
Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Synthetic Domains in the 21st Century
September 28, 2023
Topos Institute Colloquium

Jonathan Sterling
Computer Laboratory

University of Cambridge



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

In 1949, Alan Turing presented one of the first “correctness proofs” for

a computer program (an addition checker). He asks:

How can one check a routine in the sense of making sure that it is
right?

In order that the [person] who checks may not have too
difficult a task theprogrammer shouldmakeanumber of definite
assertionswhich canbe checked individually, and fromwhich the
correctness of thewhole programme easily follows.

Turing’s precocity:

1. compositional reasoning about programs

2. annotating programs with local assertions (cf. Floyd &Hoare)

3. invariants that cut across all steps of program execution



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

In 1949, Alan Turing presented one of the first “correctness proofs” for

a computer program (an addition checker). He asks:

How can one check a routine in the sense of making sure that it is
right? In order that the [person] who checks may not have too
difficult a task theprogrammer shouldmakeanumber of definite
assertionswhich canbe checked individually, and fromwhich the
correctness of thewhole programme easily follows.

Turing’s precocity:

1. compositional reasoning about programs

2. annotating programs with local assertions (cf. Floyd &Hoare)

3. invariants that cut across all steps of program execution



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

In 1949, Alan Turing presented one of the first “correctness proofs” for

a computer program (an addition checker). He asks:

How can one check a routine in the sense of making sure that it is
right? In order that the [person] who checks may not have too
difficult a task theprogrammer shouldmakeanumber of definite
assertionswhich canbe checked individually, and fromwhich the
correctness of thewhole programme easily follows.

Turing’s precocity:

1. compositional reasoning about programs

2. annotating programs with local assertions (cf. Floyd &Hoare)

3. invariants that cut across all steps of program execution



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Goal of programming languages field: to give precise and reliable
meaning to the “assertions” of Turing’s verified addition checker.



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Isn’t it obvious what an assertionmeans? (No)

Think of a programwith some assertions.

// x is an integer
set x to 2 ∗ x
// x is an even integer
print x
// x is an even integer

Themeaning of these assertions is not obvious.

1. What does a “variable” like x actually refer to?

2. Even “2 ∗ 5” is so far only a program expression, so it is not an integer
of any kind, much less an even integer.



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Isn’t it obvious what an assertionmeans? (No)

Think of a programwith some assertions.

// x is an integer
set x to 2 ∗ x
// x is an even integer
print x
// x is an even integer

Themeaning of these assertions is not obvious.

1. What does a “variable” like x actually refer to?

2. Even “2 ∗ 5” is so far only a program expression, so it is not an integer
of any kind, much less an even integer.



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Assertions and themeaning of program expressions

To give any kind of definite and reliablemeaning to assertions, it is
therefore necessary to explainwhat a programexpressionmeans.We also
want this meaning to be related to what the computer really does.

Denotational semantics explains the meaning of a complex program
P(Q,R, S, . . .) in terms of the meanings of its subroutines Q,R, S, . . .; cf.
Turing’s compositionality criterion. Then, assertions are explained as

predicates(*) on the meanings of the programs they concern.



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Assertions and themeaning of program expressions

To give any kind of definite and reliablemeaning to assertions, it is
therefore necessary to explainwhat a programexpressionmeans.We also
want this meaning to be related to what the computer really does.

Denotational semantics explains the meaning of a complex program
P(Q,R, S, . . .) in terms of the meanings of its subroutines Q,R, S, . . .; cf.
Turing’s compositionality criterion. Then, assertions are explained as

predicates(*) on the meanings of the programs they concern.



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Naïve denotational semantics in sets

1. A context Γ or a type τ refers to a set JΓK or JτK.

2. A program Γ ⊢ M : τ refers to a function JMK : JΓK → JτK.

3. An assertion Γ | ϕ refers to a subset JϕK ⊆ JΓK.

4. An entailment Γ | ϕ ⊢ ψ refers to an inclusion JϕK ⊆ JψK ⊆ JΓK.

Weare taught almost from birth how to reason informally with sets.
The benefit of naïve set theoretic semantics has nothing to do with “set

theory” in the professional sense: it is good because we know how to

think naïvely & reliably about collections andmappings between them.



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Naïve denotational semantics in sets

1. A context Γ or a type τ refers to a set JΓK or JτK.

2. A program Γ ⊢ M : τ refers to a function JMK : JΓK → JτK.

3. An assertion Γ | ϕ refers to a subset JϕK ⊆ JΓK.

4. An entailment Γ | ϕ ⊢ ψ refers to an inclusion JϕK ⊆ JψK ⊆ JΓK.

Weare taught almost from birth how to reason informally with sets.
The benefit of naïve set theoretic semantics has nothing to do with “set

theory” in the professional sense: it is good because we know how to

think naïvely & reliably about collections andmappings between them.



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Naïve denotational semantics in sets

1. A context Γ or a type τ refers to a set JΓK or JτK.

2. A program Γ ⊢ M : τ refers to a function JMK : JΓK → JτK.

3. An assertion Γ | ϕ refers to a subset JϕK ⊆ JΓK.

4. An entailment Γ | ϕ ⊢ ψ refers to an inclusion JϕK ⊆ JψK ⊆ JΓK.

Weare taught almost from birth how to reason informally with sets.
The benefit of naïve set theoretic semantics has nothing to do with “set

theory” in the professional sense: it is good because we know how to

think naïvely & reliably about collections andmappings between them.



