a properly typed functional program may equivalently be understood as a mathematical
object, namely as a mathematical function (13) from the “space” of data of its input type to that of its output

7[Ra18, p. iv]: “We argue that quantum programs demand machine-checkable proofs of correctness. We justify this on the basis
of the complexity of programs manipulating quantum states, the expense of running quantum programs, and the inapplicability of
traditional debugging techniques to programs whose states cannot be examined. [...] Quantum programs are tremendously difficult to
understand and implement, almost guaranteeing that they will have bugs. And traditional approaches to debugging will not help us:
We cannot set breakpoints and look at our qubits without collapsing the quantum state. Even techniques like unit tests and random
testing will be impossible to run on classical machines and too expensive to run on quantum computers – and failed tests are unlikely
to be informative. [...] Thesis Statement: Quantum programming is not only amenable to formal verification: it demands it.”

13

https://app.dimensions.ai/details/grant/grant.7081074


type — called its denotational semantics (a seminal idea due to [Sc70][ScSt71]; for exposition see [SK95, §9]):

Syntax Semantics

fla
gs

γ:Γ,
inp

ut

i:I ⊢
ou

tp
ut

pγ(i) : O
do

main

Γ× I
co
do

main

O⊢pprogram function

(13)

For classical8 data types the inference rules by which such program/function declaration may proceed equip
the type universe with the structure of a Cartesian closed category [LS86, §I], whence one also speaks of categorical
semantics (see [Ja98][Ja93]). Here the inference rules for the classical logical conjunction “×”, hence for the
Cartesian product, subsume the basic “structural rules” called the contraction rule and the weakening rule (e.g.
[Ja94][Ja98, p. 122][UFP13, §A.2.2][Rij18, §1.4]), which semantically express the possibility of duplicating and of
discarding classical data:

st
ru

c
tu

ra
l
in
fe
re

n
c
e
ru

le
s

fo
r
c
la
ss
ic
a
l
d
a
ta

ty
p
e
s

Syntax Semantics

C
Γ, p1:P, p2:P ⊢ tp1,p2 : T

Γ, p:P ⊢ tp,p : T

Γ× P × P T

Γ× P Γ× P × P T

⊢t

idΓ×diagP
⊢t

Contraction rule Diagonal (cloning)

W
Γ ⊢ P : Type Γ ⊢ t : T

Γ, P ⊢ t : T

Γ T

Γ× P Γ T

⊢t

prΓ ⊢t

Weakening rule Projection (deletion)

(14)

The quest for quantum data typing was historically convoluted (starting with the much debated quantum
logic of [BvN36]) but is, in hindsight, fairly straightforward: Since the hallmark of coherent quantum evolution is
(see [Ab09] for a structural account) the pair of:

• the no-cloning theorem ([WZ], saying that quantum data cannot be systematically duplicated),
• the no-deletion theorem ([PB00], saying that quantum data cannot be systematically discarded),

it follows that a program handling purely quantum data types must not use the structural rules (14) for the logical
conjunction of quantum data, which is then called the (non-Cartesian) tensor product ⊗. It is this removal of
structural inference rules (“sub-structural logic”) which frees the tensor product of quantum data types from only
consisting of pairs of data and hence allows for the hallmark phenomenon of quantum entanglement.

Such sub-structural languages were essentially introduced in (the “multiplicative fragment” of) the linear logic
(see [Se89][MN13]) of [Gir87] (who was apparently vaguely aware of potential application to quantum logic,
cf. [Gir87, p. 7]). These languages were then suggested as expressing quantum processes in [Ye90][Pr92] and
were more fully understood as quantum (programming) languages (Lit. 2.5) with linear types in [Val04][SV05]
[AD06][Du06][SV09]. Notice that the adjective “linear” here refers to the preservation of the number of type fac-
tors in the absence of the structural rules (14), which implies that functions f : X → Y between linear types must
indeed use their argument x : X linearly, in the algebraic sense.

Quantum Phenomena Linear Type Inference

No-cloning theorem Absence of contraction rule

No-deleting theorem Absence of weakening rule

(15)

This resulting principle that
Quantum data has linear type.

has meanwhile come to be more commonly appreciated (e.g. [DLF12, pp. 1]) in particular in quantum language
design (Lit. 2.5, [FKS20]):

8Here by classical types we mean the types of intuitionistic Martin-Löf type theory in contrast to linear (quantum) types (15), but
not in the sense of “classical logic”: Classical types in our sense are not quantum in that they are subject to the structural inference
rules (14) but they are still constructive in that they are not (necessarily) subjected to the law of excluded middle and/or the axiom
of choice (which distinguish classical logic from constructive logic).
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[Sta15]: A quantum programming language captures the ideas of quantum computation in a linear type theory.

Bunched classical/quantum type theory and EPR phenomena. And yet, a comprehensive programming
language implementing such linear type theories of combined classical and quantum data had remained elusive all
along: The type-theoretic subtlety here is that with the classical conjunction (×) being accompanied by a linear
multiplicative conjunction (⊗), then contexts on which terms and their types should depend are no longer just
linear lists of (dependent) classical products

Γ1 × Γ2 × · · · × Γn
a classical type-context
(tuples of classical data)

but may be nested (“bunched”) such products, alternating with linear multiplicative conjunctions to form tree-
structured expressions like this example:

Γ1 ×
(
Γ2 ⊗ (Γ3 × Γ4)

)
× (Γ5 ⊗ Γ6)× (Γ7 ⊗ Γ8 ⊗ Γ9)

a mixed classical/quantum type-context
(tuples of classical data mixed with entangled quantum data)

.

While the idea of formulating such “bunched” type theories is not new [OP99][Py02][O’H03], its implementation has
turned out to be tricky and the results unsatisfactory; see [Py08, §13.6][Ri22, p. 19]. The claim of the type theory
introduced in [Ri22] is to have finally resolved this long-standing issue of formulating “bunched linear dependent
type theory”. Here we understand this as saying that a verifiable universal quantum programming language now
exists (LHoTT, §3).

To put this into perspective it may be noteworthy that the root of this subtlety resolved by LHoTT corresponds
to the hallmark phenomenon of quantum physics which famously puzzled the subject’s founding fathers (Lit. 2.2),
namely the conditioning of physics on entangled quantum states (known as the EPR phenomenon, e.g. [Sel88]):

Under the correspondence between dependent lin-
ear type theory and quantum information theory,
the existence of bunched typing contexts involving
linearly multiplicative conjunctions ⊗ corresponds
to the conditioning of protocols on entangled quan-
tum states and hence to what in quantum physics
are known as EPR phenomena.

Bunched logic EPR phenomena

Typing contexts built via
multiplicative conjunction (⊗)

Physics conditioned on
entangled quantum states

Exponential modality. In previous lack of a classically-dependent linear type theory, the strategy for recovering
classical logic among a linear (quantum) type system was to postulate a modal operator (Lit. 2.13) on the linear
type system – traditionally denoted “!” [Gir87] and (sometimes) called the exponential modality – where a linear
type of the form !H may be thought of (cf. Rem. 3.9 below) as behaving like the linear span of the underlying set
of a linear space H, thus giving the linear type system a kind of access to this underlying classical type. Eventually
it came to be appreciated (cf. [Me09, p. 36]) that the exponential modality should (this is due to [Se89, §2] and
[dP89][BBdP92, §8][BBdPH92]) be axiomatized as a comonad (cf. Lit. 2.15) and specifically as a comonad induced
by a suitably monoidal adjunction between linear and classical (intuitionistic) types (due to [Bi94, pp. 157][Be95])

ClaType QuType

purely
classical

(intuitionistic)
types

purely
quantum
(linear)
types

Q
quantization

C
classicization

⊥ ! exponential modality

(16)

Traditionally, inference rules for such an exponential modality need to be adjoined to plain (non-dependent) linear
type theories, which is laborious and not without subtleties ([Gir93][Wa93][Be95][Ba96]). In contrast, in Prop. 3.8
we obtain (cf. [Ri22, Prop. 2.1.31]) an exponential modality from the basic type inference provided by a dependent
linear type theory like LHoTT, a possibility first highlighted in [PS12, Ex. 4.2][Sch14b, §4.2].
Full verification: Towards identity types. Either way, (linear) data-typing in general serves to impose and
verify consistency constraints on (quantum) data. But for a fine-grained certification of program behaviour by
equational constraints — eg. for certifying correctness of quantum teleportation protocols (cf. Rem. 6.2) or of
quantum error corrections (cf. Rem. 6.3) — one specifically needs certificates of identification types (colloquially:
“identity types”), certifying the (operational) equality of pairs of data of a given type.

But the correct formal treatment of data types of identifications turns out to be surprisingly subtle, which may
be one reason why none of the previously existing quantum programming languages provide such identity types —
and this includes the typed functional languages QML and Proto-Quipper, cf. Lit. 2.5. Namely, once identifications
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of any data pairs d, d′ : D are promoted to data of identification type p : IdD(d, d
′) (“propositional equality”), the

same principle applies to pairs p, p′ : IdD(d d
′) of these certificates themselves, whose verifiable identification now

requires data of iterated identification type Id
Id

D
(d,d′)(d, d

′) — and so on. The proper handling of this phenomenon

requires and leads homotopy types of data provided by classical HoTT and its linear form LHoTT, see the discussion
in Lit. 2.6.

Literature 2.5 (Quantum programming languages). The idea of quantum programming languages was first
systematically expressed in [Kn96], early proposals for formalization (via a kind of linear types, Lit. 2.3) are due
to [Se04][Val04][SV05][SV09]. Exposition of the need and relevance of quantum programming languages (which
was not originally obvious to the community, cf. the historical lead-in to [Se16]) specifically for quantum/classical
hybrid computation, may be found in [VRSAS15]. Based on these early developments (and besides a multitude of
quantum circuit languages that now exist for programming the available NISQ machines, Lit. 2.8), currently there
exists essentially one quantum programming language with universal ambition: Quipper9 [GLRSV13][GLRSV13]
(for exposition see [Se16]). In its formalized fragment called “Proto-Quipper” [Ro15, §8][RS18, §4.3] this language
may be understood as involving a kind of dependent linear types, Lit. 2.4) with semantics in categories of indexed
sets of linear objects ([RS18][FKS20][Lee22][Ri21]), notably in indexed sets of (complex) vector spaces, of the same
kind as that in (3) we discuss as semantics for the 0-fragment (Rem. 2.11) of LHoTT.

Literature 2.6 (Homotopically typed languages). (For more extensive review of this point see the companion
article [TQP].)
An operation on data so fundamental and commonplace that it is easily taken for granted is the identification of a
pair of data with each other. But taking the idea of program verification by data typing (Lit. 2.4) seriously leads
to consideration also of certificates of identification of pairs of data of any given type which thus must themselves
be data of “identification type” [ML75, §1.7].

Trivial as this may superficially seem, something profound emerges with such “thoroughly typed” programming
languages (the technical term is: intensional type theories (see [St93, p. 4, 13][Ho95, p. 16]) in that now given a pair
of such identification certificates the same logic applies to these and leads to the consideration of identifications-of-
identifications (first amplified in [HS98]), and so on to higher identifications, ad infinitum.

Remarkably, the “denotational semantics” (Lit. 2.4) of data types equipped with such towers of identification
types, hence the corresponding pure mathematics, is ([AW09][Aw12], exposition in [Sh12][Ri22]) just that of abstract
homotopy theory (Lit. 2.10) where identification types are interpreted (??) as path spaces and higher-order
identifications correspond to higher-order homotopies. One also expresses this state of affairs, somewhat vaguely,
by saying that HoTT has semantics in homotopy theory, and conversely that HoTT is a syntax for homotopy theory
– we have reviewed this dictionary in [TQP, §5.1].

Ever since this has been understood, the traditional (“intuitionistic Martin-Löf”-)type theory of [ML75][NPS90]
has essentially come to be known as homotopy type theory (HoTT) – specifically so if accompanied by one further
“univalence” axiom10 (for more on this see the companion article around [TQP, (105)]) which enforces that iden-
tification of data types themselves coincides with their operational equivalence (exposition in [Ac11]).

The standard textbook account for “informal” (human-readable) HoTTis [UFP13], exposition may be found in
[BLL13], gentle introduction in [Rij18][Rij23] (the former more extensive); and see the companion article [TQP],
Section 5. Available software that runs homotopically typed programs includes Agda11 and Coq12.

Literature 2.7 (Topological quantum compilation.). Once serious quantum computation hardware (Lit. 2.3)
becomes available, a central effort in quantum computation (Lit. 2.1) concerns quantum compilation [MMRP21],
namely in translating high-level quantum algorithms into sequences (circuits) of logic gate operations which the
hardware actually implements. The seminal Solovay-Kitaev theorem ([NC10, App. 3][DN06]) guarantees, under
rather mild assumptions on the available gate set, that such a compilation is always possible, but optimization for
scarce runtime resources requires considerable effort.

The problem of quantum computation is particularly demanding for topological quantum computation (Lit.
2.3), hence in the case of topological quantum compilation (e.g. [HZBS07][Br14][KBS14]), since here the available
gate logic is far remote from then QBit-based operations (8) in which high-level quantum algorithms are conceived.
No attempt seems to previously have been made toward formally verifying a topological quantum compilation, and
indeed the problem is not captured by classical verification strategies. Notice that:

9Landing page: www.mathstat.dal.ca/∼selinger/quipper
10 The univalence axiom is widely attributed to [Vo10], but the idea (under a different name) is actually due to [HS98, §5.4],

there however formulated with respect to a subtly incorrect type of equivalences (as later shown in [UFP13, Thm. 4.1.3]). The new
contribution of [Vo10, p. 8, 10] was a good definition of the types of (“weak”) equivalences between types.

11 Agda landing page: wiki.portal.chalmers.se/agda/pmwiki.php
12 Coq landing page: coq.inria.fr
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(i) formal verification of quantum compilation, in general, is not a discrete but an analytical problem, whose
computer verification requires exact real (complex) computer arithmetic (cf. [TQP, Lit, 2.29]),

(ii) the generic topological quantum gate is given by a complicated analytical expression (cf. [TQP, Lit. 2.24]).

While here we will not further dwell on the issue explicitly, the claim of [TQP] is that these two problems are
addressed by homotopically-typed certification languages (HoTT, Lit. 2.6) of which the language LHoTT of concern
here is an extension.

Literature 2.8 (NISQ computers). Currently existing quantum computers (such as those based on “supercon-
ducting qbits”, see e.g. [CW08][HWFZ20]) serve as proof-of-principle of the idea of quantum computation (Lit.
2.1) but offer puny computational resources, as they are (very) noisy and (at best) of intermediate scale: “NISQ
machines” [Pr18][LB20]. What is currently missing are noise-protection mechanisms that would allow to scale up
the size and coherence time of quantum memory. The foremost such protection mechanism arguably (Lit. ??) is
topological protection (Lit. 2.3).

Literature 2.9 (Classically controlled quantum computation and dynamic lifting).
classical control [NPW07][De14]
the term “dynamic lifting” is due to [GLRSV13, p. 5], early discussion is in [Ra18, pp. 40]. Proposals for its

categorical semantics are discussed in [RS20][LPVX21][FKRS22][FKRS22][CDL22][Lee22].

Literature 2.10 (Parameterized stable homotopy theory, Tangent∞-toposes & Twisted cohomology).
One may observe that the following two fundamental types of 1-categories (cf. 2.4):
(i) toposes – which are the home of geometry and classical intuitionistic logic,
(ii) abelian categories – which are the home of linear algebra and forms of linear logic,

while antithetical (for instance in that only the terminal category is an example of both), secretly share a sizeable
list of exactness properties [Fr99]. The analogous situation for∞-categories may appear similar, since here the two
notions of
(i) ∞-toposes – which are the home of higher geometric and of classical (intuitionistic) homotopy type theory,
(ii) stable ∞-categories – which are the home of higher algebra,

do remain as antithetical, (even though both satisfy analogous Giraud-type axioms in that both arise, when
locally presentable, as accessible left-exact localizations of ∞-categories of presheaves: the former with values in
∞-groupoids, the latter with values in spectra).

But a miracle happens after the passage to ∞-category theory, in that here a non-trivial unification of the
two notions does exist for a large class of stable ∞-categories (“Joyal loci”) including those of module spectra.
Namely, the collection of parameterized spectra [MaSi06][Mal23] over varying base types X ∈ Grpd∞ — i.e., the
∞-Grothendieck construction on the ∞-functor categories to RMod(Spctr) — is itself an ∞-topos:

R ∈ E∞Ring
(
Spctr

)
⊢ TRGrpd∞ :≡

∫
X∈Grpd∞

RModX ∈ Topos∞ . (17)

This observation is originally due to [Bie07], was noted down in [Jo08, §35] and received a dedicated discussion
in [Ho19]. The special case for plain spectra (i.e. with R = S the sphere spectrum), is touched upon in [Lu17,
Rem. 6.1.1.11], where

∫
X SpectraX would be called the tangent bundle to Grpd∞ [Lu17, §7.3.1] when thought of

as equipped with the canonical projection to the base topos (19). We may thus think of (17) as something like the
R-linear tangent ∞-topos to Grpd∞ [Sch13, Prop. 4.1.8] (all these considerations work for base ∞-toposes other
than Grpd∞; which we disregard just for sake of exposition).

Twisted cohomology. Interestingly, the hom-spaces in the R-tangent ∞-topos (17) are sections of R-module
bundles τX , which means [ABGHR14][FSS23, Prop. 3.5][SS20, p. 6] that their connected components form the
τX -twisted R-cohomology Rτ (X ) of X [MaSi06, §22.11]:

X ∈ Grpd∞
R ∈ E∞Rng(Spctr)

}
⊢ Maps

(
0X , R�GL1(R)

)
=


R�GL1(R)

X BGL1(R)τX
twist

coc
ycl

e i
n R

τ (X
)


. (18)
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This already suggests [Sch14a] that tangent∞-toposes are a natural logical context for describing strongly-coupled
quantum systems, since twisted R-cohomology theories play a key role in their holographic (stringy) formulations
(Lit. ...).

To pinpoint the nature of this logical context, notice that there is a canonical inclusion of Grpd∞ into its tangent
∞-topos (17) by assigning the 0-spectrum everywhere. Since the 0-spectrum is a zero-object, it readily follows that
this inclusion is bireflective in that it is both left and right adjoint to the “tangent projection”

R-linear
tangent ∞-topos

TRGrpd∞
∫
X RModX flat ∞-bundles of

R-module spectra

classical
base ∞-topos Grpd∞

♮
classical modality

0 p⊣⊣p (19)

In [Sch13, Prop. 4.1.9] this situation is interpreted as exhibiting infinitesimal cohesive structure on TRGrpd∞
relative to Grpd∞, meaning that, in some precise abstract sense, the objects of TRGrpd∞ may be regarded as
equipped with an infinitesimal thickening of sorts: In the notation there, the adjoint pair of (co)monads induced
by the adjoint triple (19) is denoted S ⊣ ♭, expressing the shape and the underlying points of an object, respectively;
and the ambidexterity of the adjunction implies that the canonical points-to-pieces transform is an equivalence

♭ S∼

hence reflecting the idea that the extra geometric substance which the objects of TRGrpd∞ carry on their classical
underlying skeleta in Grpd∞ is “infinitesimal” (think: “microscopic”) so that it cannot be noticed from looking
just at the macroscopic shape of these objects.

As a result, these two modalities unify into a single ambidextrous modality which was denoted “♮” in [RFL21],
as shown in (19).

Remark 2.11 (0-Fragment of LHoTT). By the 0-fragment of LHoTT we mean more than just its 0-truncated
types (which are just the classical hSets of LHoTT). Namely, in the stable homotopy theory which is incorporated
in LHoTT, the classical notion of n-truncation becomes almost meaningless (due to the existence of spectra with
homotopy groups in arbitrary negative degree, cf [Lu17, Warning 1.2.1.9]), its proper replacement instead being
the notion of t-structure (eg. [Lu17, §1.2.1]). The heart of the t-structure (formed by the spectra whose homotopy
groups are conceptrated in degree 0) reflects the intended 0-fragment of the given stable homotopy theory. Hence
by the 0-fragment of LHoTT we mean those types which are in the heart and whose underlying purely classical type
is 0-truncated.

Literature 2.12 (Functional languages). With all data being of specified type, a program which, when run
on input data of type Din (is guaranteed to halt and then) produces data of type Dout is thus a function of the
collection of Din-data with values in the collection of Dout-data, and we may postpone detailing what particular
kind of function we might mean (for instance: linear functions for quantum programs) by speaking of just an arrow
(morphism) in the relevant category of types:

Programming syntax Categorical semantics

d : Din f(d) : Dout

input data
type

program
output data

type

⊢ Din Dout

domain
object

morphism
codomain
object

f

The point of “functional” programming is that programs are such functions of data (morphisms) and nothing but
such functions, in that they have no side-effects (besides producing their output) and no side-dependence (besides
on their input) on the state of the computing environment — therefore also called pure functions or pure programs,
for emphasis. This is in contrast to popular “imperative” programming languages — whose programs may, while
running, read unpredictable data from input devices and write to output devices in a way that is not reflected in
the specification of their input/output data types. Instead, the purity of functional programs is what makes them
predictable and hence verifiable.
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Literature 2.13 (Modal logic and Possible worlds semantics). The origin of modal logic of necessity (□) and
possibility (♢) is with Aristotle, as nicely reviewed in [LeS77]. The modern formalization of modal logics originates
with [Be30][LL32, pp 153 & App II][vW51][Hi62]. A good historical overview is in [Go03], a comprehensive modern
account in [BvBW07]; see also [BdRV01]. Starting with [LL32, App II], modal logicians consider a plethora of
variant axiom systems, which go by a long list of alphanumerical monikers. We are here entirely concerned with
the system known as “S5” modal logic [LL32, p. 501][Kr63, p. 1]. Classical S5 modal logic is widely applied
as epistemic modal logic, notably in classical computer science [HM92, §2.3][FHMV95, p. 35][Fi07, §9][HP07, §4]
[DHK08, §2][Sa10].
Possible worlds semantics. The “possible worlds”-semantics of modal logic is due to [Kr63] (though the basic
idea is expressed already in [Hi62]); good exposition is in [BvB07], modern review is in [BvBW07, Part 5 §1].
Here one speaks of Kripke frames being (inhabited) W : Set of “possible worlds” equipped with a binary relation
R : W ×W → Prop, where R(w,w′) is interpreted as “Given outcome/world w, the outcome/world w′ appears
(just as) possible.” Given such a possible-worlds scenario, the modal operators □W , ♢W : PropW → PropW acting
on W -dependent propositions P : PropW ≡ W → Prop are interpreted by the following formulas (e.g. [BvB07,
p. 10]):

A proposition P•
about/dependent on
the possible worlds w

P• : W Prop

w 7→ Pw

yields

⊢

The proposition □W
P

that P• holds necessarily, namely
in/for all worlds w′ that appear
as possible as the given one w

□W
P : W Prop,

w 7→ ∀
(w′:W )×
R(w,w′)

Pw′

and

The proposition ♢
W
P

that P holds possibly, namely
in/for some world w′ that appears
as possible as the given one w

♢
W
P : W Prop

w 7→ ∃
(w′:W )×
R(w,w′)

Pw′

(20)

Modalities as monads. The (co)monadic nature of the necessity/possibility operators □/♢ in S4 (hence in S5)
modal logic was explicitly observed in [BdP96][BdP00][Ko97] and the resulting relation of modalities to (compu-
tational effect-)monads in computer science (Lit. 2.15) was further discussed in [BBdP98]. The natural origin
of these S5 (co)monads □W

⊣ ♢
W

from base change along the “possible worlds” was noticed in [Aw06, p. 279] –
however the implication (which we expand on in §4) that, therefore, any dependent type theory may equivalently be
regarded as (epistemic) modal type theory (Lit. 2.14) seems not to have received attention until the note [nLab14]
(cf. [Co20, Ch. 4]). We expand on this novel point of view in the main text around Thm. 4.3.

