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A very brief history

Modern mathematics essentially began with Cantor’s set theory.
The conceptual fabric of modern mathematics is presently moving:

1. Set theory

2. Formal logic

3. Category theory

4. Topos theory

5. Categorical logic

6. Abstract Homotopy theory

7. Higher category theory

8. Higher topos theory

9. Homotopy type theory

10. Brave new mathematics?



Brave new mathematics

David Hilbert:

”From the paradise, that Cantor created for us, no-one shall be
able to expel us!”

Norman Steenrod:

”It is the most trivial paper I ever read, and it has the greatest
influence on my work!”.

John Greenlees:

”The phrase ‘brave new rings’ was coined by Friedhelm
Waldhausen, presumably to capture both an optimism about the
possibilities of generalizing rings to ring spectra, and a proper
awareness of the risk that the new step in abstraction would take
the subject dangerously far from its justification in examples.”



Simplicial sets

The category ∆

Ob(∆) := {[n] = {0, . . . , n}|n ≥ 0}

Hom([m], [n]) is the set of order preserving maps [m]→ [n].

A simplicial set is a presheaf A : ∆op → Set.
Notation: An = A([n]).

sSet := Fun(∆op,Set)

Example: ∆[n] = Hom(−, [n])



The geometric realisation

The realisation functor R : ∆→ Top is defined by letting

R[n] := {(x1, . . . , xn) ∈ [0, 1]nR | x1 ≤ · · · ≤ xn}

The ”singular complex” of a topological space X is then defined by

S(X )n := Top(R[n],X )

The functor S := R⋆ : Top→ sSet has a left adjoint
R! : sSet→ Top called the geometric realisation functor.

By construction,

R!(A) =

∫ [n]∈∆
An × R([n])



On Kan complexes

Recall that the fundamental simplex ∆[n] ∈ Set is the presheaf
Hom(−, [n]) : ∆op → Set.

The simplex ∆[n] has faces ∂i∆[n] ⊂ ∆[n] (0 ≤ i ≤ n).

1
∂0∆[2]

��
0

∂2∆[2]
@@

∂1∆[2]
// 2

and a boundary

∂∆[n] =
n⋃

i=0

∂i∆[n]



On Kan complexes

Recall that the horn Λk [n] ⊂ ∆[n] (0 ≤ k ≤ n) is defined by
putting

Λk [n] =
⋃
i ̸=k

∂i∆[n]

For example, Λ1[2] is

1
∂0∆[2]

��
0

∂2∆[2]
@@

2



Kan complexes

Definition
A simplicial set X ∈ ∆Set is called a Kan complex if every horn
h : Λk [n]→ X has a filler h′ : ∆[n]→ X .

Λk [n]

��

h // X

∆[n]

h′

==

Theorem
[Quillen] The category of simplicial set sSet admits a cartesian
closed Quillen model structure in which the cofibrations are the
monomorphisms and the fibrant objects are the Kan complexes.

We shall say that a Kan complex is a space.



The fundamental category

A variation on geometric realisation.

The nerve N(C ) of a category C is defined by letting

N(C )n := i⋆(C )n = Fun(i [n],C )

where i : ∆ ⊂ Cat is the inclusion functor.

The functor N := i⋆ : Cat→ sSet has a left adjoint τ1 : sSet→ Cat
called the fundamental category functor. By construction,

τ1(A) =

∫ [n]∈∆
An × i([n])

The fundamental groupoid of A is the groupoid reflection of τ1(A).



On quasi-categories [BV]

We say that a horn Λk [n] ⊂ ∆[n] is inner if 0 < k < n.

The following notion was introduced by Boardman and Vogt
without a name (it is often called a weak Kan complex).

Definition
[BV] A simplicial set X is called a quasi-category if every inner
horn h : Λk [n]→ X has a filler h′ : ∆[n]→ X .

Λk [n]

��

h // X

∆[n]

h′

==

Every Kan complex is a quasi-category.