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Naïve denotational semantics in sets

1. A context Γ or a type τ refers to a set JΓK or JτK.

2. A program Γ ⊢ M : τ refers to a function JMK : JΓK → JτK.

3. An assertion Γ | ϕ refers to a subset JϕK ⊆ JΓK.

4. An entailment Γ | ϕ ⊢ ψ refers to an inclusion JϕK ⊆ JψK ⊆ JΓK.

Weare taught almost from birth how to reason informally with sets.
The benefit of naïve set theoretic semantics has nothing to do with “set

theory” in the professional sense: it is good because we know how to

think naïvely & reliably about collections andmappings between them.



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Naïve denotational semantics in sets

1. A context Γ or a type τ refers to a set JΓK or JτK.

2. A program Γ ⊢ M : τ refers to a function JMK : JΓK → JτK.

3. An assertion Γ | ϕ refers to a subset JϕK ⊆ JΓK.

4. An entailment Γ | ϕ ⊢ ψ refers to an inclusion JϕK ⊆ JψK ⊆ JΓK.

Weare taught almost from birth how to reason informally with sets.
The benefit of naïve set theoretic semantics has nothing to do with “set

theory” in the professional sense: it is good because we know how to

think naïvely & reliably about collections andmappings between them.



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Naïve denotational semantics in sets

1. A context Γ or a type τ refers to a set JΓK or JτK.

2. A program Γ ⊢ M : τ refers to a function JMK : JΓK → JτK.

3. An assertion Γ | ϕ refers to a subset JϕK ⊆ JΓK.

4. An entailment Γ | ϕ ⊢ ψ refers to an inclusion JϕK ⊆ JψK ⊆ JΓK.

Weare taught almost from birth how to reason informally with sets.
The benefit of naïve set theoretic semantics has nothing to do with “set

theory” in the professional sense: it is good because we know how to

think naïvely & reliably about collections andmappings between them.



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Explaining themeanings of programs is hard because:

1. some program have general recursion (in both terms and types!);

2. some programs are stateful;

3. some programs are polymorphic;

4. some programs are nondeterministic;

5. some programs are interactive

6. . . .

Mere sets are too discrete to bring order to this complexity! Dana Scott’s
domain theory broke the logjam (Scott, 1970; Scott, 1972; Scott, 1976;

Scott, 1982; Scott, 1993).



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Explaining themeanings of programs is hard because:

1. some program have general recursion (in both terms and types!);

2. some programs are stateful;

3. some programs are polymorphic;

4. some programs are nondeterministic;

5. some programs are interactive

6. . . .

Mere sets are too discrete to bring order to this complexity! Dana Scott’s
domain theory broke the logjam (Scott, 1970; Scott, 1972; Scott, 1976;

Scott, 1982; Scott, 1993).



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Explaining themeanings of programs is hard because:

1. some program have general recursion (in both terms and types!);

2. some programs are stateful;

3. some programs are polymorphic;

4. some programs are nondeterministic;

5. some programs are interactive

6. . . .

Mere sets are too discrete to bring order to this complexity! Dana Scott’s
domain theory broke the logjam (Scott, 1970; Scott, 1972; Scott, 1976;

Scott, 1982; Scott, 1993).



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Explaining themeanings of programs is hard because:

1. some program have general recursion (in both terms and types!);

2. some programs are stateful;

3. some programs are polymorphic;

4. some programs are nondeterministic;

5. some programs are interactive

6. . . .

Mere sets are too discrete to bring order to this complexity! Dana Scott’s
domain theory broke the logjam (Scott, 1970; Scott, 1972; Scott, 1976;

Scott, 1982; Scott, 1993).



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Explaining themeanings of programs is hard because:

1. some program have general recursion (in both terms and types!);

2. some programs are stateful;

3. some programs are polymorphic;

4. some programs are nondeterministic;

5. some programs are interactive

6. . . .

Mere sets are too discrete to bring order to this complexity! Dana Scott’s
domain theory broke the logjam (Scott, 1970; Scott, 1972; Scott, 1976;

Scott, 1982; Scott, 1993).



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Explaining themeanings of programs is hard because:

1. some program have general recursion (in both terms and types!);

2. some programs are stateful;

3. some programs are polymorphic;

4. some programs are nondeterministic;

5. some programs are interactive

6. . . .

Mere sets are too discrete to bring order to this complexity! Dana Scott’s
domain theory broke the logjam (Scott, 1970; Scott, 1972; Scott, 1976;

Scott, 1982; Scott, 1993).



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Explaining themeanings of programs is hard because:

1. some program have general recursion (in both terms and types!);

2. some programs are stateful;

3. some programs are polymorphic;

4. some programs are nondeterministic;

5. some programs are interactive

6. . . .

Mere sets are too discrete to bring order to this complexity! Dana Scott’s
domain theory broke the logjam (Scott, 1970; Scott, 1972; Scott, 1976;

Scott, 1982; Scott, 1993).



