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Abstraction: Science and Engineering

Abstraction elides irrelevant details to create an idealized
representation, e.g., dot, line, plane, graph, set, algebra, mass,
energy, etc.

Any academic subject deals in abstractions — that is the
whole point.

Abstractions like gravitational force, chemical reaction, or
trade deficit are about the phenomenal world, whereas
mathematical abstractions like function, metric space, and
group are generic (pure) abstractions.

Computing, like mathematics, is the study of reusable pure
abstractions.

Computing puts abstractions to work in order to represent and
process information.
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Abstraction in Computing

Abstractions in computing can be artificial, e.g.,
channels, processes, protocols, algorithms,
instruction sets, programming notations, caches,
files, IP addresses, avatars, friends, likes,
hashtags, windows, hyperlinks, packets, network
protocols, users, automata, Turing machines, and
cyber-physical systems.

These abstractions have algorithmic value in
designing, representing, composing, and and
reasoning about computational processes.

The modern computing stack, one of mankind’s
greatest engineering accomplishments, represents
layers of abstraction so that each layer creates an
abstract interface that hides the details of the
layers below.

A huge amount of science and engineering goes
into bringing these abstractions to life in real
computers.
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Building Blocks of Abstraction

Grammars: Capturing the structure of the concrete representation
of abstract data.

Data Structures: The abstract representation of data for
convenient access and modification.

Algorithm: Procedures for extracting information from data.

Programming notations: A generative framework defining
(domain-specific) behaviors based on primitive operations and
combinators for composing behaviors.

Application Programming Interfaces: Invoking operations and
services implemented in a library or server.

Protocols: Rules of behavior that allow multiple agents to
coordinate on achieving a specific behavior.

Abstract State Machines: Abstract transition operations on an
abstract notion of state.

Logics: A modeling framework in which desirable properties of

systems can be stated and proved with generality, elegance, and

automation.
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Abstraction Engineering with PVS

PVS is a simple and usable interactive theorem prover that
has been in continuous and active development since 1990.

It exploits the synergy between an expressive logic and
effective proof automation.

The PVS specification language extends Church’s Simply
Typed Higher-Order Logic with

1 Algebraic Data Types, e.g., lists, trees, ordinals.
2 Dependent predicate subtypes, e.g., even numbers,

order-preserving maps, finite sequences.
3 Parametric theories: lattices, algebras,
4 Theory interpretations

PVS is a medium for efficiently creating elegant formalizations
and beautiful proofs.

Natarajan Shankar Abstraction Engineering with PVS 5/29



The Origins of PVS

SRI’s Prototype Verification System (PVS) started around
1990 as an attempt to take theorem proving out of the
priesthood and make it generally usable.
John Rushby called it the “People’s Verification System” in its
unsanitized form.
I taught my first PVS course in 1992 in TU Lyngby
(Denmark), and PVS was officially released in 1993 at FME
Odense (Denmark).
PVS was used for integrating theorem proving and model
checking in 1994/95.
Technologies like SMT solving and predicate abstraction were
spun out of PVS (yielding CAV Awards in 2012, 2021, and
2022).
Code generation in Common Lisp was introduced in 1998 has
been an important tool for PVS users.
PVS2C is a more recent effort aimed at generating verified
standalone code components.
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PVS Early Timeline

1990-1993: Developed and used internally at SRI; 1992 CADE
publication (won 2021 Skolem Award).

1993: Public release at FEM ’93 in Odense, Denmark

1992-4: Fault-tolerant algorithms: Byzantine Agreement

1994: Hardware verification examples: Cantu ALU, Saxe
pipeline, Tamarack

1995: Integration of BDD-based symbolic model checking

1996: Verification of Floating Point hardware (SRT division)

1997: Graf/Säıdi introduce predicate abstraction (won 2022
CAV Award)

1997: Formal Semantics

1997: Code generation in Common Lisp

2000-2010: Development of NASALib and air-traffic control
algorithms, NRL separation kernel; VAMP processor
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PVS vs. Other Proof Assistants

Other proof assistants include ACL2, HOL4, HOL-Light,
Isabelle, Fstar, Coq, Nuprl, Agda, Matita, and Lean.