The nerve N(C ) of a small category C is a quasi-category.



On quasi-categories

Boardman and Vogt introduces the homotopy category ho(X ) of a
quasi-category X . It happens that ho(X ) = τ1X .

Lemma
[J] A quasi-category X is a Kan complex if and only if its
homotopy category ho(X ) is a groupoid.



On quasi-categories

Theorem
[J]The category of simplicial set sSet admits a cartesian closed
Quillen model structure in which the cofibrations are the
monomorphisms and the fibrant objects are the quasi-categories.

If X is a quasi-category, then so is the simplicial set XA for any
simplicial set A.

If X is a quasi-category, then a vertex a ∈ X0 is said to be an
object of X and an arrow f ∈ X1 is said to be a morphism
f : d1(f )→ d0(f ).



The hom spaces of a quasi-category

If X is a quasi-category, then so is the simplicial set X [1] := X∆[1].

The hom space X (a, b) between two objects a, b ∈ X0 is defined
by the following pullback square (of simplicial sets)

X (a, b) //

��

X [1]

(s,t)

��
1

(a,b) // X × X

The simplicial set X (a, b) is a Kan complex (it is a ”space”)



Composition in a quasi-category

If X is a quasi-category, then so is the simplicial set X [2] := X∆[2].

The generalised hom space X (a, b, c) for three objects a, b, c ∈ X0

is defined by the following pullback square (of simplicial sets)

X (a, b, c) //

��

X [2]

(d2,d1,d0)
��

1
(a,b,c)// X × X × X

The projection (d2, d0) : X (a, b, c)→ X (a, b)× X (b, c) has a
section s : X (a, b)× X (b, c)→ X (a, b, c).

The composition operation

µ := d2s : X (a, b)× X (b, c)→ X (a, c)

is well defined up to homotopy.



Truncated quasi-categories

A quasi-category X is said to be 1-truncated if the hom space
X (a, b) is 0-truncated for every a, b ∈ X0.

A quasi-category X is equivalent to a category if and only if it is
1-truncated if and only if the canonical map X → ho(X ) is an
equivalence of quasi-categories.

Ordinary category theory is the theory of 1-truncated
quasi-categories.



Brave new category theory

The initial theory [J]:

▶ Functors and natural transformations;

▶ The opposite quasi-category;

▶ Left and right fibrations;

▶ The slice X/a and the coslice a\X of a quasi-category X by
an object a ∈ X .

▶ Initial and terminal objects;

▶ Diagrams, limits and colimits;

▶ Localizations;

▶ Yoneda lemma (first version);

▶ Adjoint functors (first version).



The quasi-category of spaces S
A quasi-category X is a Kan complex, if every arrow in X is
invertible, in which case we shall say that X is a homotopy type, or
a space.

The quasi-category of spaces S was constructed by Lurie in [HTT].
The quasi-category S is large but locally small. It is cocomplete
and freely generated by its terminal object 1 ∈ S.

The coslice 1\S is the quasi-category of pointed spaces S•.

It was proved later by Cisinski [C] that the projection p : S• → S is
a universal left fibration: for any left fibration f : X → A there
exists a (homotopy) pullback square

X
c• //

f
��

S•
p

��
A

c // S

and the pair of maps (c , c•) is homotopy unique.



The twisted category of arrows

The twisted category of arrows T (C ) of a category C is the
category of elements of the functor Hom : C op × C → Set.

A chain [n]→ T (C ) is a functor [n]op ⋆ [n]→ C .

4

��

3oo

��

2oo

��

1oo

��

0oo

��
5 // 6 // 7 // 8 // 9

T (X ) can be defined for any simplicial set X .

By definition T (X )n = X ([n]op ⋆ [n]) = X2n+1.

The simplicial set T (X ) is a quasi-category when X is a
quasi-category.



The Yoneda map

If X is a quasi-category, then the canonical map

(s, t) : T (X )→ X op × X

is a left fibration.