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Denotational semantics of recursion via domains

Replace sets with some kind of space (“domain”) in which points have a
specialization (pre)order supporting colimits of ascending chains.

1. A context Γ or a type τ refers to a space JΓK or JτK.

2. A program Γ ⊢ M : τ refers to a continuous function
JMK : JΓK → JτK.

3. A recursive program Γ ⊢ fix f : τ refers to the colimit of the chain
[⊥ ⩽ Jf K⊥ ⩽ Jf K2⊥ ⩽ . . .].

4. An assertion Γ | ϕ refers to .... ??? (admissible subspaces, open

subspaces, closed subspaces) ???



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Denotational semantics of recursion via domains

Replace sets with some kind of space (“domain”) in which points have a
specialization (pre)order supporting colimits of ascending chains.

1. A context Γ or a type τ refers to a space JΓK or JτK.

2. A program Γ ⊢ M : τ refers to a continuous function
JMK : JΓK → JτK.

3. A recursive program Γ ⊢ fix f : τ refers to the colimit of the chain
[⊥ ⩽ Jf K⊥ ⩽ Jf K2⊥ ⩽ . . .].

4. An assertion Γ | ϕ refers to .... ??? (admissible subspaces, open

subspaces, closed subspaces) ???



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Denotational semantics of recursion via domains

Replace sets with some kind of space (“domain”) in which points have a
specialization (pre)order supporting colimits of ascending chains.

1. A context Γ or a type τ refers to a space JΓK or JτK.

2. A program Γ ⊢ M : τ refers to a continuous function
JMK : JΓK → JτK.

3. A recursive program Γ ⊢ fix f : τ refers to the colimit of the chain
[⊥ ⩽ Jf K⊥ ⩽ Jf K2⊥ ⩽ . . .].

4. An assertion Γ | ϕ refers to .... ??? (admissible subspaces, open

subspaces, closed subspaces) ???



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Denotational semantics of recursion via domains

Replace sets with some kind of space (“domain”) in which points have a
specialization (pre)order supporting colimits of ascending chains.

1. A context Γ or a type τ refers to a space JΓK or JτK.

2. A program Γ ⊢ M : τ refers to a continuous function
JMK : JΓK → JτK.

3. A recursive program Γ ⊢ fix f : τ refers to the colimit of the chain
[⊥ ⩽ Jf K⊥ ⩽ Jf K2⊥ ⩽ . . .].

4. An assertion Γ | ϕ refers to .... ??? (admissible subspaces, open

subspaces, closed subspaces) ???



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Denotational semantics of recursion via domains

Replace sets with some kind of space (“domain”) in which points have a
specialization (pre)order supporting colimits of ascending chains.

1. A context Γ or a type τ refers to a space JΓK or JτK.

2. A program Γ ⊢ M : τ refers to a continuous function
JMK : JΓK → JτK.

3. A recursive program Γ ⊢ fix f : τ refers to the colimit of the chain
[⊥ ⩽ Jf K⊥ ⩽ Jf K2⊥ ⩽ . . .].

4. An assertion Γ | ϕ refers to .... ??? (admissible subspaces, open

subspaces, closed subspaces) ???



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Downsides of classical domains for PL semantics

1. Proliferation of obscure variations: there’s a ton of different kinds
of domain (ω-dcpo,ω-cpo, Scott domain, strongly algebraic

domain, etc.), each solving different problems.

2. Abstraction is too low: constant continuity side-obligations an
impediment for everyday users of domain theory.

3. No intrinsic notion of assertion: many different possible ways to
interpret assertions, but no unifying language.

4. No intrinsic notion of dependent type: thus impossible to reason
“naïvely” in the language of domains, leading to an artificial

boundary between programming and verification.

5. Difficulty with “awkward” PL features: higher-order store with
parametric polymorphism; concurrency requires new kinds of

domain (e.g. event structures, presheaf topoi, etc.).



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

The thesis of synthetic domain theory

Scott recognized the obscurity and complexity of classical domain

theory, and initiated the field of synthetic domain theory to search for
topoi that have domain-like spaces as full subcategories.

1. A topos is a model of extensional Intuitionistic TypeTheory in

which the propositions (subsingletons) form a univalent universe.

2. It is as easy to reason rigorously and informally in an arbitrary topos
as it is in set theory. Naïve denotational semantics for recursion.

3. A full subcategory of domainsmeans that you never have to check a
continuity condition again.

4. Every notion of assertion (e.g. admissible subspace, open/closed
subspace, etc.) easily expressed in terms of the subobject classifier.

5. Automatic support for dependent types: programming blends with
verification.



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Axioms of synthetic domain theory

Many possible axiom systems, but we will focus on a few core axioms

that are sufficient in practice, inspired by Simpson (2004).

Let S be an elementary topos with a natural numbers object; we will

work informally in the internal language.



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Axiom (Dominance)
A subuniverse Σ ⊆ Ω closed under⊤ and dependent sums

∑
x:ϕψx

whereϕ : Σ andψ : ϕ→ Σ.

Using this axiom, the Σ-partial map classifier construction gives a
monadL = (L,η,µ).