ACL2 is a powerful theorem prover for proving theorems about
untyped, first-order, applicative Common Lisp programs.

The other systems all work with higher-order languages that
allow quantification over functions and predicates.

HOL4, HOL-Light, Isabelle, Fstar, and PVS work with
classical higher-order logic.

Coq, Nuprl, Agda, Matita, and Lean are based on constructive
type theories (CTTs) allowing quantification/dependencies
over terms and types, with variants for Homotopy Type
Theory taking a more refined view of proofs of equality.

ACL2 functions are directly executable in Common Lisp.

HOL4, Isabelle/HOL, and Coq support code extraction in ML.
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Overview

PVS is an interactive proof assistant based on higher-order
logic developed at SRI over the last three decades.

It is primarily used for modeling mathematical and
computational concepts, including program behavior.

PVS is also a research prototype for exploring ideas in
formalization, automation, interaction, proof maintenance,
and library construction.

The interactive theorem prover combines automation (using
SMT and other decision procedures) with interaction using
powerful and robust proof commands that can be combined
within proof strategies.

Almost all of the specification language is safely executable as
a functional language, with code generators for Common Lisp,
Clean, C, and Rust (with an ML generator in progress).

PVS is a single language and proof platform spanning
mathematical modeling to practical system development.

Natarajan Shankar Abstraction Engineering with PVS 9/29



PVS Libraries (NASAlib)

Theorem Author
Cauchy-Schwarz Inequality Ricky Butler
Derivative of a Power Series Ricky Butler
Fundamental Theorem of Arithmetic Ricky Butler
Fundamental Theorem of Calculus Ricky Butler
Fundamental Theorem of Interval Arithmetic César Muñoz, A. Narkawicz
Inclusion Theorem of Interval Arithmetic César Muñoz, A. Narkawicz
Infinitude of Primes Ricky Butler
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PVS Libraries (NASAlib)

Theorem Author
Integral of a Power Series Ricky Butler
Intermediate Value Theorem Bruno Dutertre
Law of Cosines César Muñoz
Mean Value Theorem Bruno Dutertre
Mantel’s Theorem Aaron Dutle
Menger’s Theorem Jon Sjogren
Order of a Subgroup David Lester
Pythagorean Property - Sine and Cosine David Lester
Ramsey’s Theorem N. Shankar
Sum of a Geometric Series Ricky Butler
Taylor’s Theorem Ricky Butler
Trig Identities: Sum and Diff of Two Angles David Lester
Trig Identities: Double Angle Formulas David Lester
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PVS Libraries (NASAlib)

Theorem Author
Schroeder-Bernstein Theorem Jerry James
Denumerability of the Rational Numbers Jerry James
Heine Theorem and Multiary Variants Anthony Narkawicz
Fubini-Tonelli Lemmas David Lester
Knuth-Bendix Critical Pair Theorem André Galdino, Mauricio Ayala
Church-Rosser Theorem André Galdino, Mauricio Ayala
Newman Lemma André Galdino, Mauricio Ayala
Yokouchi Lemma André Galdino, Mauricio Ayala
Robinson Unification Andreia Avelar, Maurcio Ayala
Confluence of Orthogonal TRSs Ana Rocha, Mauricio Ayala
Sturm’s Theorem Anthony Narkawicz
Tarski’s Theorem Anthony Narkawicz, Aaron Dutle
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Subtyping in PVS

In PVS, we extended higher-order logic with (dependent)
predicate subtyping where you can define a new type as a
subset {x : T |p(x)} of a given type T with respect to a given
predicate p over T .

Checking a term a of type T relative to {x : T |p(x)} in
context C generates a proof obligation (Type-Correctness
Condition or TCC): C =⇒ p(a).