Literature 2.14 (Modal type theory). In view of the famous relation between formal logic and type theory,
it is quite evident that there is an interesting generalization of modal logic (Lit. 2.13) to modal type theory. After
leading a niche existence for some time, the amplification [Sch13, §3.1][ScSh14] of cohesive modalities (see [SS20]) in
(homotopy) type theory, the subject of modal type theory has received much attention (e.g. [RSS20][CR21][Mye22]).
While such modal type theory is going to be relevant for various enhancements of the computational context
presented here (to be discussed elsewhere), we emphasize that the modalities we consider here are all provided
already by plain (linear) dependent type theory. This fact is what drives our observation that LHoTT already knows
about quantum measurement effects – the feature just has to be brought out by meticulous syntactic sugaring.

Literature 2.15 (Computational Effects and Logical Modalities). We give a lightning explanation of com-
putational effects (and computational contexts) understood as (co)monads on the type system, and of the Eilenberg-
Moore-Kleisli theory of the corresponding effect handlers (context providers) understood as (co)modules, in fact as
(co)modal types (cf. Lit. 2.14).

Computational effects as Monads on the type system. The idea ([Mog89][Mog91][PP02], cf. [HP07, §6])
is that a computation which nominally produces data of some type D while however causing some computational
side-effect must de facto produce data of some adjusted type E(D) which is such that the effect-part of the adjusted
data can be carried alongside followup programs (whence a “notion of computation” with “computational side
effects”, for exposition and review see [BHM02][Mi19, §20][Uu21]):
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D1 E(D2) D2 E(D3) D E(D)

D1 E(D2) E(D2) E(D3) E(D) E(D)

D1 E(D3)

prog12

first program

output data
of nominal type D2

causing effects of type E(−)

prog23

second program

input data
of type D2

causing effects of type E(−) bind previous effects
into second program

returnED

return plain data with trivial E(−)-effect

prog12 bindEprog23

carry any previous
E(−)-effects along

compose

bindE
(
returnED

)
= idE(D)

(
bindEprog23

)
◦ prog12

E-composite program

causing cumulative E(−)-effects

(21)

Such E-effect structure on the type system is equivalently [Ma76, p. 32][Mog91, Prop. 1.6] a functorial operation
on the category of types (given by forming “effectless programs”)

E : Type Type(
D1

f−→ D2

)
7−→

regard f as effectless program

bindE
(
D1

f−→ D2
returnED−−−−−→ E(D2)

)
functor underlying monad

(22)

which carries the structure of amonad13 (cf. [ML71, §VI][Bor94b, §4], older terminology: “triple”), namely natural
transformations

D E(D)

monad unit

retED ≡return
E
D E

(
E(D)

)
E(D)

monad multiplication

joinED ≡bind
E
idE(D)

(23)

satisfying the axioms of a unital monoid, in that they make the following natural diagrams commute

E(D) E
(
E(D)

)
E
(
E(D)

)
E(D)

retEE(D)

E(retED) unitality joinEE(D)

joinEE(D)

E (E (E(D))) E
(
E(D)

)
E
(
E(D)

)
E(D) .

E(joinEE(D))

joinEE(D)

associativity joinED

joinED

(24)

Monads induced by adjunctions. Monads arise from (cf. [ML71, §VI.1][Bor94b] – and also give rise to, see
(45) below) adjoint functors (“adjunctions” between categories, cf. [ML71, §IV]), namely pairs of back-and-forth
functors (here: between categories of types)

Type′ Type

left adjoint
L

R
right adjoint

⊥ R◦L=: E induced monad (25)

equipped with a natural hom-isomorphism (forming “adjuncts”)

HomType

(
−, R(−)

) (̃−)←−−−−−→ HomType′
(
L(−), −

)
(26)

and (equivalently), with natural transformations

adjunction unit

retRLD ≡ ĩdL(D) : D −−→ R ◦ L(D)

adjunction co-unit

obtLRD′ ≡ ˜idR(D′) : L ◦R(D′) −−→ D′

13The terminology “monad” for (22) is due to [Bé67, §5.4], together with the observation that these are equivalently lax 2-functors
from the terminal (point) category ∗ to the ambient 2-category (of type universes, in our case), in which 2-category theoretic sense
they are quite the “indecomposable units” which the ancient called monads (as in Euclid: Elements, Book VII, Defs. 1, 2, 7, 11). For
the present purpose, it is useful to envision that programs running in (the Kleisli category of) an effect-monad cannot sensibly interact
with other programs until they are taken out (the Kleisli category of) the monad by an effect handler (39).
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adjunction unit(
D

retRL
D−−−−→ R ◦ L(D)

) (
L(D)

idL(D)−−−−−→ L(D)
)

(
R(D′)

idR(D′)−−−−−−→ R(D′)
) (

L ◦R(D′)
obtLR

D′
−−−−−→ D′

)
adjunction counit

satisfying the zig-zag identities

obtLRL(D) ◦ L
(
retRLD

)
= idD R

(
obtLRD′

)
◦ retRLR(D′) = idD′ ,

from which the monad structure (23) on E := R ◦ L is obtained as:

D E(D)≡ ≡

D R ◦ L(D)

retED

retRLD

E
(
E(D)

)
E(D)≡ ≡

R ◦ L ◦R︸ ︷︷ ︸ ◦L(D) R ◦ L .

joinED

R
(
obtRLL(D)

) (27)

Typing of effects via Strong monads. As a technical aside, beware that in describing effecy monad structure
this way means to view only its external action on the category of data types. In contrast, when actually coding
monadic side effects in programming language constructs (as in §6 below), then the return- and bind-operations
(21) will be typed not externally as

returnED : Hom
(
D, E(D)

)
and bindED1, D2

: Hom
(
D1, E(D2)

)
−→ HomType

(
E(D1), E(D2)

)
but internally as terms of iterated function type (cf. [McDU22, Def. 5.6] with [BHM02, §4.1][Mi19, §20.2]):

returnED : D → E(D) , bindED1, D2
:
(
D1 → E(D2)

)
→
(
E(D1)→ E(D2)

)
= E(D1)×

(
D1 → E(D2)

)
→ E(D2)

= E(D1)→
((
D1 → E(D2)

)
→ E(D2)

)
,

(28)

where
(-)→ (-) ≡ [-, -] : Typeop × Type −→ Type

denotes the formation of function types interpreted as the internal hom-objects in the monoidal closed category
of types (eg. [LS86, §I][Bor94b, §6.1]). (Here we stick to notation for cartesian monoidal structure just for the
purpose of exposition, see (56) for the analogous non-classical/linear case.)

With the above monad structure phrased internally this way, it is actually richer/stronger, whence one speaks
of enriched or equivalently strong monads ([Mog91, §3.2], review in [?, §3.2][McDU22, Prop. 5.8]), here with respect
to the self-enrichment of the monoidal closed category of types.

For monads on genuinely classical types (like sets) the strength/enrichment actually exists uniquely (see
[McDU22, Ex. 3.7]), but for cases such as linear types (15) it needs to be established (which we do in Prop.
3.6). A convenient way to obtain/verify this enriched/strong monad structure is via symmetric monoidal monad
structure:

When the category of types is symmetric monoidal closed ([EK66, §III.6], which is the case we are concerned
with throughout, cf. Prop. 3.3), then symmetric monoidal structure on a monad E , ie.

E(D)× E(D′)

E
(
D ×D′

)µE
D,D′ such that

E(D)× E(D′) E(D′)× E(D)

E
(
D ×D′

)
E
(
D′ ×D

)
σE(D),E(D′)

µE
D,D′ µE

D′,D

E
(
σD,D′

)

D ⊗D′ E(D)× E(D′)

D ×D′ E(D ×D′)

retED × retED′

µE

retED×D′

etc. (29)

bijectively induces “commutative” strong monad structure ([Ko72, Thm. 2.3], detailed review in [GLLN08, §7.3,
§A.4] [?, Prop. 3.3.9]) hence in particular the required enriched monad structure (28).

Examples of effect monads. Fundamental examples of effect monads in classical computer science (and in their
linear version of profound importance to us in §4) include (cf. [Mog91, Ex. 1.1]):
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• The reader monad (e.g. [Mi19, §21.2.3][Uu21, p. 22])

R× (-) : Type Type

D 7−→ [R, D]
(30)

induced from the canonical comonoid structure on any cartesian type (given by its terminal and diagonal map):

comonoid R
(ambient data)

R×R R ∗

R-reader monad
[
R, [R, D]

]
≃ [R×W, D] [R, D] [∗, D] ≃ D

diag
R ∃!

join WReader
D

≡ [diagR, D]

ret WReader
D

≡ const

(31)

Hence a R-Reader-effectful program is one whose nominal output is indefinite until a global parameter r : R is
read in, and the handling of R-Reader-effects is the handing-along of this global parameter.

• The writer monad (e.g. [Mi19, §4.1 & §21.2.4][Uu21, 1, p. 23]):

W × (-) : Type Type

D 7→ W ×D .
(32)

induced from any monoid (aka unital semi-group) structure on a type W ,

monoid W
(data output stream)

W ×W A ∗

A-writer monad W ×W ×D W ×D ∗ ×D = D

prod
W

unit
W

joinWWriter
F ≡

prod
W
× idD

retAWriter
D ≡

unit
A
× idD

(33)

(Here the unitality and associativity properties of the monoid W are evidently equivalent to the corresponding
properties (24) of the associated writer monad.) In typical applications W is a free monoid on an alphabet,
hence is the type of strings of such characters with multiplication given by concatenation of strings.
Therefore a Writer-effectful program is one which in addition to its nominal output produces a string (a log
message), and the binding of cumulative such effects is by concatenating these strings (appending these messages
to the log).

• The state monad (e.g. [PP02, §3][Mi19, §21.2.5 ][Uu21, 1, p. 24])[
W, W × (-)

]
: Type Type

D 7→
[
W, W ×D

] (34)

given by [
W, W ×

[
W, W ×D

]] [
W, W ×D

]
D

f 7−→ ev
(
f(-)

)join WState
D ret WState

D

(35)

Hence WState-effectful programs are adjoint (26) to programs of the form (11)(
D [W, W ×D′]prog )

←→
(
W ×D W ×D′p̃rog )

and may be understood as producing its nominal output only after it reads in data from “memory” type W (as
such like the WReader monad above, but) while also re-setting (re-writing) the W -data that gets handed along
to a new state.
This way the state monad is the basic computational model14 for a random access memory (“RAM”, see [Ya19,
p. 26 & Fig. 1.10]):

D
[
W, W×D′

]
type of
WState-effectful D′-data

d
nom

inal

input
data

7−→ (w
R
A
M

readout

7→
(
w′(w,d)

R
A
M

rew
rite

, d′(w,d)
nom

inal

output
data

)
)

W -RAM effectful program

(36)

14For practical purposes, the state monad is only a crude model for RAM, since it only encodes access to the entire memory at once
(first read all of memory then re-write all of memory). In practice, one will want to read/write RAM only partially at a given address.
This is also encoded by a (co-)monadic construction: “lenses”, which are the modales over the dual of the state monad: The co-state
co-monad [O’C11].
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We see these examples in action, together with their linear version, in§4.
One more example (which is not central to our discussion here but is) illustrative of the general notion of

computational side effects is the throwing of exceptions (e.g. [Mi19, §21.2.6][Uu21, 1, p. 11]): Assuming that
the category Type has coproducts and with Msg : Type some type of error messages, the exception monad is

ExcMsg : Type Type

D 7→ D ⊔Msg
(37)

whose monad unit is the coprojection of the coproduct and whose monad multiplication is given by the co-diagonal
on Msg: An ExcMsg-effectful program with nominal output type D2 is a morphism D1 −→ D2 ⊔ Msg which
may return output of type D2 but might instead produce an (error-message) term of type Msg, in which case all
subsequently ExcMsg-bound programs will not execute but just hand this error message along. (Hence for Msg ≡ ∗
the singleton type, this is also known as the maybe monad.)

In this example, it is clear that one will wish for programs that can handle the exception, and hence in general
for programs that can handle a given type of side-effect.

Effect handling and modal types. Given a type of computational side effect E as above, a program of nominal
input type D1 which can handle the effect will have actual input type E(D1), and handle the effect-part of E(D)
in a way compatible with the incremental binding of effects:

D1 D2

E(D1) D2

D1 E(D1) D2

consistency conditions

E(D0) E(D1) D2

prog12

in-effectful program incorporate handling
of E(−)-effects

hndlED2
prog12

in-effectful program
handling effects of type E(−)

prog12
no effect

returnED1

produce
trivial effect

hndlED2
prog12

handle effects
running program

hndlED2
(D0

prog01−−−−→ E(D1)
hndlED2

prog12

−−−−−−−−→ D2)
handle effects... consecutively

bindEprog01

carry effects
along

hndlED2
prog12

handle
cumulative effects

(38)

Such E-effect handling structure on a type D is equivalent to E-modale-structure on D (also known as an E-module
or E-algebra structure), namely a morphism

E(D) D

monad action on modale

ρ≡ hndlEDidD
(39)

satisfying the axioms of a monoid action, in that it makes the following squares commute:

D

E(D) D

unitality

id
ηD

utlE(ρ)

ρ

E
(
E(D)

)
E(D)

E(D) D

action property

E(ρ)

µD actE(ρ) ρ

ρ

(40)

Categories of effect-handling types A homomorphism (D1, ρ1) → (D2, ρ2) of E-effect handlers, hence of E-
modales, is a map of the underlying data types f : D1 −−→ D2 which respects the E-action in that the following
diagram commutes

E(D1) E(D2)

D1 D2

E(f)

ρ1 ρ2

f
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This makes a category of E-modales (traditionally known as the Eilenberg-Moore category of E and) traditionally
denoted by super-scripting: TypeE .

For example, for any B : Type, the type E(B) carries E-modale structure, with ρ ≡ µB . These are called the
free E-modales and the full sub-category they form is traditionally denoted by sub-scripting, TypeE :

Type

free E-modales in Type
(“Kleisli category”)

TypeE

E-modales in Type
(“Eilenberg-Moore category”)

TypeE{
B : Type

} {
E(B), ρB ≡ µB : E

(
E(B)

)
→ E(B)

} {
D : Type, ρ : E(D)→ D

∣∣ untlE(ρ), actE(ρ)}
free construction

FE

F E

total comparison functor

KUEFE
(41)

Concretely, the Kleisli equivalence re-identifies the homomorphism of free E-modales with the E-effectful programs
that we started with (21), as follows (e.g. [Bor94b, Prop. 1.4.6]):

TypeE TypeE

D 7−→
(
E(D), µD

)
TypeE(D,D

′) TypeE
((
E(D), µD

)
,
(
E(D′), µD′

))
(
D

f−−−−−−−−−→ E(D′)
)

7→
(
E(D)

E(f)−−−→ E
(
E(D′)

) µD′−−→ E(D′)
)

(
D

retED−−−→ E(D)
ϕ−→ E(D′)

)
←[

(
E(D)

ϕ−−−−−−−−−−−−−−−→ E(D′)
)
.

∼
(42)

This free construction is readily checked to be left adjoint to evident forgetful functors

TypeE TypeE Type(
D, ρ : E(D)→ D

)
7→ D

KUEFE

UE

UE

forgetful functor (43)

and both adjunctions FE ⊣ UE and F E ⊣ UE re-induce (25) the original monad, with the modale structure recovered
from the adjunction counit obt (e.g. [ML71, §VI.2, Thm. 1, §IV.5, Thm. 1]):

(D, ρ) : TypeE ⊢
UEF EUE(D, ρ) E(D)

UE(D, ρ) D

UE(obt(D,ρ)) ρ (44)

In fact, every adjunction which induces E is “in between” these two adjunctions, in that it fits into a commuting
diagram of the following form (e.g. [ML71, §VI.3]):

TypeE
free E-modales in Type

(“Kleisli category”)

induced monad Type Type′ any adjunction for E

TypeE E-modales in Type
(“EM-category”)

KUF

in
itia

l
c
o
m
p
a
riso

n
fu
n
c
to

r

FE
B 7→

(
E(B), ρ≡

µB

)

UE
⊥

E

KUF

te
rm

in
a
l

c
o
m
p
a
riso

n
fu
n
c
to

r

F

U
⊥

F E

U Emonadic adjunction

⊥

(45)

The monadicity theorem (cf. [Bor94b, Thm. 4.4.4]) characterizes the monadic adjunctions on the bottom of
diagram (45): For a functor U to be monadic in that it is of the form UE in (45), it is sufficient15 that

15The necessity clause involves the preservation of “split coequalizers” which we disregard here for brevity since we will not need it.
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(i) U is conservative (reflects isomorphisms),
(ii) U has a left adjoint F ,
(iii) dom(U) has coequalizers and U preserves them;
and hence for a functor U between cocomplete categories monadic it is, in particular, sufficient that:
(i) U is conservative,
(ii) U has besides the left adjoint F also a right adjoint,
in which case:

⇒

D

Type

UF ⊣ is monadic ⇒
D TypeE

Type

U

F

⊣

∼

UE

FE

⊣

E

(46)

Computational contexts and co-monads on the type system. All of this discussion has a formally dual
incarnation (by reversal of all arrows in the above diagrams), now given by co-monads on the type system, which
some authors refer to as “computational co-effect” but which may naturally be understood as expressing computa-
tional contexts [?][?]. The idea now is, dually, that a program which nominally reads in data of some type D while
however executing in dependence on some further context must de facto read in data of some adjusted type C(D)
which is such that the context-part of the adjusted data is being transferred to followup programs:

C(D1) D2 C(D2) D3 C(D) D

C(D1) C(D2) C(D2) D3 E(D) E(D)

C(D1) D3

prog12

first program

output data
of type D2

obtained in context of type C(−)

prog23

second program

input data
of nominal type D2

having context of type C(−) extend previous context
over second program

obtainCD

obtain plain data from C(−)-context

extdEprog12

extend any previous
C(−)-context going forward

prog23

compose

extdCobtainCD
= idE(D)

prog23 ◦ extd
C
prog12

C-composite program

in shared C(−)-context

Further, by formal duality, all the above discussion for monadic effects and their modal types gives rise to
analogous phenomena of comonadic contexts and their (co)modal types. In particular, comonads are induced on
the other sides of an adjunction (25):

Type′ Type
R

right adjoint

right adjoint
L

⊥ L◦R=: C induced co-monad (47)

Dualizing the previous examples (33)(32) of read/write-effect monads this way, one obtains the following list of
examples of reader/writer (co)monads:

(Co)monad name Underlying endofunctor (Co)monad structure induced by

Reader monad [W, - ] on cartesian types unique comonoid structure on W

CoReader comonad W×(-) on cartesian types unique comonoid structure on W

Writer monad A⊗(-) on monoidal types chosen monoid structure on A

CoWriter comonad
[A, - ] on monoidal types chosen monoid structure on A

A⊗(-) on monoidal types chosen comonoid structure on A

Writer/CoWriter
Frobenius monad

A⊗(-) on monoidal types chosen Frob. monoid structure on A

(48)

Adjoint (co)monads. In the case of an adjoint triple of adjoint functors the induced (co)monads are themselves
pairwise adjoint — as in (4), a situation central to our discussion in §4. In this case their categories of (co)modales
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(41) are isomorphic (e.g. [MLM92, §V.8, Thm. 2]):

adjoint (co)monads

E ⊣ C
have

⊢ TypeE TypeC

Type

∼
equivalent categories of modales

UE UC

(49)

Frobenius monads. Something special happens here when the underlying endo-functors in (49) are not just
adjoints but also identified, E ≃ C. In this case their (co)monad structures fuse to a single Frobenius monad-
structure [Law69b, pp. 151][Str04][Lau06] — induced via (45) and (47) from an “ambidextrous” adjunction, where
the left and the right adjoint of a middle functor agree (5) — so-called because these monads are Frobenius algebras
(Frobenius monoids, see e.g. [HV19, §5]) internal to the category of endofunctors: Combined (co)algebras whose
(co)products are compatible in the sense that all ways that map n input elements to m output elements by (n− 1)
products and (m− 1)-coproducts coincide.

For example – shown in the last line of (47): if type A carries Frobenius algebra structure, then the induced
(Co)Reader (co)monad A⊗ (-) carries induced Frobenius monad structure.

Literature 2.16 (Classical structures via Frobenius monads). The (co)monad expressing quantum mea-
surement effects which we derive in ... was originally proposed in ... [CPav08][CPac08][CPP0909][CPV12], partial
review in [HV19]. Its graphical formalization as part of the zxCalculus16 (review in: [vWe][Co23]) originates in
[CD08, §3][CD11, Def. 6.4][Ki08, §§2][Ki09, §4] (...)

16zxCalculuslanding page: zxcalculus.com
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3 Quantum types

We discuss here (mostly the categorical semantics of) the 0-fragment (Rem. 2.11) of the type system of LHoTT,
(semantics for the full un-truncated fragment is discussed in [EoS]). This is essentially the model of Proto-Quipper
from [RS18] (Lit. 2.5), but we present a novel modal/monadic perspective that lends itself to the modal typing
of quantum effects in §4 and then to the formulation of the quantum certification language QS in §6. Nonetheless,
a key point is that Proto-Quipper-programs may be translated to LHoTT, such as to formally certify them, see
[Ri23].