LA :≡
∑

ϕ:Σ Aϕ

ηAa :≡ (⊤, λ_.a)
µA(ϕ, u) :≡

(∑
x:ϕ (ux).1, λ(x, y).(ux).2y

)
This is a semantic partiality monad! We will later isolate the types in

which partial functions can be defined by recursion.



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Axiom (Empty Join)
The dominance Σ ⊆ Ω is closed under⊥.

We can also assume joins of higher arity, but this limits the models.

Empty joins parameterize diverging computations (⊥, λ()) : LA;
binary joins would parameterize parallel computations.



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Let Lω→ ω be the initial algebra for the lifting monadL. For type
theorists, this is the inductive typeWϕ:Σϕ.

Think ofω as the “genericω-chain”; we have elements corresponding
to natural numbers, butω is somehow “thicker” thanN.

Let ω̄→ Lω̄ be the final coalgebra forL; this is a coinductive type. We
haveω ↪→ ω̄, and outside the image lies an infinite element∞ : ω̄.

Think ofω ↪→ ω̄ as the incidence relation between the generic
omega chain and its colimit.

Definition
A type A is called completewhen it is orthogonal toω ↪→ ω̄, i.e. every
figureα : ω→ A extends to a unique figure ᾱ : ω̄→ A. Wemay write∨
i:ω αi for ᾱ∞.



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Axiom (Predomains)
There exists a reflective full subfibrationP ⊆ Swhose objects are called

predomains and are all complete and closed underL.

Note: by above,P is automatically cartesian closed, and both complete

& cocomplete in the fibered sense, with limits computed as in S.

Definition
A domain is defined to be anL-algebra whose underlying type is a
predomain. A strict (linear)map between domains is anL-algebra
homomorphism.

Analogy: predomains ∼ unpointed cpos, domains ∼ pointed cpos.



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Axiom (Optional)
TheKleisli categoryPL is algebraically compact as a fibration over S.

In otherwords, we can compute recursive types.

Manymore axioms can be imposed, to refine our picture of “domains”;

important for relating synthetic constructions to ordinary math, but
not needed for workaday denotational semantics.



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Naïve denotational semantics of recursion

The internal intuitionistic type theory of any topos S satisfying our

axioms serves as ametalanguage for naïve denotational semantics.



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Naïve call-by-value interpretation of recursion

1. A context Γ or a type τ refers to a predomain JΓK or JτK.

2. A program Γ ⊢ M : τ refers to a Kleisli mapping JMK : JΓK → LJτK.
(Continuity is automatic!)

• Recursive functions computed using completeness of LJτK, taking the
“formal colimits” of a parameterized chain JΓK ×ω→ LJτK defined
using structural recursion onω.

3. An assertion Γ | ϕ refers to a subset JϕK ⊆ JΓK; f.p. induction
restricted to complete subsets.

4. An entailment Γ | ϕ ⊢ ψ refers to an inclusion JϕK ⊆ JψK ⊆ JΓK.

Scales effortlessly to parametric polymorphism, recursive types,
first-order store, finite non-determinism, and thus interleaving
concurrency. Higher-order store (storing closures) as well as true
concurrency not accounted for in this environment.



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Relating synthetic denotational semantics to “real math”

It is well and good to verify programs using the axioms of synthetic

domain theory, but is this “sound” with respect to (1) classical domain

theoretic semantics or (2) operational notions of equivalence?

Answering these questions means findingmodels of the axioms.

1. Soundness for operational equivalence (“computational
adequacy”) follows from a nearly arbitrarymodel of SDT thanks to
Simpson (2004) andMarcelo P. Fiore and Plotkin (1994).

2. Soundness for classical denotational semantics follows because
cpos, etc. embed nicely into sheaf models of SDT (Marcelo P. Fiore
and Plotkin, 1996; Marcelo P. Fiore and Rosolini, 1997).



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Metric domain theory in the 1980s

In the 1980s, a new kind of domain theory emerges.. .

1. replace cpos and continuous maps with (complete, etc.)metric
spaces and nonexpansivemaps.

2. idea: contractive maps (and locally contractive functors) have
unique fixed points.

See: Arnold and Nivat (1980), MacQueen, Plotkin, and Sethi (1984), and

America and Rutten (1987).



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Metric domain theory in the 1980s

In the 1980s, a new kind of domain theory emerges.. .

1. replace cpos and continuous maps with (complete, etc.)metric
spaces and nonexpansivemaps.

2. idea: contractive maps (and locally contractive functors) have
unique fixed points.

See: Arnold and Nivat (1980), MacQueen, Plotkin, and Sethi (1984), and

America and Rutten (1987).



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Metric domain theory in the 1980s

In the 1980s, a new kind of domain theory emerges.. .

1. replace cpos and continuous maps with (complete, etc.)metric
spaces and nonexpansivemaps.

2. idea: contractive maps (and locally contractive functors) have
unique fixed points.

See: Arnold and Nivat (1980), MacQueen, Plotkin, and Sethi (1984), and

America and Rutten (1987).



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Metric domain theory in the 1980s

In the 1980s, a new kind of domain theory emerges.. .

1. replace cpos and continuous maps with (complete, etc.)metric
spaces and nonexpansivemaps.

2. idea: contractive maps (and locally contractive functors) have
unique fixed points.