It has a classifying map hom : X op × X → S

T (X )

(s,t)
��

hom• // S•
p

��
X op × X

hom // S

From the map hom : X op × X → S we obtain the Yoneda map

y : X → SX op



Remark on pushouts and pullbacks

In category theory, the notions of pushout and of pullback squares
depend on the ambiant category. This is also true in the theory of
quasi-categories.

Pushouts and pullbacks in S are homotopy pushouts and pullbacks.

For example, the square on the left is a pushout in the category of
sets Set

1 ⊔ 1 //

��

1

��
1 // 1

1 ⊔ 1 //

��

1

��
1 // S1

while the square on the right is a pushout in the quasi-category of
spaces S (where S1 is the homotopy type of the circle). The
square on the left is obtained by applying the functor π0 to the
square in the right.



Lurie’s contributions [HTT] and [HA]

Lurie’s terminology: quasi-category → ∞-category.

▶ Cartesian fibrations;

▶ The ∞-category of spaces S;
▶ Yoneda lemma (second version);

▶ The (∞, 2)-category of small ∞-categories;

▶ Left and right Kan extensions;

▶ Presentable ∞-categories;

▶ ∞-topoi;

▶ Stable ∞-categories;

▶ ∞-operads;

▶ Monads, monadic functors;

▶ Monoidal ∞-categories, En-categories.



On large and small ∞-categories
The ∞-category of spaces S is large and locally small.

The ∞-category of small ∞-categories Cat∞ is large and locally
small.

The ∞-category of large ∞-categories CAT∞ is very large and not
locally small.

The ∞-category of finite spaces Fin is small.

(Lurie) If A is a small ∞-category, then the ∞-category SAop
is

cocomplete and freely generated by the Yoneda map y : A→ SAop
.

More precisely, for every cocomplete ∞-category C and every
functor f : A→ C there exists a unique cocontinuous functor
L(f ) : SAop → C such that the following triangle commutes:

A
y //

f
''

SAop

L(f )
��
C



Rezk descent principle

The ∞-category S has a very surprising property which was
discovered by Charles Rezk [Rez2].

Consider the contravariant functor Slice : Sop → CAT∞ which
takes an object A ∈ S to the ∞-category S/A and which takes a
map f : A→ B to the base change functor f ⋆ : S/B → S/A.

Rezk descent principle: The slice functor

Slice : Sop → CAT∞

takes colimits to limits:

S/ lim−→
i∈I

Ai = lim←−
i∈I
S/Ai

for every diagram A : I → S.



The descent principle

By the descent principle, we have

S/(A ⊔ B) = S/A× S/B

and more generally,

S/
⊔
i∈I

Ai =
∏
i∈I
S/Ai

Every space A ∈ S is a coproduct of singletons: A = A× 1 = ⊔A1.
By the descent principle, we have

S/A = S/ ⊔A 1 =
∏
A

S/1 =
∏
A

S = SA



∞-topoi

Recall that the category of sets Set is the basic example of a
Grothendieck topos. Another example is the category of presheaves
SetC

op
on a small category C . Every Grothendieck topos E is a left

exact localization of a presheaf category.

Note: a functor is said to be left exact if it preserves finite limits.

The quasi-category of spaces S is the basic example of an
∞-topos. Another example is the quasi-category of presheaves
SCop

on a small quasi-category C . Every ∞-topos E is a left exact
localization of a presheaf quasi-category [HTT].

Definition
An algebraic morphism of ∞-topoi is a left exact cocontinuous
functor ϕ : E → F .



The descent principle

Lurie’s theorem [HTT]:

Theorem
A presentable ∞-category E is an ∞-topos if and only if the
descent principle holds in E :

E/ lim−→
i∈I

A(i) = lim←−
i∈I
E/A(i)

for any diagram A : I → E .



Sheaves

Let E be an ∞-topos.