§3.1 – Semantics
§3.2 – Syntax

Linear/Quantum Data Types

Characteristic
Property

1. Their cartesian product
blends into the co-product:

2. A tensor product appears
& distributes over direct sum

3. A linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product∏
B Hb ≃ ⊕BHb

direct sum

≃
co-product∐

B Hb V ⊗ ( ⊕
b:B

Hb ) ≃ ⊕
b:B

(
V ⊗Hb

) (V ⊗H)⊸ K

≃ V ⊸
(
H⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning
parallel

quantum systems
compound

quantum systems
qRAM systems
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3.1 Quantum Semantics

We start with a concrete example (Def. 3.1 below ) of a category which interprets (as we shall see in §3.2) a
small fragment of LHoTT relevant for expressing quantum circuits (in ??). Category-theoretically this example is
elementary and standard (going back to [Bé85, §3.3][HT95, pp. 281]), but it is important in applications, eg. as
the established model for Proto-Quipper (Lit. 2.5, where it appears as [RS18, Def. 3.3] for the case that their
fiber category M is the category ModC of complex vector bundles). Here we highlight previously underappreciated
aspects of this model (all shared by its homotopy-theoretic generalizations in [EoS]):

• its doubly closed monoidal structure (Prop. 3.3),
• its doubly strong monadic reflections (Prop. 3.6)
• its quantization/exponential modality (Prop. 3.8)
• its support of 6-operations motivic yoga (Prop. 3.14)

which make the model interpret an expressive modal/monadic/effectful quantum language QS, in §6.
Last but not least, the model serves to transparently elucidate key language features of LHoTT in §3.2.

Definition 3.1 (Category of linear bundle types).
For the purpose of this section, we write “Type” for the category equivalently described as follows
(cf. [EoS], where this category is denoted “FamC”):
• Type is the free coproduct completion of ModC,
• Type is the category of indexed sets of complex vector spaces,
• Type is the category of complex vector bundles over varying discrete base spaces,
• Type is the 0-sector of the ∞-category of ∞-local systems over varying general base spaces,
• Type is the Grothendieck construction of the Set-indexed category whose fiber over W : Set is the category
ModWC ≡ Func(W, ModC) of W -indexed complex vector spaces (complex vector bundles over W ):

Types Category Morphisms

ClaType
classical types

Set
sets

W W ′
f

maps

QuType
linear types

ModC
vector spaces

H H′ϕ

linear maps

QuType
W

W -dependent linear types

ModWC
W -indexed vector space

[H•
↓
W

] [
H′•
↓
W

]
.

ϕ•

W -indexed linear maps

Type
linear bundle types

∫
W :Set

ModWC

Grothendieck construction

[H•
↓
W

] [H′•
↓
W ′

]
.

ϕ•

f

map covered by indexed linear map

(50)

When describing their linear fiber types concretely, we also denote linear bundle types as follows:H•↓
W

 ≡
 Hw

↓
(w :W )

 ≡ (w :W )× (Hw : QuType) (51)

Their hom-sets we denote as follows (the second line close to the internal type-theoretic syntax, see Rem. 3.4):

Hom

([H•
↓
W

]
,

[H′•
↓
W ′

])
≃

(
f : Hom(W, W ′)

)
×
∏
w
Hom

(
Hw, H′f(w)

)
≡

(
f :W →W ′

)
×
∏
w
♮
(
ϕw : Hw → H′f(w)

)
.

(52)
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Closed monoidal structures on bundle types.
First recall:
• ClaType is cartesian closed monoidal, with:

– monoidal product the Cartesian product ×
– internal hom the function sets W →W ′

– unit object ∗ the singleton set
• QuType is non-Cartesian closed monoidal with:

– monoidal product the usual tensor product,
– internal hom the linear hom-spaces H⊸ H′
– unit object the ground field 1 ≡ C : ModC.

Remark 3.2 (External monoidal structures).
Given any monoidal category (C,⊗,1), its free
coproduct completion FamC (of indexed sets of
C-objects) inherits a corresponding “external”
monoidal struture given by joint fiberwise product
in C over the Cartesian product of index sets (for
pointers see [EoS, p. 4]).

Proposition 3.3 (Doubly closed monoidal
structure of linear bundle types).
The category Type (50) of linear bundle types is
doubly closed monoidal, as shown on the right, in
that:
• it is cartesian closed with respect to the
external direct sum,

with unit object ∗ ≡

0↓
∗

 : Type

• it is non-cartesian closed symmetric monoidal
with respect to the external tensor product
(cf. [RS18, Prop. 3.5])

with unit object 1 ≡

1↓
∗

 : Type

Remark 3.4 (Notation for internal homs). The
arrow-notation for the hom-sets in QuType and
QuTypeW is that inherited from Type under the em-
beddings ClaType,QuType ↪→ Type (57), in that:

Hom
(pair types
X ·X ′, X ′′

)
≃ Hom

(
X,

function types
[X ′, X ′′]

)
W ×W ′

cartesian product

W ′ →W ′′

set of maps

⊕
S
H′

direct sum

♮(H′ → H′′)
set of linear maps

H⊗H′
tensor product

H⊸ H′
vector space of linear maps

⊕
S
H′•

direct sum

∏
w

(
H′w → H′′w

)
set of indexed linear maps

H⊗H′•
index-wise tensor product

∏
w

(
H′w ⊸ H′′w

)
vector space of indexed linear maps

[H•
↓
W

]
×

[H′•
↓
W ′

]

=

[H• ⊕H′•
↓

W×W ′

]
external direct sum

[H′•
↓
W ′

]
→

[H′′•
↓
W ′′

]
=



∏
w′ H′′f(w′)

↓(
f :W ′ →W ′′

)
×∏

w′
♮
(
H′w′ → H′′f(w′)

)


[H•
↓
W

]
⊗

[H′•
↓
W ′

]

=

[H• ⊗H′•
↓

W×W ′

]
external tensor product

[H′•
↓
W ′

]
⊸

[ H′′•
↓
W ′′

]
=

∏w′

(
Hw′ ⊸ H′′f(w′)

)
↓(

f :W ′ →W ′′
)



♮

H↓
∗

→
H′↓
∗

 = ♮(H → H′)

H↓
∗

⊸
H′↓
∗

 = (H⊸ H′)

where on the right the embeddings (57) are understood.

This way, eg. the natural hom-isomorphism expressing the closed monoidal structure on QuType reads

♮
(
H⊗H′ → H′′

)
≃ ♮

(
H → (H′⊸ H′′)

)
(53)

But we now also have mixed classical/quantum expressions, notably this one, which is going to be important:

(
W → H

)
≡

 0
↓
W

→
H↓
∗

 =

∏W H
↓
∗

 =

1•↓
W

⊸
H↓
∗

 =
(
1×W ⊸ H

)
(54)
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Proof of Prop. 3.3. Since our classical base category is ClaType ≡ Set, it is clearly sufficient to check the defining
hom-isomorphism for the case that W = ∗. In this case we have the following sequences of natural isomorphisms:

Hom

H⊕H′•↓
W ′

 ,
H′′•↓
W ′′


≃ (f :W ′ →W ′′)×

∏
w′
♮
(
H⊕H′w′ → H′′f(f ′)

)
by (52)

≃ (f :W ′ →W ′′)×
∏
w′

(
♮
(
H′w′ → H′′f(w′)

)
× ♮
(
H → H′′f(w′)

))
by coproduct property of ⊕

≃ (f :W ′ →W ′′)×
∏
w′
♮
(
H′w′ → H′′f(w′)

)
×
∏
w′
♮
(
H → H′′f(w′)

)
since

∏
W (−) is right adjoint

≃ (f :W ′ →W ′′)×
∏
w′
♮
(
H′w′ → H′′f(w′)

)
× ♮
(
H →

∏
w′
H′′f(w′)

)
since H → (-) is right adjoint

≃ Hom


H↓
∗

 ,


∏
w′ H′′f(w′)

↓
(f :W ′ →W ′′)×

∏
w′

(
H′w′ → H′′f(w′)

)

 by (52)

and

Hom

H⊗H′•↓
W ′

 ,
H′′•↓
W ′′


≃
(
f :W ′ →W ′′

)
×
∏
w′
♮
(
H⊗H′w′ → H′′f(w′)

)
by (52)

≃
(
f :W ′ →W ′′

)
×
∏
w′
♮
(
H →

(
H′w′ ⊸ H′′f(w′)

))
by (53)

≃
(
f :W ′ →W ′′

)
× ♮
(
H →

∏
w′

(
H′w′ ⊸ H′′f(w′)

))
since H → (-) is right adjoint

≃ Hom

H↓
∗

 ,
∏w′

(
H′w′ ⊸ H′′f(w′)

)
↓(

f :W ′ →W ′′
)

 by (52)

which proves the claim.

Remark 3.5. There is a natural comparison morphism from the cartesian to the tensor product, being the universal
fiberwise bilieanr map:

H•↓
W

 ,
H′•↓
W ′

 : Type ⊢

H•↓
W

×
H•↓
W

 H•↓
W

⊗
H•↓
W


 Hw ×H′w′

↓
(w :W )× (w′ :W ′)

  Hw ⊗H′w′

↓
(w :W )× (w′ :W ′)


∣∣∣∣∣ψψ′

〉
7→ |ψ⟩⊗|ψ′⟩

(55)
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Quantum type declaration. For transparent distinction between the classical and quantum monoial structures
from Prop. 3.3 it is convenient to use, besides the standard notation for
• the classical type declaration in the “empty” context

⊢ w :W ,

which really is type declaration in the context of the cartesian monoidal unit ∗ : ClaType

∗ ⊢ w :W ,

also notation for
• a linear (quantum) type declaration

⊢ |ψ⟩ ◦◦ H ,

to be understood as syntactic sugar for (ordinary) type declaration in the context of the tensor monoidal unit:

1 ⊢ |ψ⟩ : H .

This little notational device will be particularly useful when declaring data of type W → H (54).

Data Declaration Semantics

Classical
⊢ W : ClaType

⊢ w : W

[
0
↓
∗

] [
0•
↓
W

]
0w

w

Quantum

⊢ H : QuType

⊢ |ψ⟩ ◦
◦ H

≡

1 ⊢ |ψ⟩ : H

[
1

↓
∗

] [
H
↓
∗

]
|ψ⟩

∗

Quantized

⊢ W : ClaType

⊢ H : QuType

⊢
∑
w
|w⟩ ◦

◦ W → H

≡

1 ⊢
∑
w
|w⟩ : W → H

1↓
∗



∏
W

H

↓
∗


∑

w|w⟩

∗

(56)
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Classical and Quantum Modality.

Proposition 3.6 (Reflective subcategories of purely classical/quantum modal types).

The category of Def. 3.1 has monadic (45) reflective subcategory inclusions as follows:

W ←[

H•↓
W


ClaType Type

W 7→
 0•
↓
W


⊥ ♮

c
la
ssic

a
lly

⊕
w
Hw ←[

H•↓
W


QuType Type

H 7→
H↓
∗


⊥ △

q
u
a
n
tu

m
ly

(57)

Moreover, the induced classical/quantum-modalities are strong monads (28) with respect to the classical/quantum
monoidal structures of Prop. 3.3, whence we have return- and bind-operations (21) as follows, using the type
declaration from (56):

c
la
ss
ic
a
ll
y

♮
return

♮
W :

H•↓
W

→
 0•
↓
W


return

♮
W ≡ |ψw⟩ 7→ 0w

bind♮ :

H•↓
W

→
 0•
↓
W ′

→
 0•
↓
W

→
 0•
↓
W ′


bind♮ ≡

(
|ψw⟩ 7→ 0f(w), 0

)
7→

(
0w 7→ 0f(w), 0

)

q
u
a
n
tu

m
ly

△
return△ ◦

◦

H•↓
W

⊸
⊕wHw↓

∗


return△ ≡ |ψw⟩ 7→ ⊕

w′
δw

′

w |ψw⟩

bind△ ◦
◦

H•↓
W

⊸
H′↓
∗

⊸
⊕wHw↓

∗

⊸
H′↓
∗


bind△ ≡

(
|ψw⟩ 7→ Fw|ψw⟩

)
7→

(
⊕
w
|ψw⟩ 7→

∑
w
Fw|ψw⟩

)
(58)

Proof. It is evident that the inclusions are fully faithful and reflective. Formally we may check the required hom-
isomorphisms (26) using (52):

Hom

H•↓
W

 ,
 0•
↓
W ′


≃ Hom(W,W ′)×

∏
w
Hom

(
Hw, 0

)
≃ Hom

(
W, W ′

)
≃ Hom

 0•
↓
W

 ,
 0•
↓
W ′



Hom

H•↓
W

 ,
H′↓
∗


≃ Hom

(
H, ∗

)
×
∏
w
Hom

(
Hw, H′

)
≃ Hom

(∐
wHw, H′

)
≃ Hom

⊕wHw↓
∗

 ,
H′↓
∗


To check monadicity, we invoke the monadicity theorem in the form (46): Since both inclusions are right adjoints
and evidently conservative, it is sufficient to observe that they both preserve all coequalizers. For this we can
appeal to [EoS, Prop. A.9].

Finally, to check that the induced monads are strong, we may equivalently check that they are monoidal (29):
The (strong) monoidal structure on the underlying functors is indicated vertically in the following diagrams. Since
the monads are idempotent, it is sufficient to check furthermore that their unit transformations is monoidal, hence
that these squares commute, which is immediate in components (58):
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H•↓
W

×
H•↓
W

 ♮

H•↓
W

×
H•↓
W



≃

by Prop. 3.3

♮

H•⊕H′•↓
W ×W ′



≃

by (57)

W ×W ′

≃

by (57)H•↓
W

×
H•↓
W

 ♮

H•↓
W

× ♮
H•↓
W



ret♮

ret♮×ret♮

H•↓
W

⊗
H′•↓
W ′

 △

H•↓
W

⊗
H′•↓
W ′



≡

from Prop. 3.3

△

H• ⊗H′•↓
W ×W ′


≃

by (57)

⊕
(w,w′)

(
Hw ⊗H′w′

)
≃

⊕
w
⊕
w′

(
Hw ⊗H′w′

)

≃

distributivity(⊕
w
Hw
)
⊗
(⊕
w′
H′w′

)

≃

by (57)H•↓
W

⊗
H′•↓
W ′

 △

H•↓
W

⊗ △
H′•↓
W ′



ret△

ret△⊗ret△

Quantum/Classical Data Types Quantum/Classical Maps

general
bundles of
linear types

TypeH•↓
W


△♮ H• H′•H•↓

W

 H′f(•)↓
W

 H′•↓
W ′

ϕ•

f

purely
classical types
(bundles of zeros)

ClaType ≡ Type♮ 0•
↓
W


W W ′ 0•
↓
W

  0•
↓
W ′

0•

f

purely
linear types

(bundles over point)

QuType ≡ Type△H↓
∗


H H′H↓
∗

 H′↓
∗

ϕ

In fact, the purely classical types are also coreflective, whence the classical-modality ♮ is in fact a bireflective
Frobenius modality (cf. §3.2.1):

Proposition 3.7.

ClaType Type

♮

♮

(59)
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Quantization and Exponential modality. Composing the Cartesian hom-adjunction for 1 (from Prop. 3.3)
with the classicality-coreflection (59) gives another adjunction between linear bundle types and purely classical
types:

W

1•↓
W



ClaType Types Type

(w :W )× ♮
(
1→ Hw

) H•↓
W



7→

♮

⊥

1→(-)

1×(-)

⊥

←[

(60)

Further composing (60) with the reflection of purely quantum types (57), gives:

Proposition 3.8 (Quantization and Classicization). We have a pair of adjoint functors between purely classical
and purely quantum types (57) of this form

W ⊕
W
1

ClaType Type QuType

♮(1→ H) H

7→

1×(-)

♮(1→(-))
⊥

quantization

Q ≡
motive

Σ∞

△

⊥

C
classicized

≡ Ω∞

!

e
x
p
o
n
e
n
tia

l
m
o
d
a
lity

← [

(61)

where the composite ! ≡ QC is the “exponential modality” (Rem. 3.9). These are monoidal with respect to the
classical/quantum monoidal structures (Prop. 3.3) via natural transformations of the following form:

W,W ′ : ClaType ⊢ (QW )⊗ (QW ′) ≃ Q(W ×W ′)

H,H′ : QuType ⊢ (CH )× (CH′ ) ≃ C(H × H′ )

H,H′ : QuType ⊢ (CH )× (CH′ ) → C(H ⊗ H′ )

(62)

Q ∗ ≃ 1 , C0 ≃ 1 , C1 → 1 (63)

In particular, the induced modality (61) sends (direct) sums to (tensor) products

!
(
H⊕H′

)
≡ QC

(
H⊕H′

)
≃ Q

(
(CH)× (CH′)

)
≃ (QCH)× (QCH′) ≡ (!H)⊗ (!H′)

and zero (objects) to unit (objects)
! 0 ≡ QC0 ≃ Q ∗ ≃ 1

as befits an exponential map.

Proof. The adjunction itself is the composite of (60) with (57), as shown.
That Q is strong monoidal follows for instance from the fact that H⊗ (-) is a left adjoint and hence distributes

over the coproduct ⊕W :

(QW )⊗ (QW ′) ≡ (⊕W1)⊗ (⊕W ′1) ≡ ⊕
W×W ′

(1⊗ 1) = ⊕
W×W ′

1 ≡ Q(W ×W ′) .

Similarly, C is strong monoidal with respect to the Cartesian product on both sides, since ♮(1 → (-)) is a right
adjoint, whence it becomes lax monoidal with respect to the tensor product by composition with the universal
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bilinear map (55):

(CH)× (CH) ≡ ♮
(
1→ H

)
× ♮
(
1→ H′

)
≃ ♮

((
1→ H

)
×
(
1→ H′

))
since ♮ is right adjoint

≃ ♮
((
1→ (H×H′)

))
since 1→ (-) is right adjoint

≡ C(H×H′)

→ C(H⊗H′) using (55)

Remark 3.9 (Exponential modality). Prop 3.8 recovers — via dependent linear type formations — the expo-
nential modality (16) usually postulated in linear logic/type theory (Lit. 2.4). In the model QuType ≡ ModC
(50), the operation H 7→ ♮(1 → H) (60) produces the underlying set of vectors in the vector space H, whence the
exponential modality (61) sends a vector space to the linear span of its underlying set of vectors

H : ModC ⊢ !H = ⊕
H
1

Definition 3.10 (Quantization modality). We will regard quantization (61) as the relative monad obtained
([ACU15, Prop. 2.3]) by restricting the quantum-modality △ (3.6) along precomposition with (60):

Q : ClaType Type Type

W 7→
1•↓
W

 7→ ⊕
W
1

1×(-) △

(64)

This (just) means that we take the return- and bind-operations (21) of Q to be special instances of those of

△, as follows, where we use the linear type declaration from (56):

return
Q
W

◦
◦
(
1×W ⊸ QW

)
return

Q
W ≡ return△

1×W

bindQ ◦
◦
(
1×W ⊸ QW ′

)
⊸
(
QW ⊸ QW ′

)
bindQ ≡ bind△

But in these special cases of △-operations we may, by (54), equivalently write this pleasantly suggestively as follows:

q
u
a
n
ti
z
e
d

Q
return

Q
W

◦
◦
(
W → QW

)
return

Q
W ≡ w 7→ |w⟩

bindQ ◦
◦
(
W → QW ′

)
⊸
(
QW −−−−−−⊸ QW ′

)
bindQ ≡

(
w 7→ |ψw⟩

)
7→
(∑
w
qw |w⟩ 7→

∑
w
qw|ψw⟩

) (65)

Hence the quantization monad, when handed a classical state w, returns the corresponding quantum state |w⟩.
In quantum information theory this is commonly used in the following:

Example 3.11 (Type of qbits). The notation for the quantization-monad (Def. 3.10) is such as to reproduce the
standard notation “QBit” for the type of q-bits (eg. [NC10, §1.2], often also “qubit”, eg. [Ri21]) as the quantum
analog of the type Bit ≡ {0, 1} of classical bits (cf. [TQP, (110)]):

QBit ≡ Q(Bit) ≡ △(1Bit) ≡ ⊕
Bit

1
Bit
≡ ⊕
{0,1}

1
{0,1}

≡ 10
⊕ 11

=
{
q
0
|0⟩ + q

1
|1⟩
}
. (66)
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The Quantum/Classical Divide

Modality Idempotent monad Pure effect

Classical

♮ : Type ↠ ClaType ↪→ Type

♮ ≡

[H•
↓
W

]
7→ W 7→

[
0•
↓
W

] ret♮H• : H• ♮H•[H•
↓
W

] [
0•
↓
W

]0

id

(strong wrt ×)

Quantum

△ : Type ↠ QuType ↪→ Type

△ ≡

[H•
↓
W

]
7→ ⊕

W
H• 7→

⊕WH•↓
∗


ret△H•

◦
◦ H• △H•

[H•
↓
W

] ⊕WH•↓
∗

ret
♢

W

H•

pB

(strong wrt ⊗)

Quantized
Q : ClaType→ QuType ↪→ Type

Q ≡ W 7→ △
(
1W

)
retQH•

◦
◦ W QW

[
1•
↓
W

] ⊕W1

↓
∗

ret♢B

E

pB

(relative monad)
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Base change and dependent classical/linear type formation. In parameterized generalization of the reflec-
tion of quantum types inside all bundle types (Prop. 3.6), also the W -parameterized linear types (50) are reflective

in the slice category Type/W of bundle types over the given classical type W =

 0•
↓
W

:
 ⊕
p′(w′)=w

H′w′

↓
(w :W )

 ← [

[
H′• →W ′

]
↓ ↓ p′[
0• →W

]
QuTypeW Type

/WH•↓
W

 7→
[
H• →W

]
↓ ↓[
0• →W

]
⊥ △W

W
-q
u
a
n
tu

m
ly

(67)

But the category of linear bundle types is locally cartesian closed, in particular:

Proposition 3.12. For W, Γ : ClaType and p :W → Γ, the pullback base change operation W ×Γ (-) between the
respective slices of the category of linear bundle types (Def. 3.1)

W Γ

Type/W Type/Γ[
H′w′ → (w′ :W ′p(w))

]
↓ ↓[
0w → (w :W )

] ←[

[
H′• →W ′

]
↓ ↓[
0• → Γ

]

p

W×Γ(-)
contex extension

has both a left adjoint (“dependent coproduct17”) and a right adjoint (“dependent product”), given as follows:

[
H′• → W ′

]
↓ ↓ p′[
0• → W

] 7→

[
H′w′

w
→
(
(w,w′w) :

∐
p(w)=γ

W ′w
)]

↓ ↓[
0• −−−−−−−−−→ (γ : Γ)

]

Type/W Type/Γ

[
H′• → W ′

]
↓ ↓[
0• → W

] 7→

[ ∏
p(w)=γ

H′w′
w
→
(
w′• :

∏
p(w)=γ

W ′w

)]
↓ ↓[
0• −−−−−−−−→ (γ : Γ)

]

∐
W

dependent coproduct

W×Γ(-)∏
W

dependent product

⊥

⊥
(68)

Proof. We may formally check the hom-isomorphisms, using (52). It is sufficient to consider the case that Γ = ∗:

Hom


 H′w′

w

↓(
(w,w′w) :

∐
wW

′
w

)
 ,
H′′•↓
W ′′




≃
(
f• :

∐
w
W ′w →W ′′

)
×
∏

(w,w′
w)

♮
(
Hw′

w
→ H′′fw(w′

w)