Subtypes in PVS are used to define partial functions, capture
and compose function contracts, restrict the domain of arrays,
and capture closure conditions on operations.

In many cases, the specification of a function can be captured
using subtypes, e.g., binary search over a sorted array
succeeds iff the key is in the array.
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Language+Prover Synergy

Expressions like 1/0 and
√
−5 are type-incorrect: proof obligations

ensure that expressions are well-typed in context. Typical proof
obligations are discharged by default proof strategies.

Subtypes are weaponized in inference: sum of evens is even;
composition of continuous functions is continuous, . . .

Mathematics is coherent: 1/0 doesn’t denote anything; common
mistakes are caught during typechecking; formalizations are clean.

Computation is safe: No runtime errors (modulo resource
limitations).

The PVS theorem prover implements a deep integration of decision
procedures (SMT solvers) which can be used directly or implicitly in
contextual simplification and rewriting.

New proof strategies can be defined
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The PVS Language in Brief

A PVS specification is a collection of libraries.

Each library is a collection of files.
Each file is a sequence of theories.
Each theory is a sequence of declarations/definitions of types,
constants, and formulas (Boolean expressions).

Types include
1 Booleans, number types
2 Predicate subtypes: {x : T |p(x)} for type T and predicate p.
3 Dependent function [x : D → R(x)], tuple [x : T1,T2(x)], and

record [#a : T1, b : T2(x)#] types.
4 Algebraic and coalgebraic datatypes: lists, trees, ordinals.

Expressions in PVS are
1 Booleans, numbers
2 Application : f (a1, . . . , an)
3 Abstraction : λ(x1 : T1, . . . , xn : Tn) : a
4 Tuples: (a1, . . . , an), a‘3
5 Records: (#l1 := a1, . . . , ln := an#), a‘li
6 Conditionals: IF a1 THEN a2 ELSE a3 ENDIF
7 Updates: a WITH [(3)‘1‘age := 37].
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PVS Examples: Functions

functions [D, R: TYPE]: THEORY

BEGIN

f, g: VAR [D -> R]

x, x1, x2: VAR D

y: VAR R

extensionality_postulate: POSTULATE

(FORALL (x: D): f(x) = g(x)) IFF f = g

extensionality: LEMMA

(FORALL (x: D): f(x) = g(x)) IMPLIES f = g

congruence: POSTULATE f = g AND x1 = x2 IMPLIES f(x1) = g(x2)

eta: LEMMA (LAMBDA (x: D): f(x)) = f

injective?(f): bool = (FORALL x1, x2: (f(x1) = f(x2) => (x1 = x2)))

surjective?(f): bool = (FORALL y: (EXISTS x: f(x) = y))

bijective?(f): bool = injective?(f) & surjective?(f)

END functions
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PVS Example: Summation

hsummation: THEORY

BEGIN

i, m, n: VAR nat

f: VAR [nat -> nat]

hsum(f)(n): RECURSIVE nat =

(IF n = 0 THEN 0 ELSE f(n - 1) + hsum(f)(n - 1) ENDIF)

MEASURE n

id(n): nat = n

hsum_id: LEMMA hsum(id)(n + 1) = (n * (n + 1)) / 2

square(n): nat = n * n

sum_of_squares: LEMMA 6 * hsum(square)(n + 1) = n * (n + 1) * (2 * n + 1)

cube(n): nat = n * n * n

sum_of_cubes: LEMMA 4 * hsum(cube)(n + 1) = n * n * (n + 1) * (n + 1)

quart(n): nat = square(square(n))

sum_of_quarts: LEMMA

hsum(quart)(n + 1) =

((6 * (n ^ 5)) + (15 * (n ^ 4)) + (10 * (n ^ 3)) - n) / 30

END hsummation
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PVS Subtypes

Add the type {x : T |a} or just (p) (for predicate p) to the simple
type system:

Γ ` T : TYPE Γ, x : T ` a : bool

Γ ` {x : T |a} : TYPE

Γ ` a : T Γ |= b[a/x ]

Γ ` a : {x : T |b}
Γ ` a : bool Γ, a ` b : T Γ,¬a ` c : T

Γ ` IF(a, b, c) : T

Γ ` f : [x : S→T ] Γ ` a : S

Γ ` f a : T [a/x ]

Γ, x : S ` a : T

Γ ` (λ(x : S) : a) : [x : S→T ]

Typechecking becomes undecidable, as do type emptiness and
type equivalence!