See: Arnold and Nivat (1980), MacQueen, Plotkin, and Sethi (1984), and

America and Rutten (1987).



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Metric domain theory escapes the lab

Two decades later, programming language theorists gave their own

take onmetric domain theory under the name of step-indexing (Appel
andMcAllester, 2001). Adifferent ethos for a different era.

1. technically simple: domain equations solved by recursion on
concrete operational steps; everything is syntax.

2. worse is better: the rich categorical structure of domain theory
thrown away, because who needs it? (Actually needed for scaling!)

3. exceptionally strong results: operational step-indexing the catalyst
for solving many long-standing problems, e.g. semantic soundness
of SystemFµ,ref as in the tour de force thesis of Ahmed (2004).

The end of history?



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Metric domain theory escapes the lab

Two decades later, programming language theorists gave their own

take onmetric domain theory under the name of step-indexing (Appel
andMcAllester, 2001). Adifferent ethos for a different era.

1. technically simple: domain equations solved by recursion on
concrete operational steps; everything is syntax.

2. worse is better: the rich categorical structure of domain theory
thrown away, because who needs it? (Actually needed for scaling!)

3. exceptionally strong results: operational step-indexing the catalyst
for solving many long-standing problems, e.g. semantic soundness
of SystemFµ,ref as in the tour de force thesis of Ahmed (2004).

The end of history?



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Metric domain theory escapes the lab

Two decades later, programming language theorists gave their own

take onmetric domain theory under the name of step-indexing (Appel
andMcAllester, 2001). Adifferent ethos for a different era.

1. technically simple: domain equations solved by recursion on
concrete operational steps; everything is syntax.

2. worse is better: the rich categorical structure of domain theory
thrown away, because who needs it? (Actually needed for scaling!)

3. exceptionally strong results: operational step-indexing the catalyst
for solving many long-standing problems, e.g. semantic soundness
of SystemFµ,ref as in the tour de force thesis of Ahmed (2004).

The end of history?



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Metric domain theory escapes the lab

Two decades later, programming language theorists gave their own

take onmetric domain theory under the name of step-indexing (Appel
andMcAllester, 2001). Adifferent ethos for a different era.

1. technically simple: domain equations solved by recursion on
concrete operational steps; everything is syntax.

2. worse is better: the rich categorical structure of domain theory
thrown away, because who needs it? (Actually needed for scaling!)

3. exceptionally strong results: operational step-indexing the catalyst
for solving many long-standing problems, e.g. semantic soundness
of SystemFµ,ref as in the tour de force thesis of Ahmed (2004).

The end of history?



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

A new synthetic domain theory from step-indexing

A strand of continuity between the world of metric domain theory and

step-indexed PL semantics leads to a new synthetic domain theory.

Theorem (Birkedal,Møgelberg, Schwinghammer, and Støvring (2011))
A complete bisected ultrametric space is more simply described as a presheaf
onωwhose restrictionmaps are surjections / quotients (i.e. flabby presheaves).
The inclusion into ω̂ is coreflective.

Synthetic guarded domain theory generalizes the internal language of
ω̂, lifting the ill-advised (*) restriction to flabby presheaves.

Axiomatizations: Birkedal, Møgelberg, Schwinghammer, and
Støvring (2011), Milius and Litak (2017), and Palombi and Sterling

(2023).



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

A new synthetic domain theory from step-indexing

A strand of continuity between the world of metric domain theory and

step-indexed PL semantics leads to a new synthetic domain theory.

Theorem (Birkedal,Møgelberg, Schwinghammer, and Støvring (2011))
A complete bisected ultrametric space is more simply described as a presheaf
onωwhose restrictionmaps are surjections / quotients (i.e. flabby presheaves).
The inclusion into ω̂ is coreflective.

Synthetic guarded domain theory generalizes the internal language of
ω̂, lifting the ill-advised (*) restriction to flabby presheaves.

Axiomatizations: Birkedal, Møgelberg, Schwinghammer, and
Støvring (2011), Milius and Litak (2017), and Palombi and Sterling

(2023).



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

A new synthetic domain theory from step-indexing

A strand of continuity between the world of metric domain theory and

step-indexed PL semantics leads to a new synthetic domain theory.

Theorem (Birkedal,Møgelberg, Schwinghammer, and Støvring (2011))
A complete bisected ultrametric space is more simply described as a presheaf
onωwhose restrictionmaps are surjections / quotients (i.e. flabby presheaves).
The inclusion into ω̂ is coreflective.

Synthetic guarded domain theory generalizes the internal language of
ω̂, lifting the ill-advised (*) restriction to flabby presheaves.

Axiomatizations: Birkedal, Møgelberg, Schwinghammer, and
Støvring (2011), Milius and Litak (2017), and Palombi and Sterling

(2023).



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

A new synthetic domain theory from step-indexing

A strand of continuity between the world of metric domain theory and

step-indexed PL semantics leads to a new synthetic domain theory.

Theorem (Birkedal,Møgelberg, Schwinghammer, and Støvring (2011))
A complete bisected ultrametric space is more simply described as a presheaf
onωwhose restrictionmaps are surjections / quotients (i.e. flabby presheaves).
The inclusion into ω̂ is coreflective.