)
≃
∏
w

((
fw :W ′w →W ′′

)
×
∏
w′

w

♮
(
Hw′

w
→ H′′fw(w′

w)

))

≃ Hom/W

H′•↓
W ′

 , W ×
H′′•↓
W ′′



Hom

H′′•↓
W ′′

 ,
 ∏

wH′w′
w

↓
w′• :

∏
wW

′
w


≃
(
f ′• :W

′′ →
∏
w
W ′w

)
×
∏
w′′
♮
(
H′′w′′ →

∏
w
H′f ′

w(w′′)

)
≃
∏
w

((
f ′w :W ′′ →W ′w

)
×
∏
w′′
♮
(
H′′w′′ → H′f ′

w(w′′)

))

≃ Hom/W

W ×
H′′↓
W ′′

 ,
H′•↓
W ′


17Of course, in type theory this dependent coproduct

∐
W is traditionally called the “dependent sum” and denoted “ΣW ”. But this

(quite unnecessary but deeply engrained) abuse of terminology/notation from linear algebra becomes problematic in the context of
dependent linear type theory with its actual (direct) sums ⊕W of linear types.
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The (co)restriction of the base change adjoint triple (68) along the reflective inclusion of W -quantum types (67)
yields base change of dependent linear types:

Type/W Type/Γ

QuTypeW QuTypeΓ

(
w :W ⊢ Hw

)
7→

(
γ : Γ ⊢

∏
p(w)=γ

Hw
)

W×Γ(-)

∐
W

∏
W

⊥

⊥
△
Γ⊥

⊕W

1
W
⊗(-)∏
W

⊥

⊥

(69)

Now something special happens: If W is finite (over Γ) then the direct sum and the direct product of linear
spaces coincide, ⊕W ≃

∏
W , and so this adjunction on linear types becomes ambidextrous:

Γ : ClaType, W : FinClaType ⊢

(
w :W ⊢ Hw

)
7→

(
γ : Γ ⊢ ⊕

p(w)=γ
Hw
)

QuTypeW QuTypeΓ

⊕W

1
W
⊗(-)

⊕W

⊥

⊥

(70)

All these structures and properties are elementary to see in the concrete model of indexed sets of vector spaces,
but they hold quite generally for (higher) categories of parameterized linear (homotopy) types. In fact, much of
this structure is that traditionally encoded by Grothendieck’s yoga of six operations used in motivic (homotopy)
theory.
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Motivic yoga. For the purposes of the present discussion we make the following definition (cf. [EoS, pp. 41]):

Definition 3.13 (Motivic Yoga). Let Type be a locally cartesian closed category with coproducts. We say that
a Grothendieck-Wirthmüller motivic yoga of operations on Type – or just motivic yoga, for short – is:
(i) an ambidextrously reflected subcategory ClaType (“of classical base types”), hence a functor ♮ onto a full

subcategory such that it is both left and right adjoint to the inclusion functor:

ClaType Type

♮

♮

⊥

⊥
♮ (71)

This implies in particular that ClaType has all (fiber-)products and coproducts, and we write

FinClaType ↪−→ ClaType (72)

for the further full subcategory on the finite coproducts of the terminal object with itself.
(ii) For each W : ClaType a symmetric closed monoidal structure (QuTypeB ,⊗B ,1B) on the iso-comma categories

(“of linear bundles over W”):

QuTypeW ≡ ♮/W =


H•↓
W

 H′•↓
W

ϕ•
 , (73)

(iii) For each morphism in ClaType an adjoint triple of (“base change”) functors:

for B
f−−→ B′ we have QuTypeW QuTypeW ′

f!

f∗

f∗

⊥

⊥
(74)

such that the following conditions hold:

(a) Linearity: the left and right base change along finite types W
pW−−→ ∗ (72) are naturally equivalent:

W : FinClaType ⊢ (pw)! ≃ (pw)∗

(b) Functoriality: for composable morphisms f, g of base objects we have

(f∗ ◦ g∗) ≃ g∗ ◦ f∗ and id∗ = id (75)

(c) Monoidalness: the pullback functors are strong monoidal in that there are natural equivalences:

f∗
(
H ⊗

W ′
H′
)
• ≃

(
f∗
(
H
)
⊗
W ′

f∗
(
H′
))
•

(d) Beck-Chevalley condition: for a pullback square in ClaType the “pull-push operations” across one tip are
naturally equivalent to those across the other:

For

B ×B0
B′

B B′

B0

prB prB′

(pb)

pB pB′

we have

QuTypeB×B0
B′

QuTypeB QuTypeB′

QuTypeB0

(prB)! (prB′ )∗

(pB′ )!(pB)∗

and

QuTypeB×B0
B′

QuTypeB QuTypeB′

QuTypeB0

(prB)∗ (prB′ )∗

(pB′ )∗(pB)∗

(76)

(e) Frobenius reciprocity / projection formula: the left pushforward of a tensor with a pullback is naturally
equivalent to the tensor with the left pushforward:

f!
(
H ⊗

W
f∗(H′)

)
• ≃ f!(H) ⊗

W ′
H′ (77)

This is equivalent to f∗ being also strong closed.
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Proposition 3.14 (Linear bundle types satisfy Motivic Yoga). The indexed category W 7→ QuType
W

of
Def. 3.1 satisfies the motivic yoga (Def. 3.13) with respect to the fiberwise tensor product:

QuTypeW ×QuTypeW QuTypeWH•↓
W

 ,
H′•↓
W

 7→

Hw ⊗H′w↓
(w :W )


⊗
W

Proof. This is straightforward to check. Details for this case and its higher generalization are also spelled out in
[EoS].

We may alternatively see the monoidality of △ just using the motivic yoga. For this purpose we shall denote
the projection maps involves in a cartesian product as follows:

W ×W ′

W W ′

∗

prW prW ′

pW×W ′

pW pW ′

(78)

Now:
△
(
E ⊗ E ′

)
= (pB×B′)!

(
(prB)

∗E ⊗ (prB′)∗E ′
)

def

≃ (pB)!(prB)!
(
(prB)

∗E ⊗ (prB′)∗E ′
)

(78)

≃ (pB)!

(
E ⊗

(
(prB′)!(prB′)∗E

))
Frob

≃ (pB)!

(
E ⊗

(
(pB)

∗(pB′)!E
))

BC

≃
(
(pB)!E

)
⊗
(
(pB′)!E ′

)
Frob .

similarly:

Q(B ×B) = (pB×B)!(pB×B)
∗
1 def

≃ (pB′)!(prB′)!(prB)
∗(pB)

∗
1 (78)

≃ (pB′)!(pB′)∗(pB)!(pB)
∗
1 BC

≃ (pB′)!
(
1B′ ⊗ (pB′)∗(pB)!(pB)

∗
1
)

unit law

≃
(
(pB′)!1B′

)
⊗
(
(pB)!(pB)

∗
1
)

Frob

≃
(
(pB′)!(pB′)∗1

)
⊗
(
(pB)!(pB)

∗
1
)

strong mon

= (QB)⊗ (QB′) def

...The linear modality is idempotent △△ △
µ△
∼ .

(...)
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(...edit and move or delete...)

Modal quantum logic of compound systems. With a linear data type thought of as representing the states
of a given quantum system, we may think of the tensor product of two linear types as representing the states of
the corresponding compound quantum system. The following properties of the tensor product, hence of compound
quantum systems, are all implied by the simple axioms of dependent linear types (whence the “yoga of six functors”).

(i) Frobenius reciprocity. For any B ∈ Type, H ∈ LinTypeB and K ∈ Type, we have a natural equivalence
of this form:

(pB)!
(
H• ⊗ (pB)

∗K
)
≃

(
(pB)!H•

)
⊗K (79)

(ii) Beck-Chevalley property. Given a pullback diagram of contexts

B ×
C
B′

B B′

C

prB prB′

pB pB′

we have a natural equivalence
(prB′)! ◦ (prB)

∗ ≃ (pB)
∗ ◦ (pB)! . (80)

We will consider this particularly in the case of plain products of contexts:

B ×B′

B B′

∗

prB prB′

pB×B′

pB pB′

⊢
(prB)

∗ ◦ (pB)
∗ ≃ (prB′)∗ ◦ (pB′)∗

(prB′)! ◦ (prB)
∗ ≃ (pB′)∗ ◦ (pB)!

(81)

(iii) External tensor product. We set

H• : LinTypeB , H′• : LinTypeB′ ⊢

external
tensor product

H• ⊠H′• :=
(
(prB)

∗H•
)
⊗
(
(prB′)∗H′•

)
H• ⊠H′•

B ×B′

H• H′•

B B′

prB prB′

(82)

(a) The external tensor product (82) is respected by left base change, in that:

(pB×B′)!
(
H• ⊠H′•

)
≃

(
(pB)!H•

)
⊗
(
(pB′)!H′•

)
=: H⊗H′. (83)

Proof.

(pB×B′)!
(
H• ⊠H′•

)
≃ (pB×B′)!

((
(prB)

∗H•
)
⊗
(
(prB′)∗H′•

))
by (82)

≃ (pB)!(prB)!

((
(prB)

∗H•
)
⊗
(
(prB′)∗H′•

))
by (81)

≃ (pB)!

(
H• ⊗

(
(prB)!(prB′)∗H′•

))
by (79)

≃ (pB)!

(
H• ⊗

(
(pB)

∗(pB′)!H′•
))

by (80)

≃
((

(pB)!H•
)
⊗
(
(pB′)!H′•

))
by (79)

This induces

(b) The external tensor product (82) is respected by the possibility (and hence the necessity) modalities, in
that:

♢B×B′
(
H• ⊠H′•

)
≃
(
♢BH•

)
⊠
(
♢B′H•

)
.

Proof.
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♢B×B′
(
H• ⊠H′•

)
= (pB×B′)∗(pB×B′)!

(
H• ⊠H′•

)
≃ (pB×B′)∗

((
(pB)!H•

)
⊗
(
(pB)!H′•

))
by (83)

≃
(
(pB×B′)∗(pB)!H•

)
⊗
(
(pB×B′)∗(pB′)!H′•

)
by (??)

≃
(
(prB)

∗(pB)
∗(pB)!H•

)
⊗
(
(prB′)∗(pB′)∗(pB′)!H′•

)
by (81)

≃
(
(prB)

∗□BH•
)
⊗
(
(prB′)∗□B′H′•

)
by def

≃
(
□BH•

)
⊠
(
□B′H′•

)
by (82) .
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3.2 Quantum syntax

We give an exposition of some of the formal syntax of LHoTT due to [RFL21][Ri22], matched to its denotational
semantics in the 1-categories of linear bundle types from §3.1 and more generally in the simplicial categories of
simplicial local systems discussed in [EoS]. While previous indication of the intended categorical semantics in
[RFL21, §7.1] is still rather syntactical, we aim to unwind the actual diagrams which interpret given dependent
type declarations in the target category.

This is to indicate by example how LHoTT is indeed a formal type theory for all the constructions considered
in hupf, but an exhaustive treatment of this claim needs to be given elsewhere.

§3.2.1: Category theory of bireflective Frobenius monads
§3.2.2: Basic inference rules and their Categorical semantics
§3.2.3: Syntactic representation of the Motivic Yoga

Throughout, we make extensive use of the pasting law, which says that for a pasting diagram of two commuting
squares in any category where the right square is cartesian, then two total rectangle is cartesian if and only if also
the left square is cartesian:

• • •

• • •

(pb)

(pb)

⇔
• • •

• • •

(pb) (pb)

(84)
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3.2.1 Background: Bireflective Frobenius monads

The first layer of new type inference rules that LHoTT adjoins to plain HoTT is axioms for the classical-modality ♮
(57), hence the infinitesimal cohesive modality (Lit. 2.10). As a (co)monadic modality (Lit. 2.14) it is special in
that it constitutes a bireflective Frobenius monad (59).

Therefore, in preparation of the semantic rules below in §3.2.2, we recall and develop some basic category theory
of bireflective Frobenius monads. The reader may not want to go through this material linearly, we will point back
to here where necessary.

Semantics of lex (ambidextrous) modalities. Write T for the interpreting (model) category.
Fact. A monad ⃝ : T → T , ret⃝ : id → ⃝ being idempotent with modal subcategory ι : T ⃝ ↪→ T means that
there are natural bijections

HomT
(
⃝A, ι(B)

)
HomT

(
A, ι(B)

)
(
⃝A

f−→ ι(B)
)
7→

(
A

ret
⃝
A−→ ⃝A f−→ ι(B)

)
∼

Dually, a comonad □ : T → T being idempotent means that

HomT
(
ι(B), □A

)
HomT

(
ι(B), A

)
(
ι(B)

f−→ □A
)
7→

(
ι(B)

f−→ □A
obt□A−→ A

)
∼

Fact. If ⃝ : T → T with unit ret⃝ : id → ⃝ is a lex modality on the ambient (model) category, then for each
(fibrant) Γ ∈ T its induced lex modality on the (fibrational) slice T/Γ is given by

⃝Γ : T/Γ T/Γ[
A↠
pA

Γ

]
7→

(ret
⃝
A )
∗A

↠

Γ

 where

(ret⃝A )
∗A ⃝A

Γ ⃝Γ

(pb) ⃝pA

ret⃝Γ

(85)

with fiberwise unit ret⃝Γ given by the canonical factorization of the global unit ret⃝A through the defining pullback
on the right:

A (ret⃝A )
∗A ⃝A

Γ Γ ⃝Γ

pA

ret⃝Γ

A

ret⃝A

(pb) pA

ret⃝Γ

(86)

Proof. The technical ingredients underlying this statement all go back to [CHK85][CJKP97]; the statement as such
is more explicit around [RSS20, Lem. 1.52, Thm. 1.54, Thm. A.9].

Remark 3.15 (Relative monads). Instead of considering the full fiberwise monads ♮Γ : T/Γ → T/Γ, we want to
restrict their formation to objects in T/♮Γ, for reasons discussed in [RFL21, §1.2]. We now observe that this means
to consider relative monads induced by ♮Γ (the actual monad will be recovered as ♮(−), see (118)).

Notation 3.16 (Full pullback along unit). Given pA : A→ ♮Γ, we denote its pullback along the ♮-unit of Γ by:

(ret♮A)
∗A A

♮Γ Γ

qA

(pb) pA

ret♮Γ

(87)
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Proposition 3.17. For Γ ∈ T , we obtain a relative monad [ACU15, Def. 2.2] with underlying functor

♮relΓ : T/♮Γ T/Γ T/Γ
(ret♮Γ)

∗ ♮Γ
A

♮Γ

pA

 7→


(ret♮A)

∗A A

Γ ♮Γ

qA

(pb) pA

ret♮Γ

 7→


♮relΓ A ♮(ret♮Γ)

∗A ♮A

Γ ♮Γ ♮♮Γ

(pb)

♮qA
∼

(pb) ♮pA

ret♮Γ ♮ret♮Γ


(88)

and with relative unit
ret

♮relΓ

A := ret♮Γ
(ret♮Γ)

∗A
. (89)

Proof. This is an instance of [ACU15, Prop. 2.3 (1)].

Lemma 3.18 (Classical unit on pullback). The ♮-unit of (ret♮Γ)
∗A in (87) equals the following composite:

(ret♮Γ)
∗A A ♮A ♮

(
(ret♮Γ)

∗A
)
,

qA

ret♮
(ret♮Γ)

∗A

ret♮A
(♮qA)−1

(90)

where we use that ♮qA is invertible, it being a pullback of ♮ret♮Γ (since ♮ preserves pullbacks) which is invertible (since
♮ is idempotent).

Proof. We may equivalently show that its β ⊣ ι adjunct is the identity morphism. A priori, this adjunct equals
the total top and right morphism in the following diagram:

β
(
(ret♮Γ)

∗A
)

βA βιβA βιβ
(
(ret♮A)

∗A
)

βA β
(
(ret♮A)

∗A
)

βqA βretιβA βι(βqA)−1

obtιββA
obtιβ

β(ret♮A)
∗A

(βqA)−1

Here the square on the right commutes by naturality of the counit, and the triangle commutes by the triangle
identity of the adjunction. Therefore the morphism in question equals the total bottom morphism, which is
manifestly equal to the desired identity.

Lemma 3.19 (Components of the relative monad). The relative unit of the (ret♮Γ)
∗-relative monad (88) has as

components the unique dashed morphisms making the following diagrams commute:

(ret♮Γ)
∗A A

♮relΓ A ♮(ret♮A)
∗A ♮A

Γ ♮Γ ♮♮Γ

qA

ret
♮relΓ

A
ret♮

(ret♮Γ)
∗A

p
(ret♮Γ)

∗A

ret♮A

(pb)
p
(ret♮Γ)

∗A

♮qA

(pb) ♮pA

ret♮Γ ♮ret♮A

(91)

Proof. The point is that, by Lemma 3.18, the diagonal morphism is indeed a component of the ♮-unit as shown,
making the top right square commute. With this the claim follows by (91) and (86).

Bireflective Frobenius monads.

Definition 3.20. A bireflective subcategory inclusion in the sense of [FHPTST99, Def. 8] is an ambidextrously
reflective subcategory inclusion

C B
β

ι

β

⊥

⊥
♮ such that :

♮ idB

♮

obt♮

ret♮ (92)
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Remark 3.21 (Idempotence). Given a bireflective subcategory, the natural transformation

obt♮ ◦ ret♮ : idB
ret♮−−−−→ ♮

obt♮−−−−→ id♮
is an idempotent endomorphism of the functor idB. Together with the naturality of this transformation, it follows

that for any morphism Γ
f−−→ A in B its composites of the form ret♮A ◦ f are preserved by pre-composition with the

idempotent, in that the following diagram commutes:

Γ ♮Γ Γ

A ♮A A

♮A

ret♮Γ

f

obt♮Γ

f

ret♮A obt♮A

ret♮A

(93)

Notation 3.22 (Pullback along counit). For a bireflective subcategory and given pA : A→ Γ, we write A for the
pullback along the ♮-counit of Γ:

A A

♮Γ Γ

vA

pA
(pb)

pA

obt♮Γ

(94)

With the same kind of proof as for Lemma 3.18, we obtain:

Lemma 3.23 (Classical unit on ϵ-pullback). Given pA : A → Γ, then the ♮-unit on an object A (94) equals the
following composite:

A A ♮A ♮A .
vA

ret♮A

ret♮A
(♮vA)−1

(95)

Lemma 3.24. Given pA : A→ ♮Γ we have (ret♮A)
∗A ≃ A.

Proof. By the Pasting Law,

A (ret♮Γ)
∗A (ret♮Γ)

∗A A

♮Γ Γ ♮Γ

≃

pA

(pb) (pb) pA

id

obt♮Γ ret♮Γ

(96)

Lemma 3.25 ([RFL21, Lem. 7.7]). Given a bireflective subcategory inclusion (Def. 3.20), we have identifications

♮
(
ret♮(−)

)
= ret♮♮(−) and ♮

(
obt♮(−)

)
= obt♮♮(−) . (97)

Proof. Using the naturality squares of the unit over itself

E ♮E

♮E ♮♮E

η♮E

η♮E ♮η♮E

η♮♮E

(98)

we have
♮
(
ret♮E

)
=
(92)

♮
(
ret♮E

)
◦ ret♮E ◦ obt

♮
E =

(98)
ret♮♮E ◦ ret

♮
E ◦ obt

♮
E =

(92)
ret♮♮E .

An analogous argument proves the other case.

Lemma 3.26 (Relations). Given a bireflective subcategory inclusion (Def. 3.20), we have

♮Γ ♮♮Γ ♮Γ
♮ret♮Γ

id

obt♮♮Γ
hence, by (97), also: ♮Γ ♮♮Γ ♮Γ

ret♮♮Γ

id

obt♮♮Γ
(99)

and so, since obt♮♮Γ = ♮obt♮Γ is an isomorphism by idempotency of ♮:

ret♮♮Γ =
(
obt♮♮Γ

)−1
. (100)
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Proof. The following square commutes by the naturality of the counit

♮Γ ♮♮Γ

Γ ♮Γ

♮ret♮Γ

obt♮Γ obt♮♮Γ

ret♮Γ

and the bottom left triangle commutes by (92). Therefore the top right triangle commutes.

So in generalization of (93), we have:

Corollary 3.27 (Precomposition with projection). Given a bireflective subcategory inclusion (Def. 3.20), we have

for f : Γ→ ♮A that precomposition with obt♮Γ ◦ ret♮Γ acts like the identity:

Γ ♮Γ Γ

♮A ♮♮A ♮A

ret♮Γ

f

obt♮Γ

f

ret♮♮A

id
(99)

obt♮♮A

(101)

We list the inference rules of Linear Homotopy Type Theory (LHoTT) together with their intended 1-categorical
semantics (intended to be thought of as categories of linear bundles).

Previously [RFL21, §7] have indicated intended semantics (of the fragment excluding the tensor products) in
“categories with families”, in a form that still quite syntactic (linear strings of symbols). Here we show the actual
diagrams in the interpreting category which lend themselves to usual category-theoretic arguments — cf. for
instance our proof of the ♮-computation rules in (115) (116) with the corresponding argument in [RFL21, Lem.
7.11 (4) (5)]).
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3.2.2 Basic LHoTT Inference rules and their categorical semantics

We showcase the most basic inference rules of LHoTT [RFL21][Ri22] and give their categorical semantics.