Semantically, subtypes are subsets, even at higher types
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Using Subtypes

Division can be declared as
nzreal: NONEMPTY_TYPE = {r: real | r /= 0} CONTAINING 1

/: [real, nzreal -> real]

With /= representing disequality, division can be type-checked
in context as in the (incorrect) conjecture:

div1: CONJECTURE x /= y IMPLIES (x + y)/(x - y) /= 0

Natural numbers are a subtype of integers are a subtype of
rationals are a subtype of reals.
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Proof Obligations

Typechecking number props generates the proof obligation

% Subtype TCC generated (at line 6, column 44) for (x - y)

% proved - complete

div1_TCC1: OBLIGATION

FORALL (x, y: real): x /= y IMPLIES (x - y) /= 0;

Proof obligations arising from typechecking are called Type
Correctness Conditions (TCCs).
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Type Errors

Many type errors correspond to unprovable TCCs, and some TCCs
are provable, but surprising.

The standard definition of

(
n
k

)
is as shown

n: VAR nat

factorial(n): RECURSIVE posint =

(IF n = 0 THEN 1 ELSE n * factorial(n-1) ENDIF)

MEASURE n

n_choose_k(n, (k : upto(n))): posnat =

factorial(n) / (factorial(k) * factorial(n - k))

Typechecking generates the proof obligation

n_choose_k_TCC2: OBLIGATION

FORALL (n: nat, (k: upto(n))):

integer_pred(factorial(n) / (factorial(k) * factorial(n - k))) AND

factorial(n) / (factorial(k) * factorial(n - k)) >= 0 AND

factorial(n) / (factorial(k) * factorial(n - k)) > 0;
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Typing Judgements

Proof obligations can also be annoying, but typing judgements
allow type information to be cached and propagated.

px, py: VAR posreal

nnx, nny: VAR nonneg_real

nnreal_plus_nnreal_is_nnreal: JUDGEMENT

+(nnx, nny) HAS_TYPE nnreal

nnreal_times_nnreal_is_nnreal: JUDGEMENT

*(nnx, nny) HAS_TYPE nnreal

posreal_times_posreal_is_posreal: JUDGEMENT

*(px, py) HAS_TYPE posreal

Judgements can capture closure conditions (composition of
continuous functions is continuous) as well as implicit subtype
relationships.
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(Rank-invariant) Dependent Types

Dependent records have the form
[# l1 : T1, l2 : T2(l1), . . . , ln : TN(l1, . . . , ln−1) #].

finite_sequences [T: TYPE]: THEORY

BEGIN

finite_sequence: TYPE

= [# length: nat, seq: [below[length] -> T] #]

END finite_sequences

Dependent function types have the form [x : T1→T2(x)].

i, j: VAR nat

g91(i): nat = (IF i > 100 THEN i - 10 ELSE 91 ENDIF)

f91(i) : RECURSIVE {j | j = g91(i)}
= (IF i>100

THEN i-10

ELSE f91(f91(i+11))

ENDIF)

MEASURE (IF i>101 THEN 0 ELSE 101-i ENDIF)
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Theories

Tarski_Knaster [T : TYPE, @ : PRED[[T, T]], u : [set[T] -> T] ]

: THEORY

BEGIN

ASSUMING

x, y, z: VAR T

X, Y, Z : VAR set[T] %synonym for [T -> bool]

f, g : VAR [T -> T]

reflexivity: ASSUMPTION x @ x

antisymmetry: ASSUMPTION x @ y AND y @ x IMPLIES x = y

transitivity : ASSUMPTION x @ y AND y @ z IMPLIES x @ z

glb_is_lb: ASSUMPTION X(x) IMPLIES u(X) @ x

glb_is_glb: ASSUMPTION

(FORALL x: X(x) IMPLIES y @ x)

IMPLIES y @ u(X)
ENDASSUMING
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Tarski–Knaster Theorem

.