Synthetic guarded domain theory generalizes the internal language of
ω̂, lifting the ill-advised (*) restriction to flabby presheaves.

Axiomatizations: Birkedal, Møgelberg, Schwinghammer, and
Støvring (2011), Milius and Litak (2017), and Palombi and Sterling

(2023).



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

New features of synthetic guarded domain theory

1. Unlike traditional SDT, no special classes of objects (e.g. complete,
replete, etc.); the “predomains” form a topos.

2. Recursion introduced by an endofunctor▶, which corresponds to a
single “unfolding” of a recursive domain equation; “domains” are
just▶-algebras.

3. New feature: the universe of all small predomains is a domain (cf.
domains of information systems in classical domain theory, which
classify only algebraic[. . . ] domains).



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

New features of synthetic guarded domain theory

1. Unlike traditional SDT, no special classes of objects (e.g. complete,
replete, etc.); the “predomains” form a topos.

2. Recursion introduced by an endofunctor▶, which corresponds to a
single “unfolding” of a recursive domain equation; “domains” are
just▶-algebras.

3. New feature: the universe of all small predomains is a domain (cf.
domains of information systems in classical domain theory, which
classify only algebraic[. . . ] domains).



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

New features of synthetic guarded domain theory

1. Unlike traditional SDT, no special classes of objects (e.g. complete,
replete, etc.); the “predomains” form a topos.

2. Recursion introduced by an endofunctor▶, which corresponds to a
single “unfolding” of a recursive domain equation; “domains” are
just▶-algebras.

3. New feature: the universe of all small predomains is a domain (cf.
domains of information systems in classical domain theory, which
classify only algebraic[. . . ] domains).



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

New features of synthetic guarded domain theory

1. Unlike traditional SDT, no special classes of objects (e.g. complete,
replete, etc.); the “predomains” form a topos.

2. Recursion introduced by an endofunctor▶, which corresponds to a
single “unfolding” of a recursive domain equation; “domains” are
just▶-algebras.

3. New feature: the universe of all small predomains is a domain (cf.
domains of information systems in classical domain theory, which
classify only algebraic[. . . ] domains).



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Naïve denotational semantics in SGDT?
1. Naïve denotational semantics of general recursion is both easy
and elegant (Paviotti, Møgelberg, and Birkedal, 2015; Møgelberg
and Paviotti, 2016; Paviotti, 2016).

2. Only a little bit harder is naïve denotational semantics of general
recursion, parametric polymorphism, and higher-order storewith
semantic worlds, etc. (Sterling, Gratzer, and Birkedal, 2022).

3. A new result: denotational semantics for full dependent type theory
with higher-order store, parametricity, etc. (op. cit.).

4. Aagaard, Sterling, and Birkedal (2023) adapt Iris-style

higher-order separation logic to denotational semantics,
higher-order ghost state and invariants forthcoming.

Finally denotational semantics responds toAhmed (2004), after which
it seemed to many community members that operationally-based

semantics was the only viable approach to higher-order store.



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Naïve denotational semantics in SGDT?
1. Naïve denotational semantics of general recursion is both easy
and elegant (Paviotti, Møgelberg, and Birkedal, 2015; Møgelberg
and Paviotti, 2016; Paviotti, 2016).

2. Only a little bit harder is naïve denotational semantics of general
recursion, parametric polymorphism, and higher-order storewith
semantic worlds, etc. (Sterling, Gratzer, and Birkedal, 2022).

3. A new result: denotational semantics for full dependent type theory
with higher-order store, parametricity, etc. (op. cit.).

4. Aagaard, Sterling, and Birkedal (2023) adapt Iris-style

higher-order separation logic to denotational semantics,
higher-order ghost state and invariants forthcoming.

Finally denotational semantics responds toAhmed (2004), after which
it seemed to many community members that operationally-based

semantics was the only viable approach to higher-order store.



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Naïve denotational semantics in SGDT?
1. Naïve denotational semantics of general recursion is both easy
and elegant (Paviotti, Møgelberg, and Birkedal, 2015; Møgelberg
and Paviotti, 2016; Paviotti, 2016).

2. Only a little bit harder is naïve denotational semantics of general
recursion, parametric polymorphism, and higher-order storewith
semantic worlds, etc. (Sterling, Gratzer, and Birkedal, 2022).

3. A new result: denotational semantics for full dependent type theory
with higher-order store, parametricity, etc. (op. cit.).

4. Aagaard, Sterling, and Birkedal (2023) adapt Iris-style

higher-order separation logic to denotational semantics,
higher-order ghost state and invariants forthcoming.

Finally denotational semantics responds toAhmed (2004), after which
it seemed to many community members that operationally-based

semantics was the only viable approach to higher-order store.



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

Naïve denotational semantics in SGDT?
1. Naïve denotational semantics of general recursion is both easy
and elegant (Paviotti, Møgelberg, and Birkedal, 2015; Møgelberg
and Paviotti, 2016; Paviotti, 2016).

2. Only a little bit harder is naïve denotational semantics of general
recursion, parametric polymorphism, and higher-order storewith
semantic worlds, etc. (Sterling, Gratzer, and Birkedal, 2022).