Dependent terms of dependent types. For reference and to introduce our notation, first to recall some standard
inference rules of dependent types, cast in the following fashion:

Syntax Semantics

γ : Γ ⊢ Aγ : Type
dependent type

(γ:Γ)×Aγ ≡ A Ôbj

Γ Obj object
classifier

pA

d
is
p
la
y
m
a
p

(pb)

⊢A
name of A

γ : Γ ⊢ aγ : Aγ
dependent term

Γ A

Γ Γ context

⊢a
name of a

pA

In analogous fashion we now have the following inference rules for dependent ♮-types:
Structural rules for general variables. (14)

Syntax Semantics

var
γ : Γ ⊢ Aγ : Type

γ : Γ, aγ : Aγ , Γ′ ⊢ aγ : Aγ

variable rule

Γ′ A

AΓ′

Γ′ Γ′ A Γ

pΓ′

⊢(−)

pA
generic
element

(pb)

pΓ′ pA

(102)

w
Γ, ∆ ⊢ j : J Γ ⊢ A : Type

Γ, a:A, δ:∆ ⊢ jδ : Jδ

weakening rule

A×Γ ∆ ∆ J

p∗AJ

A×Γ ∆ A×Γ ∆ ∆ ∆

A Γ

⊢j
⊢j

pJ
pullback

along display (pb)

(pb) p∆

pA

(103)

γ:Γ, aγ :Aγ , δaγ :∆aγ ⊢ jδaγ
: Jδaγ

γ:Γ ⊢ a0γ : Aγ
S

γ:Γ, δa0γ :∆a0γ
⊢ jδa0

γ
: Jδa0

γ

substitution rule

∆a0 ∆ J

J[a0/a]

∆a0 ∆a0 ∆ ∆

Γ A

Γ Γ

⊢j[a 0
/a]

⊢j

pJ

pullback
along name (pb)

[a0/a]

(pb) p∆

⊢a0

pA

(104)
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Structural rules for ♮-variables. (Syntax from [RFL21, Fig. 1][Ri22, Fig. 1.1])

Syntax Semantics

♮-ctx
Γ ctx

Γ ctx
♮-context rule

Γ

♮Γ
(105)

♮-ctx-ext
Γ ctx Γ ⊢ A : Type

Γ, a:A ctx

relative ♮-context rule

A

♮Γ

(88) ♮relΓ A ♮(ret♮Γ)
∗A ♮A

Γ ♮Γ ♮♮Γ

pA

(pb)

♮qA

(pb) ♮pA

ret♮Γ ♮ret♮Γ

(106)

Γ ⊢ a : A

Γ ⊢ a : A

♮Γ Γ A

A

♮Γ ♮Γ Γ Γ

obt♮Γ

⊢a

⊢a

pA

(pb)

obt♮Γ

(107)

Γ ⊢ a : A

Γ ⊢ a ≡ a : A

♮Γ Γ ♮Γ A

A

♮Γ ♮Γ Γ ♮Γ ♮Γ

obt♮Γ

⊢a

id
(92)

ret♮Γ ⊢a

pA

(pb)

obt♮Γ

id
(92)

ret♮Γ

(108)

♮var
γ : Γ ⊢ Aγ :Type

γ:Γ, aγ :Aγ , Γ′aγ ⊢ aγ : Aγ

♮-variable rule

Γ′ ♮relΓ A ♮A A

AΓ′

Γ′ Γ′ Γ ♮Γ ♮♮Γ ♮Γ

pΓ′

⊢(−)
(pb)

obt♮A

♮pA pA

(pb)

ret♮Γ ♮ret♮Γ

id
(99)

obt♮♮Γ

(109)

♮var-proj
γ:Γ ⊢ Aγ : Type

Γ, x : A, Γ′ ⊢ x : A

projective ♮-variable rule

Γ′ A ♮A A

AΓ′

Γ′ Γ′ Γ ♮Γ Γ

pΓ′

⊢(−)

pA

ret♮A

♮pA

obt♮Γ

pA

(pb)

ret♮Γ obt♮Γ

(110)
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♮-Compatibility with function types. (Syntax according to [RFL21, Rem. 2.4])

Γ ⊢ f : A→ B

Γ ⊢ f : A→ B

♮Γ Γ Map(pA, pB)

Map(pB , pB)

♮Γ ♮Γ Γ Γ

obt♮Γ

⊢f

⊢f

obt♮Γ

↔

A B

B

♮Γ ♮Γ Γ

p
A
≡

(
o
b
t
♮Γ ) ∗
p
A

˜
(⊢f) ◦ obt♮Γ

f

pB

pB
(pb)

obt♮Γ

↔

♮Γ Map(pA, pB)

♮Γ ♮Γ

⊢f
(111)
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Inference rules for ♮. (Syntax from [RFL21, Fig. 2][Ri22, Fig. 1.2]).

Syntax Semantics

♮-form
Γ ⊢ A : Type

Γ ⊢ ♮A : Type

A

♮Γ

(88) ♮relΓ A ♮(ret♮Γ)
∗A ♮A

Γ ♮Γ ♮♮Γ

pA

(pb)

♮qA

(pb)
♮pA

ret♮Γ ♮ret♮Γ

(112)

♮-intro
Γ ⊢ a : A

Γ ⊢ a♮ : ♮A

♮Γ A

♮Γ ♮Γ

Γ ♮Γ A ♮A

(ret♮Γ)
∗A

♮relΓ A

Γ Γ Γ ♮Γ ♮Γ ♮♮Γ

⊢a
pA

ret♮Γ ⊢a

pA

ret♮A

♮pA

qA

ret
♮relΓ

A

(91)

⊢ a ♮

ret♮Γ
ret♮♮Γ

(113)

♮-elim
Γ ⊢ b : ♮A

Γ ⊢ b♮ : A

Γ ♮relΓ A ♮
(
(ret♮Γ)

∗A
)

♮A

Γ Γ ♮Γ ♮♮Γ

Γ ♮relΓ A ♮
(
(ret♮Γ)

∗A
)

♮A A

(ret♮Γ)
∗A

Γ Γ Γ ♮Γ ♮♮Γ ♮Γ

⊢b

(pb)

♮qA

(pb) ♮pA

ret♮Γ ♮ret♮Γ

⊢b

b♮

(pb) (pb) ♮pA

obt♮A

pA

ret♮Γ ♮ret♮Γ

id
(99)

obt♮♮Γ

(114)

♮-beta
Γ ⊢ a : A

Γ ⊢ a♮♮ ≡ a : A

♮Γ ♮A A

♮Γ ♮Γ

♮Γ ♮A A ♮A A

♮Γ ♮Γ ♮♮Γ ♮Γ

bind♮(⊢a)
⊢ a

obt♮A

pA

bind♮(⊢a)

⊢ a

obt♮A

id
(92)

pA

ret♮A obt♮A

♮pA pA

ret♮♮Γ

id
(99)

obt♮♮Γ

(115)
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♮-eta
Γ ⊢ b : ♮A

Γ ⊢ b ≡ b♮♮ : ♮A

Γ ♮relΓ A ♮A

Γ Γ ♮♮Γ

Γ ♮Γ Γ ♮relΓ A ♮A A ♮A

Γ ♮Γ Γ Γ ♮♮Γ ♮Γ ♮♮Γ

⊢b

(pb) ♮pA

♮(ret♮Γ) ◦ ret
♮
Γ

ret♮Γ

⊢ b
(101)

obt♮Γ
⊢b

(pb) ♮pA

obt♮A

id
(92)

pA

ret♮A

♮pA

ret♮Γ

♮ret♮Γ ◦ ret♮Γ

(101)

obt♮Γ ♮(ret♮Γ) ◦ ret
♮
Γ

obt♮♮Γ

id
(92)

ret♮♮Γ

(116)

Observe that a 7→ a♮ is now interpreted simply by postcomposition with the naturality square for ret♮:

Internal construction of ♮-unit. (Syntax from [RFL21, Def. 2.1][Ri22, Def. 1.1.3])

Syntax Semantics

Γ ⊢ a:A

Γ ⊢ a:A

Γ ⊢ a♮:♮A

(107)

(113)

Γ ♮Γ Γ A ♮A ♮A

(ret♮Γ)
∗A A

♮relΓ A

Γ Γ Γ ♮Γ ♮Γ Γ Γ ♮Γ ♮♮Γ

ret♮Γ
⊢a

ret♮A ◦ (⊢ a)
(93)

obt♮Γ

⊢a

⊢a

pA

ret♮A
(♮vA)−1

∼

♮pA

(100) ♮pAret
♮relΓ

A

pA

vA ret♮A

(95)

(pb)

⊢ a ♮

ret♮Γ

obt♮Γ

id

(92)

ret♮Γ
ret♮♮Γ

∼

(117)

Γ ⊢ A : Type

Γ, a:A ⊢ a : A

Γ, a:A ⊢ a♮ : A

Γ ⊢ (a 7→ a♮) : A→ ♮A

(102)

(117)

A ♮A

♮relΓ A

Γ Γ ♮Γ

ret♮A

pA

a 7→ a ♮

♮pA
(pb)

ret♮Γ

(118)

♮-Compatibility with dependent pairs. (Syntax from [RFL21, Prop. 2.16][Ri22, Prop. 1.1.18]):

Syntax Semantics

Γ ⊢ A : Type

Γ, A ⊢ B : Type

Γ ⊢ ♮((x : A)×B(x)
)
)

≃ (u:♮A)× ♮B(u♮)

♮rel
♮relΓ A

B(−)
♮

♮B ♮
(
B(−)

♮

)
♮B

♮relΓ B

♮relΓ A ♮A ♮♮A ♮
(
♮relΓ A

)
♮♮A ♮A

Γ ♮Γ

(pb)
♮pB

(pb)
(pb)(10

4)
&
(11

4)

♮pB

∼

(84
)&

(11
8)

q♮A

(pb) ♮pA

ret♮♮A
(♮q♮A)−1

ret♮
♮relΓ A

(87)

♮qA
♮obt♮A

id
(99)

ret♮Γ

(119)
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3.2.3 Syntactic representation of the Motivic Yoga

We turn to the construction of dependent linear types, denoted QuTypeW in §3.1.

We show 1-categorical semantics (identity types are interpreted as diagonal maps ∆A : A→ A×A).

Linear types. (Syntax from [RFL21, pp. 24][Ri22, §2.1])
Syntax Semantics

Γ ⊢ A:Type Γ ⊢ x:♮A

Γ ⊢ Ax :≡ (a:A)× Id(a♮, x)

linear fiber

Ax ♮Γ ♮A

♮relΓ A

A ♮A× ♮Γ ♮A× ♮A

♮relΓ A×
Γ
♮relΓ A

Γ Γ ♮Γ ♮Γ× ♮Γ

(pb)

pAx

(pb)

⊢x
(pb)

(⊢x, id)
∆A(pb)

pA

⊢((−) ♮
, x)(118)

(ret♮A, ret
♮
Γ ◦ pA)

id×⊢x

♮pA×♮pA

∆
♮rel
Γ

A

(pb)

ret♮Γ ∆♮Γ

(120)

Γ ⊢ A:Type Γ ⊢ x:♮A

Γ ⊢ ♮
(
Ax
)
≃ ∗

linear fibers are indeed linear

♮Ax ♮Γ ♮♮Γ

♮A ♮
(
♮A× ♮Γ

)
∼

(120)
♮ret♮Γ

⊢x (pb)

(97)

♮(⊢x, id)

♮(ret♮A, ret
♮
A ◦ pA)

(121)

Γ ⊢ A : Type

Γ ⊢ A ≃ (x:♮A)×Ax

types are sums of their linear fibers

A ♮A

♮relΓ A

A×
Γ
♮A ♮A×

Γ
♮A

♮relΓ A×Γ ♮
rel
Γ A

Γ Γ ♮Γ

ret♮A(pb)
(pb)

(idA, ret
♮
A)

pA

∆♮A
(pb)

(ret♮A, id♮A)

(pb)

ret♮Γ

(122)

(...)

Conclusion. There exists an extension LHoTT of classical HoTT (Lit. 2.6) which serves as the internal logic for
categories of linear bundle types as in §3.1 and in [EoS], in particular reflecting the Motivic Yoga of operations
on such categories. Using this linear homotopy type theory, all of the quantum language constructions which we
consider in the following can in principle be encoded, i.e. these quantum language constructs are just syntactic
sugar for LHoTT code. That said, here we will not further dwell onformal LHoTT, the reader may find example
translations discussed in [Ri23].
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4 Quantum effects

We show that a system of basic (co)monads which is canonically defineable in dependent linear homotopy type theory
(LHoTT) equips the underlying (independent) linear type theory with the computational effects which otherwise
have to be postulated in (typed) quantum programming languages: besides a quantization modality (Q) (turning
bits into q-bits, etc.), these effects notably include quantum measurement (⃝) and conditional quantum state
preparation (9), which turn out to correspond to Coecke et al.’s “classical structures” Frobenius monad.

§4.1 – Classical epistemic logic via Dependent classical types;
§4.2 – Quantum epistemic logic via Dependent linear types;
§4.3 – Controlled quantum gates via Quantum effect logic.
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4.1 Classical epistemic logic via Dependent types

We lay out our perspective (following [nLab14][Co20, Ch. 4]) on (S5 Kripke semantics for) modal logic/type theory
(Lit. 2.13). This is naturally realized (see Rem. 4.4 below) by dependent type theory (Lit. 2.4), with “possible
worlds” given by terms of base types and with modal operators given by the (co)monads induced by dependent
(co)product18 type formation followed by context re-extension. This discussion is to prepare the ground for our
formal quantum epistemic logic in §4.2.

For expository convenience, we speak in the 1-categorical semantics where the type universe “ClaType” refers to
a topos of types (e.g.: Set) and for B : Type the universe ClaTypeB of B-dependent types refers to the slice topos
over B. All of the discussion is readily adapted to homotopy type theory proper and its∞-topos semantics without
any relevant changes, whence we do not dwell on it here (the homotopy theoretic aspect does become relevant
further below). The crux is that all the constructions considered now are readily available inside a dependently
typed language such as HoTT or LHoTT.

Dependent type formation by base change. The starting point is the basic fact that any W : TypeΓ, hence
any display map p

W
: W → Γ, induces a base change adjoint triple between W -dependent types and bare types in

the default context Γ:
W Γ

W -dependent
types ClaTypeW ClaTypeΓ

types in
default context

pw

dependent co-product∐
W

context ×W extension

∏
W

dependent product

⊥

⊥

(123)

via

D : TypeW ⊢
∐

W
D : Γ ClaType

γ 7−→ ∐
w : fibγ(pW )

Dw

D : TypeΓ ⊢ D ×W : W ClaType

w 7−→ Dp
W
(w)

D : TypeW ⊢
∏

W
D : Γ ClaType

γ 7−→ ∏
w : fibγ(pW )

Dw

(124)

whose (co)restriction along

types ClaTypeΓ PropΓ propositions
[-]0

propositional truncation

⊥ (125)

gives the quantifiers of first-order logic:

W -dependent
propositions PropW PropΓ

propositions in
default context

existential quantification

∃W =
[∐

W (-)
]
0

context ×W extension

∀W =
∏

W

universal quantification

⊥

⊥
(126)

It is immediate (and generally well-known but has previously received little attention in modal type theory)

18We say dependent co-product “
∐

B” for what is traditionally called the dependent sum “
∑

B” in intuitionistic type theory. Apart
from being the more descriptive term, this avoids a clash of terminology after passage to linear type theory where actual linear sums
of types (“direct sums”) do play a(nother) role.
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that by composing the adjoint type constructors (123) to endo-functors yields a pair of adjoint pairs of (co)monads:

W Γ

actual data ClaTypeW ClaTypeΓ potential data

p
W

♢
W

possibly

⊥

□
W

necessarily

dependent co-product∐
W

(-)×W

∏
W

dependent product

⊥

⊥

9W

randomly

⊥

⃝
W

indefinitely

(127)

whose (co)restriction along propositional truncation (125) we shall denote by the same symbols:

W Γ

actual propositions PropW PropΓ potential propositions

p
W

♢
W

possibly

⊥

□
W

necessarily

0-truncated
dependent co-product[∐

W (-)
]
0

(-)×W

∏
W

dependent product

⊥

⊥

9W

randomly

⊥

⃝
W

indefinitely

(128)

Actuality logic. The terminology on the left of diagram(127) is justified by the following Remark 4.1 and the
observation of Theorem 4.3 below, which we articulate as a theorem not because its proof would be much more
than an unwinding of definitions (nor surprising, in view of [Law69a]), but to highlight its Yoneda-Lemma-like
conceptual importance:

Remark 4.1 (Epistemic interpretation of dependent types). Concretely, we may read these modal operators (127)
as follows, where we use the traditional language of “possible worlds” (Lit. 2.13) but suggest to think of these
“worlds” quite concretely as classical states of an observed universe to the extent partially revealed by a particular
measurement, hence like the “many worlds” of quantum epistemology (Lit. 2.2).
(i) Given a proposition P• which depends on which world w is or has been measured:

□W
P• means: Pw means: ♢

W
P• as:

“Pw does or is known to
hold necessarily”

namely, no matter which
world w is measured.

“Pw does or is known to
hold actually”

namely for the given
world w measured.

“Pw does or is known to
hold possibly”

namely for some possibly
measured world w.

(ii) Moreover, the (co)unit ret♢ (obt□) of the above (co)monads reflect the logical entailment of these modal
propositions:

necessarily D•

□W
D•

actually D•

D•

possibly D•

♢
W
D•

w :W ⊢
∏
w′:W

D
w′ Dw

∐
w′:W

Dw′

entails

obt
□W

D•

entails

ret
♢

W

D•

(dw′:W ) 7→ dw dw 7→ (w, dw)

(129)

Remark 4.2 (Hexagon of epistemic entailments). The naturality of the transformations (129) is reflected in
commuting squares as shown in the following diagram (130), whose hexagonal composition gives the diagram (7)
announced in the Introduction (there evaluated for linear/quantum types, which we come to in §4.2, but the
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existence of the commuting hexagon as such depends only on the naturality of the epistemic entailments):

D•, D
′
• : Type

W

G• : D• → D′•
⊢

□♢D• □♢D′•

□D• □D′• ♢D′•

D• D′•

□♢G•

□
(
ret♢G•

) obt □
♢
D ′
•

obt□
(ret♢D′•

)

□

( re
t
♢
D•

)

□G•

obt □
D
•

obt□G•

□

( re
t
♢
D
′
•

)

obt □
D ′
•

G•

re
t
♢
D
′
•

=

□♢D• □♢D′•

□D• ♢D• ♢D′•

D• D′•

□♢G•

obt □
♢
D
•

obt□
(ret♢D•)

obt□♢G•

obt □
♢
D ′
•□

( re
t
♢
D•

)

obt □
D
•

♢G•

ret♢G•

G•

re
t
♢
D•

re
t
♢
D
′
•

(130)

For emphasis, the following theorem highlights that this epistemic logic of dependent types recovers what is
traditionally understood in modal logic:

Theorem 4.3 (S5 Kripke semantics as co-monadic descent). The possible-worlds Kripke semantics (20)
for S5 modal logic are precisely given by dependent type formation (127) (for ClaType ≡ Set) where a Kripke
frame

(
W : Set, R : W × W → Prop

)
corresponds to that display map (123) which is its quotient projection

pW : W ↠ Γ ≡W/R.

Proof. A classical theorem ([Kr63][FHMV95, Thm. 3.1.5], cf. [Sa10]) identifies the Kripke semantics for S5 modal
logic with precisely those Kripke frames

(
W,R

)
where R is an equivalence relation. The equivalence classes Γ of R

hence form a partition of W as

W =
∐
γ:Γ

fibγ(pW
) ,

which gives the incarnation of W as a Γ-dependent type. By (124), the induced comonad (127) acts as

P : PropW ⊢
□W

P : W Prop

w 7→ ∀
w′ : fibp

W
(w)(pW

)
P (w′)

(131)

But with pW identified as the quotient coprojection of R, we have

fibp
W
(w)(pW

) = (w′ :W )×R(w,w′)

whence (131) equals the traditional formula (20) for the Kripke semantics of the modal operator.

Remark 4.4 (Dependent type theory as universal Epistemic modal type theory). Thm. 4.3 suggests that one may
regard dependent type theory equivalently as a universal form of epistemic type theory (Lit. 2.14) in generalization
of how modal logics may be viewed as an equivalent perspective on (fragments) of first-order logic (cf. [BvBW07,
pp. xiii]). In both cases one switches perspective from type formation by base change adjoint triples (123)(126) to
the associated adjoint pairs of (co)monads (127)(128). (An analogous change in perspective happens in (algebraic)
geometry when expressing descent theory in terms of monadic descent.)
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Noticing that the development of general modal type theory is still in its infancy with its general linear form
hardly known at all, this change of perspective allows us to use (in §4.2) well-developed (linear) dependent type
theory to realize the epistemic form of modal type theory that we need for certifying quantum protocols.

Potentiality logic. The (co)monads on the right side of (127) are known in effectful classical computer science
(Lit. 2.15) as the W -(co)reader (co)monad, (48) often denoted as on the right here:

⃝
W
D ≡ [W, D] W -reader monad

9W
D ≡ W×D W -coreader comonad

(132)

What has not previously found attention is the corresponding modal/epistemic perspective on these operators. It
will be useful to dwell on this point a little. Our suggestion in (127) of potentiality as the antonym to actuality (the
latter well-established in modal logic) follows Aristotle and Heisenberg (as recounted in [Ja17]). In further support
of this nomenclature we offer the following fact, which gives a precise sense that:

ClaTypeΓ ClaType♢W

W

D : TypeΓ
potential data

(
D• : TypeW

data whose

, ρ : ♢
W
D• −−−−→ D•

possibility entails its actuality,

, utl♢
W
(ρ), act♢

W
(ρ)

consistently

)
Potential data is equivalently data whose possibility entails its actuality, consistently

∼

∼

is equivalently

(133)

(This compares favorably with the traditional informal intention of the “potentiality” modality, cf. [FG16, §44].)
Namely, we have:

Proposition 4.5 (Potential data as possibility modal data). For pW : W ↠ Γ an epimorphism (as in Thm.
4.3), the context extension (-)×W : ClaTypeΓ → ClaType

W
is monadic (45) whence the potential types (127) are

identified with the (free) possibility-modal types (41) and hence (49) also with the necessity-modal types:

ClaType♢W

W
possibility modal data

actual data ClaType
W

ClaTypeΓ potential data

ClaType□W

W
necessity modal data

≃♢
W

possibly

⊥

□
W

necessarily

∐
W

∏
W

×W
⊥

⊥

≃

(134)

Proof. By the Monadicity Theorem (45) and since the functor (-) × W has both a left and a right adjoint, it
is sufficient to see that it reflects isomorphisms; but this follows immediately from the assumption that pW is
surjective. Compare to [Jo02, Lem. 1.3.2], namely if (f × W )w ≡ fp

W
(w) is an isomorphism for w : W then

surjectivty of p
W

implies that fγ is an isomorphism for γ : Γ.

Remark 4.6 (Relation to monadic descent). The statement and proof of Prop. 4.5 correspond to what in (alge-
braic) geometry is known as monadic descent (e.g. [JT94, §2.1]): In this context, the display map p

W
would be

called an effective descent morphism, and ♢
W
-modale structure would be called descent data along pW .

Remark 4.7 (Relation to lenses). In the case Type = Set, the statement of Prop. 4.5 is known in the theory of
lenses in computer science. Here one regards ♢

W
-modale structure as a data base-type S equipped with functionality

to read out (get) and to over-write (put) W -data subject to consistency conditions (“lawful lenses”):

slice object ♢
W
-modale structure ♢

W
-unit law ♢

W
-action property

S

W

get

 ∈ Type
W

S ×W S

W

pr
W

put

get

W × S

S S

putget×id

W ×W × S W × S

W × S S

pr1×pr3

id
W
×put put

put

database type S with
W -read functionality

W -write functionality
verified by W -reading

overwriting identi-
cally has no effect

subsequent writing
overwrites previous


:
(
Type

W

)♢
W (135)
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and the upshot of the monadicity statement (Prop. 4.5, [JRW10, Thm. 12]19) is that this describes “addressed”
access to a data sub-base type, in that such S are necessarily of product form S ≃ W ×D with get = pr

W
, etc.