.

.

mono?(f): bool = (FORALL x, y: x @ y IMPLIES f(x) @ f(y))

lfp(f) : T = u(x | f(x) @ x)

fixpoint?(f)(x): bool =

(f(x) = x)

TK1: THEOREM

mono?(f) IMPLIES

lfp(f) = f(lfp(f))

END Tarski_Knaster

Monotone operators on complete lattices have fixed points. The
fixed point defined above can be shown to be the least such fixed
point.
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Theory Interpretations

Theories can be imported with or without explicit parameters.

Theories can also be interpreted by assigning interpretations
to uninterpreted symbols.

group_homomorphism[G1, G2: THEORY group]: THEORY

BEGIN

x, y: VAR G1.G

f: VAR [G1.G -> G2.G]

homomorphism?(f): bool = FORALL x, y: f(x + y) = f(x) + f(y)

hom_exists: LEMMA EXISTS f: homomorphism?(f)

END group_homomorphism

IMPORTING

group_homomorphism[group{{G := int, + := +, 0 := 0, - := -}},
group{{G := nzreal, + := *, 0 := 1,

- := LAMBDA (x: nzreal): 1/x}}]
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The PVS2C Code Generator

PVS2C generates safe, efficient, standalone C code for a full
functional fragment of PVS.

Each PVS theory foo.pvs generates a foo.h and foo.c.1

The translation is factored through an intermediate language
that represents PVS expressions in A-normal form and
performs a light static analysis to identify the release points
for references.

The operational semantics uses a state consisting of a
program counter, call stack, variable stack, and store (heap).
(Separating call and variable stacks addresses a Trillion-dollar
original sin.)

However, this still leaves a large gap between the functional
and imperative operational semantics.2

1
Férey, G., Sh , N.: Code Generation using a formal model of reference counting, NFM 2016

2
Courant, N., Séré, A., and Sh , N.: The Correctness of a Code Generator for a Functional Language, VMCAI

2020
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PVS2C: Putting Theory to Use

The full PVS2C implementation covers the core higher-order
logic of PVS together with

1 Multi-precision rational numbers and integers, and floats
2 Fixed-size arithmetic: uint8, uint16, uint32, uint64, int8,

int16, int32, int64, with safe casting
3 Dependent (dynamically sized) and infinite arrays
4 Dependent records and tuples
5 Higher-order functions and closures (with updates)
6 Characters (ASCII and Unicode) and strings
7 Algebraic datatypes
8 Parametric theories with type parameters (unboxed

polymorphism)
9 Memory-mapped File I/O

10 Semantic attachments
11 JSON representation for data

PVS2C captures a functional subset of PVS that is usable as
a safe programming language - a well-typed program cannot
fail (modulo resource limitations).
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Conclusions

Abstraction engineering works by defining abstractions,
proving their properties, and composing them to define new
abstractions.

These abstractions can cover algebraic structures, datatypes,
grammars, programming notations, protocols, and state
machines.

PVS is a formal framework for abstraction engineering based
on simply-typed higher-order logic extended with predicate
subtypes, algebraic/coalgebraic datatypes, parametric
theories, and theory interpretations.

The type system allows concepts from mathematics and
computing to be formalized precisely.

The interactive proof assistant is used for constructing
beautiful proofs.

Code extracted from PVS is safe and efficient.

Formalization is an experimental science. Dana Scott
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