We denote by ∆(u) : A→ A×B A the diagonal of map u : A→ B
in E and by ∆n(u) the n-th iterated diagonal of u.

The diagonal closure of a set of maps Σ ⊆ E is defined to be the
set ∆∞(Σ) = {∆n(u) | u ∈ Σ, n ∈ N}.

Recall that an object X ∈ E is said to be local with respect to a
map u : A→ B if the map Map(u,X ) : Map(B,X )→ Map(A,X )
is invertible.

Definition
[ABFJ3] Let Σ be a set of maps in an ∞-topos E . We say that an
object X ∈ E is a Σ-sheaf if it is local with respect to every base
change of the maps in ∆∞(Σ). We write Sh(E ,Σ) for the
full-subcategory of Σ-sheaves.



Sheaves

Theorem
[ABFJ3] Let Σ be a set of maps in an ∞-topos E . Then the
subcategory Sh(E ,Σ) of Σ-sheaves is reflective and the reflector
ρ : E → Sh(E ,Σ) is left exact. The subcategory Sh(E ,Σ) is an
∞-topos and the reflector ρ inverts the maps in Σ universally
among algebraic morphisms of ∞-topoi.

In other words, if ϕ : E → F is an algebraic morphism of ∞-topoi
and the maps in ϕ(Σ) ⊆ F are invertible, then there exists a
unique algebraic morphism of ∞-topoi ψ : Sh(E ,Σ)→ F such
that ψρ = ϕ.

E ρ //

ϕ
''

Sh(E ,Σ)

ψ
��
F



Topo-logy [AJ]

Topos =Logosop

Logos =Toposop

By definition, an object of the category Log∞ is an ∞-topos (now
called an ∞-logos) and a morphism of ∞-logoi ϕ : E → F is a left
exact cocontinuous functor.

The category of ∞-topoi Top∞ is defined to be the opposite of
the category Log∞.

Remark: The category Log∞ is actually an (∞, 2)-category, in
which the 2-cells are natural transformations.

The category Log∞ has many properties in common with the
category of commutative rings [HTT] [AJ].



Logos theory vs commutative algebra [HTT][ABFJ5]

commutative ring logos

ring of integers Z the logos of spaces S

sum: a+ b colimit: A ⊔C B

product: a× b finite limit: A×C B

distributive law:
a×(b+c) = a×b+a×c

base change
u⋆ : E/B → E/A
preserves colimits



Commutative algebra Theory of logoi

morphism of rings
ϕ : A→ B

morphism of logoi
ϕ : E → F

polynomial ring Z[x ] free logos S[X ]

tensor product A⊗ B tensor product E ⊗ F

ideal J ⊆ R congruence J ⊆ E

quotient ring
ρ : R → R/J

left exact localization
ρ : E → E//J

product of ideals
J1 · J2 ⊆ R

product of congruences
J1 · J2 ⊆ E



Congruences

IfM is a class of maps in an ∞-category E let us denote by M̃
the full subcategory of E [1] spanned by the maps inM.

Definition
[ABFJ3] If E is an ∞-logos, we say that a class of maps J ⊆ E is
a congruence if the following conditions hold:

1. every isomorphism belongs to J ;
2. the class J is closed under composition;

3. the full-subcategory J̃ ⊆ E [1] is a sub-logos (= it is closed
under colimits and finite limites)

For example, if ϕ : E → F is a morphism of ∞-logoi, then the
class J = ϕ−1(Iso) is a congruence.



Product of congruences

The category of arrows E [1] of an ∞-logos E has a natural
symmetric monoidal structure given by the pushout products of
maps in E .

Recall that the pushout product f□g of two maps f : A→ B and
g : C → D is the map

(A× D) ⊔A×C (B × C )→ B × C

The product of two congruences J1,J2 ⊆ J is defined in [ABFJ5]
by letting

J1 · J2 = {f1□f2 | f1 ∈ J1, f2 ∈ J2}c

where (−)c denotes the congruence closure of a class of maps.
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