Random and (in)definite data. The (co)monads ⃝ (9) on the right of (127) are well-known in terms of
(co)effects in computer science (Lit. 2.15) as the “(co)reader (co)monad” (48), referring to the idea of a program
reading (providing) a global variable w :W . However, for staying true to the spirit of modal logic, here we refer to
these as the modalities of indefiniteness (randomness), in the following sense:

9W
D is the type of D is the type of ⃝

W
P• is the type of:

D-data d in a definite
but random world w
(as in “random access”)

plain D-data d
only potentially in
some possible world

indefinite D-data w 7→ dw
contingent on a pending
choice of possible world w.

randomly P

9WP

potentially P

P

indefinitely P

⃝
W
P∐

w′:W

P P
∏
w′:W

P

ret9W

P

entails

obt
⃝W

P

entails

(w, p) 7→ p p 7→ (w′ 7→p)
(136)

In particular, the monadic effect model (cf. Lit. 2.15) for operating on the parameter space W as on a random
access memory (RAM) is the state monad (34), which we may realize as the composite

⃝
W
9
W
D ≃

∏
W

∐
W

D ≃
[
W, W ×D

]
≡ WState(D), Type Type

9W

⃝
W

⊥WState . (137)

It is in this common sense of random access as about “choice” (instead of “chance”) that one should think about

9W as the modality of “being random”.

In summary so far, we have found that any classical (intuitionistic) dependently typed language may be regarded
as a rich epistemic modal type theory with, for every inhabited type W (in any ambient context Γ), the following
identifications:

actual data ClaType
W

ClaType potential data

♢
W

possibly

⊥

□
W

necessarily

dependent co-product∐
W

×W

∏
W

dependent product

⊥

⊥

9W

randomly

⊥

⃝
W

indefinitely

necessarily P•

□W
P•

actually P•

P•

possibly P•

♢
W
P•

w :W ⊢
∏
w′:W

Pw′ Pw
∐
w′:W

Pw′

randomly P

9WP

potentially P

P

indefinitely P

⃝
W
P∐

w′:W

P P
∏
w′:W

P

entails

ϵ
□W
P•

entails

η
♢

W
P•

(w′ 7→pw′) 7→ pw pw 7→ (w, pw)

ret9W

P

entails

obt
⃝W

P

entails

(w, p) 7→ p p 7→ (w′ 7→p)

(138)

Next we proceed to find the quantum analog (142) of this logic.

19[Spi19] concludes from this situation that the theory of “lenses” is best regarded as an aspect of the much broader and classical
theory of indexed categories (Grothendieck fibrations). Syntactically this means to regard them as an aspect of the theory of dependent
types which – when also taking into account the related system of (co)monads – is the thesis that we are developing here.
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4.2 Quantum epistemic logic via dependent linear types

On the backdrop (§4.1) of classical (intuitionistic) epistemic type theory understood as an equivalent re-interpretation
of classical (intuitionistic) dependent type theory, and in view (§3) of the existence of dependent linear type theory
LHoTT, we are led to expect that quantum epistemic type theory ought to analogously be obtained by re-regarding
the base change adjunction (70) of dependent linear type formation

Finite classical context
(parameters, measurement
results: “possible worlds”) W Γ

Reference context

(classes of “worlds”)

Classical type system
dependent on context

(
ClaType

W
,

pr
od
uc
t

×
W

) (
ClaType

Γ
,

pr
od
uc
t

×Γ

)
Classical (intuit.)

type system
Classical base change /
classical quantification

Linear type system
in classical context

(
QuType

W
,

te
ns
or

⊗
W

) (
QuType

Γ
,

te
ns
or

⊗
Γ

)
Linear

type system
Quantum base change /

Motivic Yoga

p
W

display map

∐
W

dependent
co-product

×W∏
W

dependent product

⊥

⊥

⊕
W

dependent
direct sum

⊗1W

⊕
W

⊥

⊥

by passing to the induced (co)monads, which we denote by the same symbols as their classical counterparts (127):

W Γ

Actual quantum data QuTypeW QuTypeΓ Potential quantum data

p
W

♢
W

possibly

⊥

□
W

necessarily

dependent direct sum

⊕W

⊗1W

⊕W

dependent direct sum

⊥

⊥

9W

randomly

⊥

⃝
W

indefinitely

(139)

A key point now is the ambitexterity (70) of the base change for dependent linear types along a finite classical type
W :

W : FinClaType ⊢
(
⊕
W
⊣ ⊗1

W
⊣ ⊕

W

)
(140)

It is now as elementary to work out the (co)units of these (co)monads (they are the universal maps of the direct
sum construction) as it is interesting – in view of quantum epistemology (Lit. 2.1):
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Proposition 4.8. The (co)units and (co)joins of the (co)monads in (139) are given, in components, as follows:

Epistemic entailments in Quantum modal logic

□
W
H• H• H• ♢

W
H•

w :W ⊢ ⊕
w′
Hw Hw w :W ⊢ Hw ⊕

w′
Hw′

9
W
H H H ⃝

W
H

⊕
w
H H H ⊕

W
H

obt
□W

H•

necessity counit

ret
♢

W

H•

possibility unit

⊕w′ |ψw′ ⟩ 7→ |ψw⟩
quantum state collapse

|ψw⟩ 7→ ⊕w′δw
′

w |ψw⟩
quantum state preparation

“ what is actual is possible ”“ what is necessary is actualized ”

“ what is random exists potentially ” “ what exists potentially is indeterminate ”

obt
9W

H

randomness counit

ret
⃝B

H

indefiniteness unit

⊕w|ψw⟩ 7→
∑

w |ψw⟩
quantum superposition

|ψ⟩ 7→ ⊕w|ψ⟩
quantum parallelism

⃝
W
⃝
W
H ⃝

W
H 9

W
H 9

W
9
W
H

⊕
w

(
□
W
H H

)
⊕
w

(
H ♢

W
H
)

⊕w′ |ψw,w′⟩ 7→ |ψw,w⟩ |ψw⟩ 7→ ⊕w′δw
′

w |ψw⟩

♢
W
♢
W
H• ♢

W
H• □

W
H• □

W
□
W
H•

w :W ⊢ 9
W
⊕
W
H• ⊕

W
H• w : A ⊢ ⊕

W
H• ⃝

W
⊕
W
H•

⊕
w′′
|ψw,w′,w′′⟩ 7→

∑
w′′
|ψw,w′,w′′⟩ |ψw,w′⟩ 7→ ⊕

w′′
|ψw,w′⟩

join
⃝

W

H

indefiniteness join

dplc
9W

H

randomness cojoin

obt
□W

H

quantum state collapse

obt
♢

W

H

quantum state prepar.

join
♢

W

H•

possibility join

dplc
□W

H•

necessity cojoin

obt
9W

⊕
W
H•

quantum superposition

ret
⃝

W

⊕
W
H•

quantum parallel.

Here the (co)joins in the lower half follow from the (co)units in the top half via (27).
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Monadicity of quantum data. We observe that quantum data as in (139) is characterized by two monadicity
theorems:

– Prop. 4.9: Potential quantum data is possibility-modal actual data.
– Prop. 4.11: Actual quantum data is indefiniteness-modal potential data.

First, we have the following quantum analog of the classical situation from Prop. 4.5:

Proposition 4.9 (Potential quantum data as possibility-modal actual data). For pW : W ↠ Γ an epimorphism
(as in Thm. 4.3) the context extension (-) ⊗ 1

W
: QuTypeΓ → QuType

W
is monadic (45) whence the potential

quantum types (139) are identified with the (free) possibility/necessity modal types (41) (just as classically (134)):

QuType♢W

W
possibility modal data

actual quantum data QuType
W

QuTypeΓ potential quantum data

QuType□W

W
necessity modal data

≃♢
W

possibly

⊥

□
W

necessarily

⊕W

⊕W

⊗1W

⊥

⊥

≃

(141)

Proof. This statement has verbatim the same abstract proof – via the monadicity theorem (46) and the comparison
statement (49) – as its classical counterpart in Prop. 4.5, relying on the fact that ⊗1W is conservative (by the
same argument as before) and both a left and a right adjoint.

Remark 4.10 (Homomorphisms of free ♢/□-modales). More explicitly,
(i) for some G• : ♢

W
H• → ♢W

K• to be a homomorphism of (free) ♢-modales, it needs to make the following
square commute:

♢
W
♢
W
H• ♢

W
H•

⊕
w′′
|ψw,w′,w′′⟩

∑
w′′
⊕
w′
|ψw,w′,w′′⟩

Gw
∑
w′′
⊕
w′
|ψw,w′,w′′⟩

⊕
w′′
Gw′′ ⊕

w′
|ψw,w′,w′′⟩

∑
w′′
Gw′′ ⊕

w′
|ψw,w′,w′′⟩

♢
W
♢
W
K• ♢

W
H•

join
♢

W

H•

♢
W
G• G•

join
♢

W

K•

This is clearly possible only if Gw is actually independent of w, ie. if G• = G := G⊗ 1
W
.

(ii) Analogously for homomorphisms of free □-modales:

□
W
H• □

W
□
W
H•

⊕
w′
|ψw,w′⟩ ⊕

w′′
⊕
w′
|ψw,w′⟩

⊕
w′′
Gw′′⊕

w′
|ψw,w′⟩

Gw⊕
w′
|ψw,w′⟩ ⊕

w′′
Gw⊕

w′
|ψw,w′⟩

□
W
K• □

W
□
W
K•

dplc
□W

H•

G• □
W
G•

dplc
□W

K•
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In summary so far, we have found a quantum epistemic logic with the following interpretations, analogous to
(138):

necessarily H•
□W
H•

actually H•
H•

possibly H•
♢

W
H•

necessarily H•
□W
H•

In world

w :W
observe...

⊢ H Hw H, where H := ⊕
w′:W
Hw′

randomly H

9W
H

potentially H

H
indefinitely H
⃝

W
H

⊕
w:W
H H ⊕

b:B
H

entails

obt
□W

H•

entails

ret
♢

W

H•
≃

principle of quantum compulsion:

is

⊕w′ |ψw′ ⟩ 7→ |ψw ⟩

measurement collapse

linear projector onto sub-Hilbert space Hw

|ψw⟩7→⊕w′δw
′

w |ψw⟩

state preparation

obt
9W

H

entails

ret
⃝

W

H

entails

⊕
W
|ψ

W
⟩ 7→

∑
W
|ψ

W
⟩

quantum superposition

|ψ⟩ 7→ ⊕w′:W |ψ⟩

quantum parallelism

(142)

However, for linear types, we have yet another monadicity statement:

Proposition 4.11 (Actual quantum data as indefiniteness-modal potential data). For W : FinClaTypeΓ and
p

W
:W → Γ an epimorphism, the dependent sum ⊕

W
: QuType

W
→ QuTypeΓ is also monadic, whence the actual

quantum types are identified with the (free) randomness/infiniteness modal types:

Randomness modal data QuType9W

Γ

Actual quantum data QuTypeW QuTypeΓ Potential quantum data

Indefiniteness modal data QuType
⃝

W

Γ

≃
⊕W

⊗1W

⊕W

⊥

⊥

9W

randomly

⊥

⃝
W

indefinitely

≃

(143)

Proof. Due to ambidexterity (140) for finite W , in the quantum case also ⊕
W

is both a left and right adjoint, as
shown. Therefore the monadicity theorem (46) implies the claim for ⃝

W
by observing that ⊕

W
is conservative.

This is indeed the case, as it sends a morphism to its world-wise application, which is an isomorphism of dependent
types if and only if it is so world-wise, hence if and only the original morphisms was so. The dual claim for the
adjoint comonad 9 now follows by (49).

Remark 4.12 (Effective perspective on quantum epistemology). Prop. 4.11 says that (over a finite inhabited type
of classical worlds W ) dependent linear types are ⃝-monadic! But since we have seen that dependent linear types
may be thought of as quantum states in “many worlds”, this gives a monadic perspective on quantum epistemology
which allows for speaking about it in terms of computational effects (Lit. 2.15).

Hence we shall refer to these equivalent perspectives as the epistemic and the effective perspective, respectively:

Epistemic
perspective

QuType
W

H• K• H
in-dependent type

H H

←
→

←
→

←
→

Effective
perspective

QuTypeΓ ⊕
W
H• ⊕

W
K•

free ⃝
W
-modale

⃝
W
H bind(H ⃝

W
K)

m
o
n
a
d
ic
it
y

o
f
⊕

W ⊕
W

⊗1
W ⊣

G•
map of W-dependent types

G•

W-dependent map of
in-dependent types

⃝
W

⃝
W

⊕
W
G•

homomorphism of ⃝
W

-modales

⃝
W

⊕
W
G• ◦ ret

⃝
W

H

⃝
W
-Kleisli map

(144)
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The effective perspective on the epistemic entailments (142) yields an effect-language for quantum measurement
and controlled quantum gates – this we discuss next in §4.3.

Remark 4.13 (Relation to zxCalculus). Something close to the identification
(
QuType

Γ

)9W ≃ QuType
W

(in
Prop. 4.11) has previously been observed in [CPav08, Thm. 1.5] (cf. Lit. 2.16), subject to some translation which
we discuss now.

Frobenius-algebraic formulation. Remarkably, the above modal quantum logic gives rise to the “classical-
structures” Frobenius monads used in the zxCalculus (Lit. 2.16). In particular this shows that/how LHoTT/QS
can be used for certifying (type-checking) zxCalculus-protocols:

Proposition 4.14 (Quantum (co)effects via Frobenius algebra).
(i) For W : ClaType, the W -(co)reader (co)monad on linear types (§4.2) is equivalent to the linear version

QW ⊗ (-) of the (co)writer (co)monad (33) induced by the canonical (co)algebra structure on QW ≡ ⊕
W
1;

(ii) If W : FinClaType is finite then the underlying functors of all these (co)monads agree and make a single
Frobenius monad induced from the canonical Frobenius-algebra structure on QW = ⊕

W
1 (cf. Lit. 2.16):

Frobenius structure on QW = ⊕
W
1

algebra structure coalgebra structure

1 QW

1 7→ ⊕w|w⟩

QW ⊗QW QW

|w1⟩ ⊗ |w2⟩ 7→ δw2
w1
|w2⟩

unit
QW

prod
QW

QW 1

|w⟩ 7→ 1

QW QW ⊗QW

|w⟩ 7→ |w⟩ ⊗ |w⟩

counit
QW

coprod
QW

quantum
indefiniteness

quantum
randomness

quantum
reader

quantum
(co)writer

quantum
co-reader

⃝
W

QW ⊗ (-) 9
W

Monads FrobMonads CoMonads

≃ ≃

Proof. With Prop. 4.8, this is a straightforward matter of unwinding the definitions:

m
e
a
su

re
m
e
n
t

epistemic □
W

(1
W
⊗H) 1

W
⊗H

effective ⃝
W
⃝
W
H ⃝

W
H H

∼ ←
→ ∼ ←
→ ∼ ←
→

algebraic QW ⊗QW ⊗H QW ⊗H 1⊗H

obt
□W

H⊗1
W

⊕
W

⊕
W

join
⃝

W

H ret
⃝

W

H

prod
QW
⊗ idH

|w1, w2⟩⊗|ψ⟩ 7→ δw2
w1
|w2⟩⊗|ψ⟩

unit
QW
⊗ idH∑

w |w⟩⊗|ψ⟩← [ 1⊗|ψ⟩

st
a
te

p
re

p
a
ra

ti
o
n epistemic 1

W
⊗H ♢

W
1
W
⊗H

effective H 9
W
HT 9

W
9
W
H

∼ ←
→ ∼ ←
→ ∼ ←
→

algebraic H QW ⊗H QW ⊗QW ⊗H

ret
♢

W

H⊗1
W

⊕
W

⊕
W

obt
9W

H dplc
9W

H

counit
QW

|ψ⟩← [ |w⟩⊗ |ψ⟩

coprod
QW
⊗idH

|w⟩⊗|ψ⟩ 7→ |w⟩⊗|w⟩⊗|ψ⟩

(145)

In fact, this Frobenius structure is “special” in that

9
W

9
W
9
W

⃝
W
⃝
W

⃝
W

dplc9W

∼

≃ join
⃝

W

(146)

64



Remark 4.15 (Frobenius property and Spider theorem). The Frobenius property of ⃝ ≃ 9 (Prop. 4.14) says
explicitly that this diagram commutes:

9
W
9
W
⃝
W

9
W
⃝
W
⃝
W

9
W
⃝
W

9
W
⃝
W

⃝
W
9
W

⃝
W
9
W

⃝
W
9
W
9
W

⃝
W
⃝
W
9
W

≃ 9
W join ⃝W

(-)

≃

dpl
c
9W

⃝W
(-)

≃

⃝
W dplc9W(-)

≃ join
⃝W

9W
(-)

but this already implies (by the theory of normal forms [Ab96, Prop. 12, Fig. 3][Ko04], together with specialty
(146))the equality of all those transformations of the form

⃝n
9
n′

(147)

which arise as composites of ⃝-joins and of 9-duplicates and which are connected in that there is no non-trivial
horizontal decomposition such as in this simple disconnected example:

⃝
W
⃝
W
⃝
W
H ⃝

W
⃝
W
H ⃝

W
H ≃9

W
H 9

W
9
W
H

QW ⊗QW ⊗QW ⊗H QW ⊗QW ⊗H QW⊗H QW ⊗QW ⊗H

join
⃝

W

⃝
W
H join

⃝
W

H dplc
9W

H

prodQW ⊗ idQW
prod

QW
⊗ idH coprod

QW
⊗ idH

This classical fact of Frobenius algebra theory has been called the spider theorem in [CD08, Thm. 1], since it means
that in string diagram notation, all the operations (147) may uniquely by depicted by a diagram of this form:

n


...

...


n′ (148)

These are the spider diagrams used in zxCalculus (Lit. 2.16).
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4.3 Controlled quantum gates

We explain how controlled quantum gates and quantum measurement gates (Lit. 2.1) are naturally represented in
the quantum modal logic of §4.2 and give (Prop. 4.16) a formal proof of the deferred measurement principle (9).

Data-typing of controlled quantum gates via quantum modal types.

We may observe that, with §4.2,
we now have available the natural
data-typing of classical/quantum
data that is indicated on the right.

Notice how the distinction between
classical and quantum data is re-
flected by the application or not of
the (co)monad ⃝ (□).

Throughout we use monadicity of
⊕

W
(Prop. 4.11) to translate (144)

• epsistemic typing
via W -dependent linear types

into
• effective typing
via ⃝W -modal linear types.

Besides the practical utility which
we demonstrate in the following,
the modal logic of this typing
neatly reflects intuition, as shown.

Classical/quantum register Controlled quantum register

S
y
m
b
o
li
c

W

H

QW

H

E
p
is
te
m
ic

actual quantum data potential quantum data

H• : QuType
W

w :W ⊢ Hw : QuType

□
W
H• : QuType

W

w :W ⊢ ⊕
w′
Hw′ : QuType

E
ff
e
c
ti
v
e

indefiniteness-handling quantum data free indefiniteness-handling quantum data

⊕
W
H• : QuType⃝W

⃝
W ⊕

W
□
W
H• : QuType⃝W

⃝
W
⊕
W
H• : QuType⃝

W

⃝
W

Classically controlled quantum gate Quantumly controlled quantum gate

S
y
m
b
o
li
c WW

KH G

QWQW

KH G

E
p
is
te
m
ic

H• K•

w :W ⊢ Hw Kw

G•

an actual entailment

Gw

□
W
H• □

W
K•

w :W ⊢ ⊕
W
H• ⊕

W
K•

□
W
G•

a potential entailment

⊕
W
G•

E
ff
e
c
ti
v
e ⊕

W
H• ⊕

W
K•

⃝
W
H ⃝

W
K

⃝
W

⊕
W
G•

if H•=H

⃝
W

if K• =K
⃝
W
G•

bind
(
H

G•−−→⃝
W
K
)

a ⃝-effectful operation

⊕
W
□
W
H• ⊕

W
□
W
K•

⃝
W
⊕
W
H• ⃝

W
⊕
W
K•

⃝
W

⊕
W

□
W
G•

⃝
W

⃝
W
⊕
W
G•

bind
(
return ◦⊕

W
G•

)
a ⃝-effectless operation

Here the “epistemic”-typing of controlled quantum gates shown in the middle row is manifest: For classical
control the quantum gate is a W -dependent linear map, while for quantum control it is a genuine linear map
on the W -indexed direct sum. The equivalent (144) “effective” typing in the top line of the bottom row follows
by monadicity of ⊕

W
(see Prop. 4.11). The very last line shows the corresponding Kleisli-triple formulation of

“programs with side effects” (21). On the left this requires assuming that the dependent linear type is constant,
H• = H (which typically is the case in practice, see the example on p. 68) since that makes it correspond to a free
⃝-modale. On the right we see the effectless operation (22).

66



Quantum measurement – Copenhagen-style.
Last but not least, we obtain this way a natural typing
of the otherwise subtle case of quantum measurement
gates: These are now given simply by the □-counit
and, equivalently, by the ⃝-join (cf. Prop. 4.8), as
shown on the right.

Via the language of effectful computation (Lit. 2.15)
and with the “reader-monad” ⃝ modally pronounced
as “indefiniteness” (136), this translates to the pleasant
statement that:

“For effectively-typed quantum data, quantum mea-
surement is nothing but the handling of indefiniteness-
effects.”

In more detail:
“Before measurement, quantum data is indefinite(-
effectful), while quantum measurement actualizes the
data by handling of its indefiniteness(-effect)”

This way the puzzlement of the “state collapse” (12) is
resolved into an appropriate quantum effect language
equivalent (144) to quantum modal logic.

Quantum measurement gate

S
y
m
b
o
li
c

QW W

H H

0 1

E
p
is
te
m
ic □

W
H• H•

w :W ⊢ ⊕
w′
Hw′ Hw

⊕
w′
|ψw′⟩ |ψw⟩

obt
□
W

H•

the necessary becomes actual

prw

quantum state collapse

E
ff
e
c
ti
v
e ⊕

W
□
W
H• ⊕

W
H•

(44)

⃝
W
⊕
W
H• ⊕

W
H•

⃝
W

⊕
W

obt
□
W

H•

⃝
W

hndl
⃝

W

⊕
W
H•

⃝
W
-effect handling

Before looking at examples (p. 68), we record a basic structural result immediately implied by this typing, which
may evidently be understood as formalizing the deferred measurement principle (9), thus making this principle
verifiable in LHoTT as [Sta15] envisioned should be the case for any respectable quantum programming language:

Proposition 4.16 (Deferred measurement principle). With respect to the above typing of quantum gates, the

□-Kleisli equivalence (42) is the following transformation of quantum circuits:

(QuType
W
)
□W

(
H•, H′′•

)
□
W
-Kleisli morphisms

QuType□W

W

(
□
W
H•, □

W
H′′•
)

homomorphisms of
free □

W
-coalgebras

(QuType
W
)
□W

(
H•, H′′•

)
□
W
-Kleisli morphisms

(
□
W
H•

F−→ □
W
H′•

obt□W

H•−−−→ H′•
G•−−→ H′′•

)
measurement-controlled quantum gate

7→
(
□
W
H•

F−→ □
W
H′•
□W

G•
−−−−−→ □

W
H′′•
)

quantum-controlled quantum gate...