3. A new result: denotational semantics for full dependent type theory
with higher-order store, parametricity, etc. (op. cit.).

4. Aagaard, Sterling, and Birkedal (2023) adapt Iris-style

higher-order separation logic to denotational semantics,
higher-order ghost state and invariants forthcoming.

Finally denotational semantics responds toAhmed (2004), after which
it seemed to many community members that operationally-based

semantics was the only viable approach to higher-order store.



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

What’s next? Technical & social prospects

1. Denotational semantics of interleaving concurrency +
higher-order effects are too easy, but easy examples important.

2. True concurrency could be the “killer application” of denotational
clarity in the era of relaxedmemory. Let go of functional bias and
study 2-dimensional domains!

3. Education and outreach: operational methods have dominated in
an era in which sheer humanpower plays a bigger role than clarity.
Soon, the pendulum swings again.

Thanks! P.S. I’m hiring! Please get in touch.



Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

References I
Aagaard, Frederik Lerbjerg, Jonathan Sterling, and Lars Birkedal (Apr. 8, 2023). “A

denotationally-based program logic for higher-order store”. To appear,Mathematical
Foundations of Programming Semantics. url: https://www.cs.au.dk/~birke/papers/tulip.pdf .

Ahmed, Amal Jamil (2004). “Semantics of Types for Mutable State”. PhD thesis. Princeton

University. url: http://www.ccs.neu.edu/home/amal/ahmedthesis.pdf .

America, Pierre and Jan J. M. M. Rutten (1987). “Solving Reflexive Domain Equations in a

Category of Complete Metric Spaces”. In: Proceedings of the 3rdWorkshop onMathematical
Foundations of Programming Language Semantics. Berlin, Heidelberg: Springer-Verlag,
pp. 254–288. isbn: 3-540-19020-1.

Appel, AndrewW. and David McAllester (Sept. 2001). “An IndexedModel of Recursive Types

for Foundational Proof-carrying Code”. In: ACMTransactions on Programming Languages and
Systems 23.5, pp. 657–683. issn: 0164-0925. doi: 10.1145/504709.504712.

Arnold, A. andM. Nivat (1980). “Metric interpretations of infinite trees and semantics of

non deterministic recursive programs”. In:Theoretical Computer Science 11.2, pp. 181–205.
issn: 0304-3975. doi: 10.1016/0304-3975(80)90045-6.

Birkedal, Lars, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian Støvring

(2011). “First Steps in Synthetic Guarded DomainTheory: Step-Indexing in the Topos of

Trees”. In: Proceedings of the 2011 IEEE 26th Annual Symposium on Logic in Computer Science.
Washington, DC, USA: IEEE Computer Society, pp. 55–64. isbn: 978-0-7695-4412-0. doi:

10.1109/LICS.2011.16. arXiv: 1208.3596 [cs.LO].

https://www.cs.au.dk/~birke/papers/tulip.pdf
http://www.ccs.neu.edu/home/amal/ahmedthesis.pdf
https://doi.org/10.1145/504709.504712
https://doi.org/10.1016/0304-3975(80)90045-6
https://doi.org/10.1109/LICS.2011.16
https://arxiv.org/abs/1208.3596


Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

References II
Bizjak, Aleš (2016). “On semantics and applications of guarded recursion”. PhD thesis.

Aarhus University.

Cattani, Gian Luca, Marecelo P. Fiore, and GlynnWinskel (1998). “ATheory of Recursive

Domains with Applications to Concurrency”. In: Proceedings of the 13th Annual IEEE
Symposium on Logic in Computer Science. USA: IEEE Computer Society. isbn: 0-8186-8506-9.

Cattani, Gian Luca and GlynnWinskel (2005). “Profunctors, openmaps and bisimulation”.

In:Mathematical Structures in Computer Science 15.3, pp. 553–614. doi:
10.1017/S0960129505004718.

Escardó, Martín Hötzel (1999). “A metric model of PCF”. In:Workshop on Realizability
Semantics and Applications.

Fiore, Marcelo P. and Gordon D. Plotkin (1994). “An axiomatisation of computationally

adequate domain theoretic models of FPC”. In: Proceedings Ninth Annual IEEE Symposium on
Logic in Computer Science, pp. 92–102. doi: 10.1109/LICS.1994.316083.

— (1996). “An Extension of Models of Axiomatic DomainTheory to Models of Synthetic

DomainTheory”. In: Computer Science Logic, 10th InternationalWorkshop, CSL ’96, Annual
Conference of the EACSL, Utrecht,TheNetherlands, September 21-27, 1996, Selected Papers. Ed. by
Dirk van Dalen andMarc Bezem. Vol. 1258. Lecture Notes in Computer Science. Springer,

pp. 129–149. doi: 10.1007/3-540-63172-0\_36.

https://doi.org/10.1017/S0960129505004718
https://doi.org/10.1109/LICS.1994.316083
https://doi.org/10.1007/3-540-63172-0\_36


Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

References III
Fiore, Marcelo P. and Giuseppe Rosolini (1997). “The category of cpos from a synthetic

viewpoint”. In:Thirteenth Annual Conference onMathematical Foundations of Progamming
Semantics, MFPS 1997, CarnegieMellon University, Pittsburgh, PA, USA,March 23-26, 1997. Ed. by
Stephen D. Brookes andMichael W.Mislove. Vol. 6. Electronic Notes inTheoretical

Computer Science. Elsevier, pp. 133–150. doi: 10.1016/S1571-0661(05)80165-3.