7→
(
□
W
H•

F−→ □
W
H′•
□W

G•
−−−−−→ □

W
H′′•

obt□W

H•−−−→ H′′•
)

...followed by measurement

0 1

F

G

WQW

H H′′H′

deferred measurement principle←−−−−−−−−−−−−−−−−−−−−−→

WQW

H H′′

0 1

F

G

∼

□
W

(-) ◦ dplc
□W

(-)

id
Kleisli equivalence

∼

obt
□W

(-) ◦ (−)

Proof. It just remains to see that the Kleisli equivalence □
W
(-) ◦ dplc□W

(-) acts in the first step as claimed, hence that

the following diagram commutes:

□
W
H• □

W
H′•

□
W
□
W
H• □

W
□
W
H′• □

W
H′• □

W
H′′•

dplc
□W

H•

F

dplc
□W

H′
•

□W
F □

W

(
obt

□W

H′
•

)
□W

G•

But the square commutes since the gate F is independent of the measurement result w : W and hence is a
homomorphism of free □-coalgebras (by Rem. 4.10), while the triangle commutes by the comonad axioms (24).
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Example: Modal typing of basic QBit-gates.
The key aspects of the above modal typing rules for
quantum gates are already well-illustrated by simple
examples of standard QBit-gates such as the CNOT-
gate (8).
Here the quantum state space is that of a
pair of coupled qbits, QBit ⊗ QBit, and the
“many possible worlds” W ≡ Bit are labeled
by the bits which are the classical outcomes
of measurements on the first qbit in the pair:

Bit ≡ {0, 1} ∈ ClaType ,

QBit ≡ C
[
{0, 1}

]
≃ C2 ∈ QuType .

In seeing how the modal typing shown on the right
and below matches the standard formulas (8) we re-
peatedly make use of the following canonical identi-
fications:

QBit⊗QBit

≃ C[Bit]⊗QBit

≃
(
C0 ⊕ C1

)
⊗QBit

≃ QBit0 ⊕QBit1
≃ ⊕

Bit
QBit•

≃ ⃝
Bit

QBit ,

where the subscript indicates which direct summand
corresponds to which “branch” of “worlds” of possi-
ble measurement outcomes.

QBit-Measurement

sy
m
b
o
li
c

0 1
QBit

QBit

Bit

QBit

e
p
is
te
m
ic □

Bit
QBit• QBit•

b : Bit ⊢ QBit⊗QBit QBit

|b1⟩ ⊗ |b2⟩ 7→ δb1b |b2⟩

obt
□Bit

QBit•

E
ff
e
c
ti
v
e

⃝
Bit
⃝
Bit

QBit ⃝
Bit

QBit

QBit⊗QBit
⊕

QBit⊗QBit
QBit⊗QBit

bind

(
QBit⊗QBit

QBit
⊕

QBit

)

hndl
⃝

Bit

⃝
Bit

QBit

P0⊗id

P1⊗id

|b1⟩⊗|b2⟩ 7→ δ
b1
0
|b2⟩

|b1⟩⊗|b2⟩ 7→ δ
b1
1 |b2⟩

CNOT gate

S
y
m
b
o
li
c

Bit

QBit

Bit

QBit

QBit

QBit

QBit

QBit

E
p
is
te
m
ic QBit• QBit•

b : Bit ⊢ QBit QBit

|b2⟩ 7→ |b xor b2⟩

CNOT•

□
Bit

QBit• □
Bit

QBit•

b : Bit ⊢ QBit⊗QBit QBit⊗QBit

|b1⟩ ⊗ |b2⟩ 7→ |b1⟩ ⊗ |b1 xor b2⟩

□
Bit

CNOT•

E
ff
e
c
ti
v
e

⃝
Bit

QBit ⃝
Bit

QBit

QBit
⊕

QBit

QBit
⊕

QBit

bind

(
QBit

QBit
⊕

QBit

)

⊕
Bit

CNOT•

|b2⟩ 7→ |0 xor b2⟩

⊕
|b2⟩ 7→ |1 xor b2⟩

|b2⟩ 7→ |0 xor b2⟩

|b2⟩ 7→ |1 xor b2⟩

⃝
Bit
⊕
Bit

QBit ⃝
Bit
⊕
Bit

QBit

QBit⊗QBit
⊕

QBit⊗QBit

QBit⊗QBit
⊕

QBit⊗QBit

bind

(
QBit⊗QBit QBit⊗QBit

QBit⊗QBit
⊕

QBit⊗QBit

)

⃝
Bit
⊕
Bit

CNOT•

|b1, b2⟩ 7→ |b1, b1 xor b2⟩

⊕
|b1, b2⟩ 7→ |b1, b1 xor b2⟩

|b1, b2⟩ 7→ |b1, b1 xor b2⟩
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For the record, we also spell out the two possible combinations of the above CNOT- and QBit-measurement gates:

CNOT with QBit-Measurement

sy
m
b
o
li
c

0 1
QBit

QBit

Bit

QBit

0 1
QBit

QBit

Bit

QBit

e
p
is
te
m
ic □

Bit
QBit• QBit• QBit•

b : Bit ⊢ QBit⊗QBit QBitb QBitb

|b1⟩ ⊗ |b2⟩ 7→ |b2⟩ 7→ |b xor b2⟩

measurement

obt
□W

QBit•

cls. contr. qnt. NOT

CNOT•

□
Bit

QBit• □
Bit

QBit• QBit•

b : Bit ⊢ QBit⊗QBit QBit⊗QBit QBitb

|b1⟩ ⊗ |b2⟩ 7→ |b1⟩ ⊗ |b2 xor b1⟩ 7→ |b2 xor b⟩

quantum CNOT

□
Bit

CNOT•

measurement

obt
□Bit

QBit•

E
ff
e
c
ti
v
e

⃝
Bit
⊕
Bit

QBit ⊕
Bit

QBit ⊕
Bit

QBit

QBit⊗QBit
⊕ QBit⊗QBit QBit⊗QBit

QBit⊗QBit

bind

(
QBit⊗QBit

QBit
⊕

QBit

QBit
⊕

QBit

)

hndl
⃝

Bit

QBit
⊕
Bit

CNOT•

P0⊗id |b1⟩⊗|b2⟩ 7→ |b1⟩⊗|b1 xor b2⟩

P1⊗id

|b1,b2⟩ 7→ δ
b1
0
|b2⟩

|b1,b2⟩ 7→ δb1
1 |b2⟩

|b2⟩ 7→ |0 xor b2⟩

|b2⟩ 7→ |1 xor b2⟩

⃝
Bit
⊕
Bit

QBit ⃝
Bit
⊕
Bit

QBit ⊕
Bit

QBit

QBit⊗QBit QBit⊗QBit
⊕ ⊕ QBit⊗QBit

QBit⊗QBit QBit⊗QBit

bind

(
QBit⊗QBit QBit⊗QBit

QBit
⊕

QBit

)

⃝
Bit
⊕
Bit

QBit hndl
⃝
⊕

Bit
QBit

|b1⟩⊗|b2⟩ 7→ |b1⟩⊗|b1 xor b2⟩

P0⊗id
⊕

|b1⟩⊗|b2⟩ 7→ |b1⟩⊗|b1 xor b2⟩

P1⊗id

|b1⟩⊗|b2⟩ 7→ |b1⟩⊗|b1 xor b2⟩ |b1,b2⟩ 7→ δ
b1
0
|b2⟩

|b1,b2⟩ 7→ δb1
0 |b2⟩

Notice here how the component expressions on the left and right agree, in accord with the deferred measurement
principle (Prop. 4.16). In components this is an elementary triviality, but the point is that by making this triviality
follow from typing rules it becomes machine-verifiable also in more complex cases.

qRAM. As a byproduct of the modal typing of controlled quantum gates, we may notice a formal reflection of
the idea of circuit models for qRAM (11). Namely if, with (36), we recall that RAM-effects are typed by the state
monad⃝

W
9
W

(137) — which immediately makes sense linearly just as it does classically—, then quantumly controlled

quantum circuits in the above sense (p. 66) are formally identified with QRAM-effective quantum programs as
follows, where the first transformation is for effectless programs (22) while the second is 9W

⊣ ⃝
W
-adjointness

(26):

The passage to circuit models for qRAM (11)
may formally be understood as the modal ad-
jointness between

(i) QRAM-effective quantum programs
H 7−→ ⃝

W
9
W

K

(ii) quantumly controlled quantum circuits
⊕
W
H 7−→ ⊕

W
K

⃝
W
⊕
W
H ⃝

W
⊕
W
K QW -controlled

quantum gate (p. 66)

⊕
W
H ⊕

W
K

9
W
H 9

W
K

H ⃝
W
9
W
K quantum circuit interacting

with a QRAM space QW

⃝
W

⃝
W
⊕
W
G•

⃝
W

⊕
W
G•

⊕
W
G•

⊕̃
W
G•

(149)
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Quantum contexts. The formal dual of the previous discussion of quantum measurement realized as a monadic
computational effect yields quantum state preparation realized as a comonadic computational context (2.15): Shown
on the left below is the modal typing of quantum state preparation in the generality of classical control, namely
quantum state preparation conditioned on a classical parameter w : W . In the practice of quantum circuits, this
typically applies to quantum types of the form 1

W
in which case the traditional notion of state preparation is

manifest: In world w the result of the preparation is the quantum state |w⟩. This is shown for the example of
QBit-preparation on the right:

quantum state preparation

S
y
m
b
o
li
c

W QW

H H

| • ⟩

E
p
is
te
m
ic

H• ♢
W
H•

w :W ⊢ Hw ⊕
W
H•

|ψw⟩ 7→ ⊕
w′
δw

′

w |ψw⟩

ret
♢

W

H•

c
o
-e
ff
e
c
ti
v
e

⊕
W
H• ⊕

W
♢
W
H•

(44)

⊕
W
H• 9

W
⊕
W
H•∑

w
|ψw⟩ 7→ ⊕

w′
|ψw′⟩

9
W ⊕

W
ret

♢
W

H•

9
W

prvd
9W

⊕
W
H•

QBit preparation

S
y
m
b
o
li
c

Bit QBit

1 1

| • ⟩

E
p
is
te
m
ic

1
Bit

♢
Bit

1
Bit

b : Bit ⊢ 1 QBit

1 7→ | b⟩

ret
♢

Bit

1Bit

Quantum measurement – Everett style. But we may observe that quantum state preparation in the above
classically-controlled generality can itself be used to model quantum measurement, namely as the preparation of
the collapsed state conditioned on the classical measurement outcome!

This is seen from the last line of the co-effective typing above, which we recognize as the branching-perspective
on quantum measurement – if only we disregard the 9W

-modale homomorphism property of this map – which
formally corresponds to pulling this map back up by applying (-)⊗ 1

W
. This yields the following purple map and

hence the Everett-style typing of quantum measurement mentioned in the introduction (7) — which is related to
the above Copenhagen-style typing (from p. 67) by the hexagon of epistemic entailments (4.2):

□
W
H• □

W
H• □

W
♢
W
H• □

W
♢
W
H•

w :W ⊢ ⊕
W
H• ⊕

W
H• 9

W
⊕
W
H• 9

W
⊕
W
H•

H H

H
⊕
...
⊕
H

H
⊕
...
⊕
H∑

w′
|ψw′⟩ 7→ ⊕

w′′
|ψw′′⟩ 7→ ⊕

w′′
Gw′′ |ψw′′⟩

□
W
G• □

W
ret

♢
W

H•

quantum measurement
typed Everett-style

□
W

♢
W
G•

l

⊕
W
G•

coherent quantum gate

≡

prvd
9W

⊕
W
H•

collapsed-state-preparation
by providing 9-context

≡

≡

9W

9
W
⊕
W
G•

coherent quantum gate
under 9 ≡

9W

G

P1
... branching

P|W |

G
⊕
...
⊕
G

(150)
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Remark 4.17 (No classical control appears in Everett-typing). Comparing the epistemic hexagon (7), we find
that where the Copenhagen-style typing sees a classically-controlled quantum gate (cf. p. 66) the Everett-style
typing (150) sees (no classical control) but the corresponding quantumly-controlled quantum gate — but applied
in each of several “branches”.

This primacy of the non-classical quantum perspective and the disregard for the need of any classical contexts
is what Everett amplified when speaking of the “universality” of the quantum state (this being the very title of
his thesis [Ev57a]). The modal typing of quantum processes in (150) provides a formalization of this intuition in a
precise and machine-verifiable form.

Remark 4.18 (Everett-style measurement typing in the literature). Essentially the typing-by-branching of quan-
tum measurement in the bottom of (150) may be recognized in the early proposal for quantum programming
language syntax in [Se04, p. 568].

The observation (apparently independently of [Se04]) that this may usefully be understood as the prvd-operation
of modales (coalgebras) over the comonad9W ≃ QW⊗(-) (Prop. 4.14) is due to [CPav08, Thm. 1.5] (cf. [CPP0909,
pp. 28]) — this being the origin of the Frobenius-monadic formalization of “classical structures” in the zxCalculus
(Rem. 4.15).

While — in formulating the quantum language QS below in §6 — we focus on language constructs for the
Copenhagen-style typing (since this brings out the desired dynamic lifting of quantum-to-classical control, Lit.
2.9), the situation (150) shows that and how the ambient LHoTT language may in principle also be used to verify
protocols in Everett-style formalisms such as the zxCalculus.
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5 Quantum probability

5.1 Quantum probability from KR-Linearity

The discussion above captures all core aspects of quantum physics except the final postulate, the Born rule, which
connects quantum physics to probability theory and hence to observable reality. Here we explain how the hermitian
inner product structure and hence the probabilistic content of quantum state spaces arises from understanding
quantum physics in KR-linear homotopy theory, where KR denotes the Z/2-equivariant ring spectrum representing
Atiyah’s Real K-theory.

Hermitian structure via dependent linear types. So far we have quantum gates but no language structure
to enforce their unitarity. While an inner product on a real vector space V may be axiomatized as an isomorphism
V ∼−→ V∗ with the dual vector space, for sesquilinear inner products on a complex vector space the analogous
isomorphism is (or would be) complex anti-linear, hence is not available as a morphism of C-modules. Given a
hermitian inner product ⟨−|−⟩ on a complex vector space H, encoded by its induced anti-linear isomorphism given
by hermitian conjugation, we may naturally consider the direct sum H ⊕H∗ as a Z2 ↷ C-module H ∈ PSh(BZ2)
in the topos of sets equipped with Z2-actions:

Hermitian complex vector spaces ↪→ (Z2 ↷ C)-Modules in topos of involutions

Hermitian inner product

⟨−|−⟩ : H×H −−→ C

H H∗ H
|ψ⟩ := ψ 7−→ ⟨ψ|−⟩ =: ⟨ψ| 7−→ |ψ⟩

hermitian conjugation

(−)†

complex anti-linear

(−)†

complex anti-linear

C⊗ (H⊕H∗) H⊕H∗

• (c, |ψ⟩) c · |ψ⟩

• (c, ⟨ψ| ) c · ⟨ψ|

• (c, |ψ⟩ ) c · |ψ⟩

Z2 Z2

(−)·(−)

equivariant module structure

Z2

H :

C 7→

id

(−)†

C 7→ (−)†

A :

complex linear map

H −−→ K

H K

H⊕H∗ K ⊕K∗

• |ψ⟩ A · |ψ⟩

• ⟨ψ| ⟨ψ| ·A†

A

Z2

A⊕ (A†)∗

hermitian adjoint operators

Z2

C 7→

A : H −−→ K is unitary ⇔

|ψ⟩⟨ϕ| 7→ A|ψ⟩⟨ϕ|A†

H⊗H K ⊗K

C

A⊗A

⟳
ev ev

(151)

For example, the complex numbers regarded as a 1d Hilbert space this way, look as follows:

C ⊗
(
C⊕ C∗

) (
C⊕ C∗

)
• (

c, (z, w)
)

(c · v, c · w)

• (
c, (w, z)

)
(c · w, c · v)

Z2
Z2 Z2

C : C 7−→ (id,ι) ι

(152)

This induces the dagger involution
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Hom
(
H, K

)
Hom

(
K, H

)
A = A⊕ (A†)∗ 7−→ A† ⊕A∗ = A†

(−)†

Complex structure Real subobjects

H H

H⊕H∗ H⊕H∗

• |ψ⟩ i · |ψ⟩

• ⟨ψ| −i · ⟨ψ|

i

Z2

i·β
Z2

C (−)† (−)†

fixed locus

eq(i ⊗ i, σ, id)Z2

equalizer

eq(i ⊗ i, σ, id) H⊗H H⊗H

Herm(H)
hermitian operators

H⊗H∗
linear operators

• ρ |ψ⟩⟨ϕ|

• ρ† |ϕ⟩⟨ψ|

inside of i⊗ i, imaginary rotation

id

σ, factor swapping

among

Z2

C (−)†

C• C• C• C• dependent 1d
Hilbert spaces

C•
(
C• ⊕ C∗•

) (
C• ⊕ C∗•

)
C• equivariant linear

dependent types

c : C ⊢ C
(
C⊕ C∗

) (
C⊕ C∗

)
C equivariant linear

component types

|c⟩ ⟨c| ⟨c|c⟩ = 1

1c

⟨c| |c⟩ ⟨c|c⟩ = 1

|c⟩ |c⟩ 0

⟨c| ⟨c| 0

co-evaluation

ev†

⊗

evaluation

ev

modeled asZ2

ev†
•

Z2

⊗

Z2

ev•

Z2

withZ2

ev†

Z2

⊗

Z2

ev

Z2

⊗
+

⊗

⊗

⊗

The key example is the type QBit• of qbits with its hermitian inner product structure, obtained as the plain
qbit type QBit• (??) but now with hermitian fibers C (152):

QBit• := (pBool)
∗C : Z2LinTypeBool

This yields the 2-dimensional Hilbert space

C2 := C⊕ C
• q0|0⟩+ q1|1⟩

• q0⟨0|+ q1⟨1|

□Bool

(
QBit•

)
: C

This works because of the Wirthmüller relation
(
p!H

)∗ ≃ p∗
(
H∗
)
. We may thus add underlines to all the above

discussion of quantum gates without changing their nature, but now allowing generalization to mixed states.

Complex anti-linear involutions are exactly what we get from CPT-equivariant structure if we work with Z2 ↷ C-
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modules: A Z2 ↷ C-module Z2 ↷ V is a complex vector space equipped with an ani-linear involution:

C ⊗ V V
• (c, v) c · v

• (
c, ι(v)

)
c · ι(v) ι(c · v)

Z2 Z2 Z2

C (id,ι) ι

There are two kinds of complex structures on the underlying R-module of such a Z2 ↷ C-module (hence compatible
actual C-module structures, for C with its trivial involution action) amounting to a Z2-grading
(i) One is given by

V+ ⊕ V− V+ ⊕ V−
v i · v

ι(v) −i · ι(v)

Z2

i·β
Z2

(ii) the other by
Z2 ↷ V ≃ (Z2 ↷ V+)⊕ (Z2 ↷ V−)

V+ ⊗ V− V+ ⊗ V−

Z2 Z2

[
0

1

−1
0

]
Z2 Z2

In the former case, Z2 acts like charge-conjugation C, while in the latter case it acts like time-reversal T .

Example 5.1 (C as a 1d Hilbert space).

C C ⊗
(
C⊕ C∗

) (
C⊕ C∗

)
• (

c, (z, w)
)

(c · v, c · w)

• (
c, (w, z)

)
(c · w, c · v)

Z2

Z2 Z2

C (id,ι) ι

Given this, we may ask for the “real” subspace in the tensor square

V+ ⊗ V− ⊕ V− ⊗ V+ ↪−→ V ⊗ V .

Example 5.2. Examples of such Z2 ↷ C-modules with complex structure are induced by complex Hermitian inner
product spaces H as

C ⊗ (H⊕H∗) H⊕H∗

• ( c, |ψ⟩ ) c · |ψ⟩

• ( c, ⟨ψ| ) c · ⟨ψ|

Z2 Z2 Z2

H : C 7→ (−)†

(i) This is of course a real structure on H ⊕ H∗. A further real structure, amounting to a commuting action of
{e, C, P}, makes H a real Hilbert space. Here e is the neutral element.

(ii) These Z2 ↷ C-modules are exactly those self-dual objects which have a real evaluation map (factoring through
the real subspace, in the above sense), hence exactly the self-dual (C, iβ)-equivariant objects (if we regard Z2 ↷ C
as equipped with the trivial iβ-action):
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(
H⊕H∗

) (
H⊕H∗

)
C

|ψ1⟩ ⟨ψ2| ⟨ψ2|ψ1⟩

⟨ψ1| |ψ2⟩ ⟨ψ1|ψ2⟩

|ψ1⟩ |ψ2⟩ 0

⟨ψ1| ⟨ψ2| 0

Z2

⊗

Z2

ev

Z2

e.g.

(
C• ⊕ C∗•

) (
C• ⊕ C∗•

)
C•

c : C ⊢ |c⟩ ⟨c| ⟨c|c⟩ = 1

⟨c| |c⟩ ⟨c|c⟩ = 1

|c⟩ |c⟩ 0

⟨c| ⟨c| 0

Z2

⊗

Z2

ev

Z2

and a real coevaluation, given by

C• C• C•

C•
(
C• C∗•

) (
C∗• C•

)
c : C ⊢ 1c |c⟩ ⟨c|

+ ⟨c| |c⟩

Z2 Z2

⊗
Z2

Z2

⊕

Z2

⊗ ⊕

Z2

(iii) A morphism between such Z2 ↷C-modules is a linear map A together with the dual of its hermitian adjoint A†

H1 ⊕H∗1 H2 ⊕H∗2
• |ψ⟩ A|ψ⟩

• ⟨ψ| ⟨ψ|A†

Z2

A⊕A
Z2

C

(iv) The tensor product of such a map with itself acts via Hermitian conjugation on the mixed terms and evaluation
sends them to their inner product

(
H1 ⊕H∗1

) (
H1 ⊕H∗1

) (
H2 ⊕H∗2

) (
H2 ⊕H∗2

)
C

• |ψ⟩ ⟨ϕ| A|ψ⟩ ⟨ϕ|A† ⟨ϕ|A†A|ψ⟩

• ⟨ψ| |ϕ⟩ ⟨ψ|A† A|ϕ⟩ ⟨ψ|A†A|ϕ⟩

Z2

⊗

Z2

(A⊕A)⊗(A⊕A)

Z2

⊗ ev

Z2 Z2

C
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So the unitary maps are those maps of such Z2 ↷ C-modules whose tensor square is sliced over the evaluation
map ev.

(...)

Mixed states/Density matrices via dependent linear types.
Given a Hermitian space H, its density matrices form the subspace

DMat(H)
(
H⊕H∗

) (
H⊕H∗

)
C

(−)†

i·β⊗

Z2

ev

Z2

which is the intersection of
- the reality condition: joint C- and β-fixed locus
- the trace=1 condition: fiber of ev over 1 ∈ C
- the positivity condition: existence of a real square root

States(H) {1}

(
H⊕H∗

)
⊗
(
H⊕H∗

) (
H⊕H∗

)
⊗
(
H⊕H∗

)
C

(−)†⊗ (−)†

id

i·β⊗ i·β

ev

Pure state preparation via density matrices:

C•
(
H• ⊕H∗•

) (
H• ⊕H∗•

) (
♢C
(
H• ⊕H∗•

)) (
♢C
(
H• ⊕H∗•

))
c : C ⊢ 1

+

|c⟩
⟨c|
⟨c|
|c⟩ +

|c⟩
⟨c|
⟨c|
|c⟩

⊗
(ηC(H•⊕H∗

•))⊗(ηC(H•⊕H∗
•)) ⊗

(153)

condition that all such pure states are (semi-)positive as density matrices is equivalently the condition that the
Hermitian inner product on H is (semi-)positive

measurement via density matrices

(
H• ⊕H∗•

) (
H• ⊕H∗•

)

(
□C
(
H• ⊕H∗•

)) (
□C
(
H• ⊕H∗•

)) (
□C
(
H• ⊕H∗•

)) (
□C
(
H• ⊕H∗•

))

c : C ⊢ |ψ⟩ ⟨ϕ| Pc|ψ⟩ ⟨ϕ|Pc]

|ϕ⟩ ⟨ψ| Pc|ϕ⟩ ⟨ψ|Pc

Z2

⊗

Z2

(
ηC(H•⊕H∗

•)
)
⊗
(
ηC(H•⊕H∗

•)
)

Z2

⊗

Z2

(
ϵC(H•⊕H∗

•)
)
⊗
(
ϵC(H•⊕H∗

•)
)

Z2

⊗

Z2

or rather
comparison morphism
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H• ⊗H•
(
(pC)

∗(pC)!H•
)
⊗
(
(pC)

∗(pC)!H•
)
≃ (pC)

∗((pC)!H• ⊗ (pC)!H•
)

(pC)∗
(
H• ⊗H•

)
≃ (pC)!

(
H• ⊗H•

) (
(pC)!H•

)
⊗
(
(pC)!H•

)
≃
(
(pC)∗H•

)
⊗
(
(pC)∗H•

)
□C
(
H• ⊗H•

) (
□CH•

)
⊗
(
□CH•

)

ηH•⊗ηH•

˜ηH•⊗ηH•

(pC)∗
(

˜ηH•⊗ηH•

)

hence re-superposition as density matrices is:

□C
((
□CH•

)
⊗
(
□CH•

))
□C
(
H• ⊗H•

)

⊕
c:C

ρ ⊕
c:C

Pc · ρ · P †c

(
□CH•

)
⊗
(
□CH•

) (
□CH•

)
⊗
(
□CH•

)
mixed state

ρ
∑
c:C

Pc · ρ · P †c

□C

tensor of
necessity counit(

ϵH•⊗ϵH•

)
necessity

lax
m
onoidalness

(p
C ) ∗ (

˜ηH
• ⊗
ηH

•
)collapse

em
bed

pure
states

am
ong

m
ixed

ne
ce
ss
ity

co
-o
pe
ra
tio

n

(pC
)
∗
( η
(

(pC
)∗

H•
⊗(pC

)∗
H•

))

pa
ra
lle
liz
at
io
n

measurement quantum channel

(...)
Better like this:

B B ×B

∗

∆

9B = (pB)!(pB)
∗ = (pB×B)!∆!∆

∗(pB×B)
∗ −−→ (pB×B)!(pB×B)

∗ = 9B×B

⃝B = (pB)∗(pB)
∗ = (pB×B)∗∆∗∆

∗(pB×B)
∗ ←−− (pB×B)∗(pB×B)

∗ = ⃝B×B

∆!∆
∗□B×B1B×B □B×B1B×B 1B×B

⃝B×B1 ⃝B⃝B×B1 ⃝B×B⃝B×B1 ⃝B×B1

∑
b,b′
ρbb′ · |b⟩⟨b′| 7−→ ⊕

b′′

∑
b,b′
ρbb′ · |b⟩b′′⟨b|b′′ 7−→ ⊕

b′′,b′′′
δb′′.b′′′

∑
b,b′
ρbb′ · |b⟩b′′⟨b|b′′ 7−→ ∑

b

ρbb · |b⟩⟨b|
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6 QS Pseudocode

We now cast the categorical algebra of §3 and §4 into a programming-style language QS 20 that shall serve as pleasant
but accurate pseudo-code for the actual encoding in LHoTT. Then we spell out a range of example programs.

for...do-Notation. The main language feature we use is standard “do-notation” for Kleisli maps, but sugared a
little further in order to bring out a nicely intuitive quantum programming language. First, we write Kleisli maps
for a monad E as “for...do” blocks in this somewhat non-standard form:

“for...do...” programming syntax
for declaring effect-bound programs

prog : D → ED′

bindEprog : ED → ED′

bindEprog ≡

 for returnED(d)

⇝

to be sugared
as per next table

do prog(d)

Φ : ED, prog : D → ED′

ϕ > bindEprog : ED′

ϕ > bindEprog ≡

 for returnED(b) in Φ

do prog(b)

This syntax is to closely reflect the fact that
– for an input of the form returnED(d) : ED,
– which may appear as a ”summand” in the input data
– the operation bindEprog does produce the output prog(d),
which prescription completely defines it.

Beware that common classical notation for exactly the same construction is a little different:

bindEprog : ED → ED′

bindEprog ≡ e 7→

 do

d← e

prog(d)

This classical notation is meant to suggest that pure data d : D may be “read out” from effectful data e : ED.
While this is suggestive for the list monad and its common relatives in classical programming, it is misleading in
linear type theory and notably so for the quantum monad Q: Here the effectful input e = |ψ⟩ is a quantum state
like a q-bit, in which case d : Bit is a classical bit, whence the classical notation “d← |ψ⟩” could only be suggestive
of performing a quantum measurement – in contradiction to the actual nature of the resulting bindQprog-operation
constituting a coherent non-measurement quantum gate.

Instead, what really happens in Kleisli formalism is that operations are defined on generators for effectful data
types E(D), namely on data of the form returnED(d). For example, the space of qbits |ψ⟩ : QBit is generated
(here: linearly spanned) by the basis qbits |0⟩ and |1⟩, where we may naturally identify the ket-notation |−⟩ as the
unit/return operation which regards a classical bit b as the corresponding basis quantum state |b⟩.

Proceeding in this vein, it is natural to declare the following syntactic sugar for the unit/return- and counit/extract-
operations of all four potentia-modalities from ??, according to the table further below.

20We call this language “QS”, both as shorthand for “Quantum Systems Language” as well as alluding to the remarkable fact that
(the semantics of) its universe of quantum data types goes far beyond the usual (Hilbert-) vector spaces to include “higher homotopy”
linear types (“spectra”): Over the ground field F1, the quantization modality Q takes the circle homotopy type S to the “sphere
spectrum” traditionally denoted “QS”.
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Sugared syntax for the (co)pure (co)monadic (co)effects

Q
u
a
n
ti
z
a
ti
o
n

|−⟩ ◦
◦ B → QB

Q
u
a
n
tu

m
m
e
a
su

re
m
e
n
t

| b ⟩ ≡ return
Q
B(b) pure linearity

always ◦
◦ H ⊸ ⃝BH

always |ψ⟩ ≡ return
⃝B

H

(
|ψ⟩
)

pure indefiniteness

measure ◦
◦ ⃝BQB⊸

B
⃝B1

measure |ψ⟩b ≡ obtain□B
1B

(
|ψ⟩b

)
pure necessity

measure ◦
◦ QB⊸ ⃝B1

measure |ψ⟩ ≡ measure always |ψ⟩ returns collapsed state &
puts outcome into context

superpose ◦
◦ 9BH ⊸H

Q
u
a
n
tu

m
st
a
te

p
re

p
a
ra

ti
o
n

superpose |ψ⟩b ≡ obtain9B
H

(
|ψ⟩b

)
pure randomness

prepare ◦
◦ 9B1⊸9BQB

prepare qb ≡ return♢B
1B

(
qb
)

pure possibility

prepare : 9B1⊸ QB

prepare qb ≡ superpose prepare qb
prepares states in context
& returns superposed state

For example, with these conventions a linear map on QBit is coded by:

Φ ◦
◦ QBit⊸ QBit

Φ ≡

 for |b⟩

do Φ|b⟩
When nesting for...do-code we carry the argument using “in”. For instance, given I : D ⊸ QBit, then its

composite with Φ as above is:

I > Φ ◦
◦ D⊸ QBit

I > Φ ≡

 for |b⟩ in I

do Φ|b⟩

Similarly, while the tensor product is not a monad, it is also defined by generators whose value under linear
maps uniquely defines these, and therefore we use the same for...do-notation for maps out of tensor products:
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Φ ◦
◦ D ⊗D′⊸ E

Φ ≡

 for d⊗ d′

do Φ(d⊗ d′)

Φ ◦
◦ QB ⊗QB′⊸ E

Φ ≡

 for |b⟩ ⊗ |b′⟩

do Φ
(
|b⟩ ⊗ |b′⟩

)
Typically, here d and d′ are themselves effectful data types, in which case Φ may be coded by further nested

for...do-loops, e.g.

Φ ◦
◦ QBit⊗QBit⊸ QBit

Φ ≡


for |ψ⟩ ⊗ |ψ′⟩

do

 for |b⟩ ⊗ |b′⟩ in |ψ⟩ ⊗ |ψ′⟩

do Φ
(
|b⟩ ⊗ |b′⟩

)
abbreviated to

Φ ◦
◦ QBit⊗QBit⊸ QBit

Φ ≡

 for |b⟩ ⊗ |b′⟩

do Φ
(
|b⟩ ⊗ |b′⟩

)
Since Q is idempotent (in the relative sense: it is induced from an idempotent monad on Type), we may apply

this notation in the generality that the codomain is any linear type, not necessarily explicitly of the form Q(−)
(but always isomorphic to such).

This way, the strong monoidalness of Q(−) is witnessed by the following programs:

Q(Bit× Bit)⊸ QBit⊗QBit for |b, b′⟩

do |b⟩ ⊗ |b′⟩

QBit⊗QBit⊸ Q(Bit× Bit) for |b⟩ ⊗ |b′⟩

do |b, b′⟩

Similarly, we introduce sugared syntax for the measurement monad:

The indefiniteness modality.

Quantum Measurement effects.

B : ClaType Quantum B-indefinitess modality ⃝B

general
definition

⃝B : Type→ Type

⃝B ≡ (pB)∗(pB)
∗

B × ♮E

B ♮E

pB

purely
classical

case

⃝B : ClaType→ ClaType

⃝B ≃ id

purely
quantum

case

⃝B : QuType→ QuType

⃝B ≃
(
B → (−)

) strong wrt ⊗
if B : FinClaType

sugared syntax for ⃝B-data:(
B →H

)
≃ ⃝BH(

b 7→ |ψb⟩
)
7→ if measured b then |ψb⟩

discard measurement : ⃝B⃝8H −→⃝8H

proceed with ≡ return⃝8

80



Proposition 6.1. ⃝B a Frobenius monad, equivalent to the writer (co)monad of the (co)algebra 1
B. As such it

coincides with Coecke’s “classical structures” comonad.
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6.1 Standard q-bit circuit ingredients

X ◦
◦ QBit⊸ QBit

X ≡

 for |b⟩

do |b+ 1⟩

H ◦
◦ QBit⊸ QBit

H ≡

 for |b⟩

do 1√
2

(
|0⟩+ (−1)b|1⟩

)

CNOT ◦
◦ Q(Bit× Bit)⊸ Q(Bit× Bit)

CNOT ≡

 for |b1, b2⟩

do |b1, b1 + b2⟩
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6.2 Quantum Teleportation Protocol

Alice ◦
◦ QBit⊸

(
QBit⊸ ⃝Bit×Bit1

)
Alice ≡


for |bell1⟩

do

 for |b⟩

do |b,bell1⟩ > CNOT > (H⊗ id) > measure

Bob ◦
◦ QBit⊸

(
⃝Bit×Bit1 ⊸

Bit×Bit
⃝Bit×BitQBit

)
Bob ≡

 for |bell2⟩

do if measured (b1, b2) then |bell2⟩ > Xb1 > Zb2

teleport ◦
◦ QBit⊸ ⃝Bit×BitQBit

teleport ≡


for |b⟩

do

 for |bell1, bell2⟩ in ( prepare(10,0) > (H⊗ id) > CNOT)

do |b⟩ > Alice(|bell1⟩) > Bob(|bell2⟩)

verify : teleport = always i.e.
∏

|ψ⟩:QBit

(
teleport |ψ⟩ = always |ψ⟩

)
Remark 6.2. Notice that the last expression provides the formal verification of the correct implementation of the
teleportation protocol — and how the monadically typed QS (pseudo-)code is pleasantly close to a natural language
rendering of this statement

verify: “The quantum teleportation protocol applied to any quantum state
|ψ⟩ in Alice’s hand always produces the same state |ψ⟩ in Bob’s machine,
i.e. independently of what measurement outcome Alice happened to find
in the process. In short: The result of teleporting |ψ⟩ is always |ψ⟩.”

For analogous discussion of the verification in LHoTT of Quipper-code (Lit. 2.5) for quantum verification see
[Ri23].
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6.3 Quantum Bit Flip Code

Bit flip error correction as QS-pseudocode, is a simple but instructive example (cf. [NC10, §10.1.1]):

LgclQBit : QuType

LgclQBit ≡ QBit⊗QBit⊗QBit

Syndrome : FinClaType

Syndrome ≡ Bit× Bit

encode ◦
◦ QBit⊸ LgclQBit

encode ≡

 for |b⟩

do |b, b, b⟩

|0⟩

|0⟩

L
g
clQ

B
it

︷
︸︸

︷

Q
B
it ︷︸︸︷

verify circuit encoding : encode = (−)⊗ |0, 0⟩ > CNOT⊗ id > id⊗ CNOT

BitFlip ◦
◦ Syndrome→

(
LgclQBit⊸ LgclQBit

)

BitFlip ≡



if (0, 0) then id⊗ id⊗ id

if (1, 0) then X⊗ id⊗ id

if (1, 1) then id⊗X⊗ id

if (0, 1) then id⊗ id⊗X

compute syndrome ◦
◦ QSyndrome⊗ LgclQBit⊸ QSyndrome⊗ LgclQBit

compute syndrome ≡

 for |s1, s2⟩ ⊗ |b1, b2, b3⟩

do |s1 + b1 + b2, s2 + b2 + b3⟩ ⊗ |b1, b2, b2⟩
L
gc
lQ

B
it

︷
︸︸

︷ L
g
clQ

B
it

︷
︸︸

︷

Q
S
y
n
d
ro
m
e

︷︸︸
︷ Q

S
y
n
d
ro
m
e

︷︸︸︷

measure syndrome ◦
◦ LgclQBit⊸ ⃝SyndromeLgclQBit

measure syndrome ≡


for |b1, b2, b3⟩

do

 |0, 0⟩ ⊗ |b1, b2, b3⟩> compute syndrome
> measureSyndrome

|0⟩

|0⟩

0 1

0 1

L
gc
lQ

B
it

︷
︸︸

︷ L
gclQ

B
it

︷
︸︸

︷
S
y
n
d
ro
m
e

︷︸︸︷

|0⟩

|0⟩

0 1

0 1

L
g
cl
Q
B
it

︷
︸︸

︷

classical
error correction

logic

L
gclQ

B
it

︷
︸︸

︷
S
y
n
d
rom

e
︷︸︸︷

compute
error syndrome

measure
error syndrome

correct
inferred error

correct error ◦
◦ LgclQBit⊸ ⃝SyndromeLgclQBit

correct error ≡


for |b1, b2, b3⟩

do

 for |ψ⟩ in measure syndrome
(
|b1, b2, b3⟩

)
do if measured (s1, s2) then BitFlip(s1,s2)|ψ⟩

verify error correction :
(
s1, s2 : Syndrome

)
→
(
encode > BitFlips1,s2 > correct error = always encode

)
Remark 6.3. The last line asserts a term of identification type which formally certifies that any single bit flip on a
logically encoded qbit is always corrected by the code (i.e.: no matter the measurement outcome). The construction
of such certificates in LHoTT (not shown here, but straightforward in the present case) provides the desired formal
verification of classically controlled quantum algorithms and protocols.
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6.4 Repeat-Until-Success Quantum Gates

Syndrome : FinClaType

Syndrome ≡ Bit

syndromed gate ◦
◦ QBit ⊸ ⃝SyndromeQBit

syndromed gate ≡

 for |ψ⟩

do |0⟩ ⊗ |ψ⟩ > Gate > measureSyndrome

uncompute ◦
◦ QBit⊸ QBit

uncompute ≡ whatever it takes

repeat until success ◦
◦ ⃝8QBit⊸⃝8QBit

repeat until success ≡



for |ψin⟩

do



for |ψout⟩ in |ψin⟩ > syndromed gate

do


if measured 0 then proceed with |ψout⟩

if measured 1 then

 proceed with uncompute|ψout⟩

> repeat until success

discard measurement

repeat until success : ⃝8QBit
⃝8syndromed gate
−−−−−−−−−−−−−−→⃝8⃝BQBit

⃝8control
−−−−−−−→⃝8⃝B⃝8QBit

⃝8discard
−−−−−−−−−→⃝8⃝8QBit

join
−−−−→⃝8QBit

85



7 Outlook

- we have not discussed formal LHoTT code here, but the translation is fairly straightforward, see [Ri23]

- the language LHoTT itself is not currently implemented in software the way HoTT is,
but there is no obstacle to such an implementation; and with the understanding of LHoTT as a universal quantum

programming language there may now be the previously missing incentive for producing one.

- (...)
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[CPav08] B. Coecke and D. Pavlović, Quantum measurements without sums, in: Mathematics of Quantum
Computation and Quantum Technology, Taylor & Francis (2008), 559-596, [doi:10.1201/9781584889007],
[arXiv:quant-ph/0608035].
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[MN13] D. Mihályi and V. Novitzká, What about Linear Logic in Computer Science?, Acta Polytechnica Hungarica
10 4 (2013) 147-160 [acta.uni-obuda.hu/Mihalyi Novitzka 42.pdf]

[Mi19] B. Milewski, Category Theory for Programmers, Blurb (2019) [ISBN:9780464243878],
[github.com/hmemcpy/milewski-ctfp-pdf/releases/download/v1.3.0/category-theory-for-programmers.pdf]

[MZD20] A. Miranskyy, L. Zhang, and J. Doliskani, Is Your Quantum Program Bug-Free?, in ICSE-NIER ‘20:
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: New Ideas and
Emerging Results (2020), 29–32, [doi:10.1145/3377816.3381731], [arXiv:2001.10870].

[Mog89] E. Moggi, Computational lambda-calculus and monads, in: Proceedings of the Fourth Annual Symposium
on Logic in Computer Science (1989), 14-23, [doi:10.1109/LICS.1989.39155].

[Mog91] E. Moggi, Notions of computation and monads, Inform. and Comput. 93 (1991), 55-92,
[doi:10.1016/0890-5401(91)90052-4].

93

https://doi.org/10.1002/andp.19504430510
https://ncatlab.org/nlab/files/Lueders-StateChange.pdf
https://global.oup.com/academic/product/computation-and-reasoning-9780198538356
https://www.math.ias.edu/~lurie/papers/HA.pdf
https://link.springer.com/book/10.1007/978-1-4757-4721-8
https://dx.doi.org/10.1007/978-1-4612-0927-0
https://arxiv.org/abs/2305.15327
https://doi.org/10.1007/978-1-4612-9860-1
https://bookstore.ams.org/cworks-20/
http://www.numdam.org/item/?id=SB_1998-1999__41__375_0
https://arxiv.org/abs/quant-ph/9903008
https://doi.org/10.1007/978-3-030-89746-8_2
https://arxiv.org/abs/2112.00187
https://ncatlab.org/nlab/files/MartinLoef1971-ATheoryOfTypes.pdf
https://doi.org/10.1016/S0049-237X(08)71945-1
https://doi.org/10.1016/S0049-237X(09)70189-2
https://ncatlab.org/nlab/files/MartinLofIntuitionisticTypeTheory.pdf
https://bookstore.ams.org/surv-132
https://arxiv.org/abs/math/0411656
https://arxiv.org/abs/2207.00851
https://doi.org/10.4204/EPTCS.360.6
https://doi.org/10.1007/978-1-4419-5906-5_863
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
https://www.jstor.org/stable/42968519
https://ncatlab.org/nlab/files/Mellies-CategoricalSemanticsLinear.pdf
https://smf.emath.fr/publications/semantique-categorielle-de-la-logique-lineaire
https://doi.org/10.1063/1.2810963
http://acta.uni-obuda.hu/Mihalyi_Novitzka_42.pdf
https://www.blurb.com/b/9621951-category-theory-for-programmers-new-edition-hardco
https://github.com/hmemcpy/milewski-ctfp-pdf/releases/download/v1.3.0/category-theory-for-programmers.pdf
https://doi.org/10.1145/3377816.3381731
https://arxiv.org/abs/2001.10870
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1016/0890-5401(91)90052-4


[Mo19] V. Moretti, Fundamental Mathematical Structures of Quantum Theory, Springer, New York (2019),
[doi:10.1007/978-3-030-18346-2].

[TQP] D. J. Myers, H. Sati and U. Schreiber, Topological Quantum Gates in Homotopy Type Theory,
[arXiv:2303.02382].

[Mye22] D. J. Myers, Orbifolds as microlinear types in synthetic differential cohesive homotopy type theory,
[arXiv:2205.15887].

[NPW07] R. Nagarajan, N. Papanikolaou, and D. Williams, Simulating and Compiling Code for the Sequential
Quantum Random Access Machine, Electronic Notes in Theoretical Computer Science 170 (2007), 101-124,
[doi:10.1016/j.entcs.2006.12.014].

[nLab14] nLab, Necessity and possibility, revision 1 (Nov 2014),
[ncatlab.org/nlab/revision/necessity+and+possibility/1].

[Nie03] M. Nielsen, Quantum computation by measurement and quantum memory, Physics Letters A 308 (2003),
96–100, [doi:10.1016/S0375-9601(02)01803-0].

[NC10] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University
Press (2010), [ISBN:9780511976667].

[No02] D. Nolan, Topics in the Philosophy of Possible Worlds, Routledge, Boca Raton (2002),
[ISBN:9780415516303].

[NPS90] B. Nordström, K. Petersson, and J. M. Smith, Programming in Martin-Löf ’s Type Theory, Oxford Uni-
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