MacQueen, David, Gordon D. Plotkin, and Ravi Sethi (1984). “An Ideal Model for Recursive

Polymorphic Types”. In: Proceedings of the 11th ACMSIGACT-SIGPLAN Symposium on Principles
of Programming Languages. Salt Lake City, Utah, USA: Association for Computing Machinery,
pp. 165–174. isbn: 0-89791-125-3. doi: 10.1145/800017.800528. url:

https://doi.org/10.1145/800017.800528.

Milius, Stefan and Tadeusz Litak (2017). “Guard Your Daggers and Traces: Properties of

Guarded (Co-)recursion”. In: Fundamenta Informaticae 150.3-4, pp. 407–449. doi:
10.3233/FI-2017-1475.

Møgelberg, Rasmus Ejlers andMarco Paviotti (2016). “Denotational Semantics of Recursive

Types in Synthetic Guarded DomainTheory”. In: Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science. New York, NY, USA: Association for Computing
Machinery, pp. 317–326. isbn: 978-1-4503-4391-6. doi: 10.1145/2933575.2934516.

Morris, F. L. and C. B. Jones (1984). “An Early Program Proof by Alan Turing”. In: Annals of
the History of Computing 6.2, pp. 139–143. doi: 10.1109/MAHC.1984.10017.

https://doi.org/10.1016/S1571-0661(05)80165-3
https://doi.org/10.1145/800017.800528
https://doi.org/10.1145/800017.800528
https://doi.org/10.3233/FI-2017-1475
https://doi.org/10.1145/2933575.2934516
https://doi.org/10.1109/MAHC.1984.10017


Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

References IV
Palombi, Daniele and Jonathan Sterling (Feb. 2023). “Classifying topoi in synthetic guarded

domain theory”. In: Electronic Notes inTheoretical Informatics and Computer Science Volume 1 -
Proceedings of MFPS XXXVIII. doi: 10.46298/entics.10323. url:

https://entics.episciences.org/10323.

Paviotti, Marco (2016). “Denotational semantics in Synthetic Guarded DomainTheory”.

PhD thesis. Denmark: IT-Universitetet i København. isbn: 978-87-7949-345-2.

Paviotti, Marco, Rasmus Ejlers Møgelberg, and Lars Birkedal (2015). “A Model of PCF in

Guarded TypeTheory”. In: Electronic Notes inTheoretical Computer Science 319.Supplement C.
The 31st Conference on the Mathematical Foundations of Programming Semantics (MFPS

XXXI), pp. 333–349. issn: 1571-0661. doi: 10.1016/j.entcs.2015.12.020.

Scott, Dana S. (Nov. 1970).Outline of aMathematicalTheory of Computation. Tech. rep. PRG02.
Oxford University Computer Laboratory, p. 30.

— (1972). “Continuous lattices”. In: Toposes, Algebraic Geometry and Logic. Ed. by
F.W. Lawvere. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 97–136. isbn:

978-3-540-37609-5.

— (1976). “Data Types as Lattices”. In: SIAM Journal on Computing 5.3, pp. 522–587. doi:
10.1137/0205037.

— (1982). “Domains for denotational semantics”. In: Automata, Languages and
Programming. Ed. by Mogens Nielsen and Erik Meineche Schmidt. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 577–610. isbn: 978-3-540-39308-5.

https://doi.org/10.46298/entics.10323
https://entics.episciences.org/10323
https://doi.org/10.1016/j.entcs.2015.12.020
https://doi.org/10.1137/0205037


Naïve Denotational Semantics Domain theory for recursion Synthetic domains Synthetic step-indexing References

References V
Scott, Dana S. (1993). “A type-theoretical alternative to ISWIM, CUCH, OWHY”. In:

Theoretical Computer Science 121.1, pp. 411–440. issn: 0304-3975. doi:
10.1016/0304-3975(93)90095-B.

Simpson, Alex (2004). “Computational adequacy for recursive types in models of

intuitionistic set theory”. In: Annals of Pure and Applied Logic 130.1. Papers presented at the
2002 IEEE Symposium on Logic in Computer Science (LICS), pp. 207–275. issn: 0168-0072.

doi: 10.1016/j.apal.2003.12.005.

Sterling, Jonathan, Daniel Gratzer, and Lars Birkedal (July 2022). “Denotational semantics

of general store and polymorphism”. Unpublishedmanuscript. doi:

10.48550/arXiv.2210.02169.

Turing, AlanM. (1949). “Checking a Large Routine”. In: Report of a Conference onHigh Speed
Automatic CalculationMachines. Univ. Math. Lab, Cambridge, pp. 67–69.

https://doi.org/10.1016/0304-3975(93)90095-B
https://doi.org/10.1016/j.apal.2003.12.005
https://doi.org/10.48550/arXiv.2210.02169

	Naïve Denotational Semantics
	Domain theory for recursion
	Synthetic domains
	Synthetic step-indexing
	References

