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A very brief history

Modern mathematics essentially began with Cantor's set theory.
The conceptual fabric of modern mathematics is presently moving:
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Set theory

Formal logic

Category theory

Topos theory

Categorical logic

Abstract Homotopy theory
Higher category theory
Higher topos theory
Homotopy type theory

Brave new mathematics?



Brave new mathematics

David Hilbert:

"From the paradise, that Cantor created for us, no-one shall be
able to expel us!”

Norman Steenrod:

"It is the most trivial paper | ever read, and it has the greatest
influence on my work!”.

John Greenlees:

"The phrase ‘brave new rings' was coined by Friedhelm
Waldhausen, presumably to capture both an optimism about the
possibilities of generalizing rings to ring spectra, and a proper
awareness of the risk that the new step in abstraction would take
the subject dangerously far from its justification in examples.”



Simplicial sets

The category A
0b(A) :={[n] ={0,..., n}[n = 0}
Hom([ml], [n]) is the set of order preserving maps [m] — [n].

A simplicial set is a presheaf A : A° — Set.
Notation: A, = A([n]).

sSet := Fun(A°P, Set)

Example: A[n] = Hom(—, [n])



The geometric realisation

The realisation functor R : A — Top is defined by letting
R[n] :=={(x1,.--,xn) € [0,1]g | x1 < -+ < xn}
The "singular complex’ of a topological space X is then defined by
5(X)n := Top(R[n], X)

The functor S := R* : Top — sSet has a left adjoint
R : sSet — Top called the geometric realisation functor.

By construction,

[nlea
Ri(A) :/ An % R([n])



On Kan complexes

Recall that the fundamental simplex A[n] € Set is the presheaf
Hom(—,[n]) : A% — Set.
The simplex A[n] has faces 0;A[n] C Aln] (0 < i < n).
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and a boundary

oAl = aia[n]

i=0



On Kan complexes

Recall that the horn AX[n] € A[n] (0 < k < n) is defined by
putting

N<nl = | aia[n]
i#k
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For example, A'[2] is



Kan complexes

Definition
A simplicial set X € ASet is called a Kan complex if every horn
h: AK[n] — X has a filler ' : A[n] — X.

A<[n] £~ X
7
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Theorem

[Quillen] The category of simplicial set sSet admits a cartesian
closed Quillen model structure in which the cofibrations are the
monomorphisms and the fibrant objects are the Kan complexes.

We shall say that a Kan complex is a space.



The fundamental category

A variation on geometric realisation.

The nerve N(C) of a category C is defined by letting
N(C), := i*(C), = Fun(i[n], C)

where i : A C Cat is the inclusion functor.

The functor N := i* : Cat — sSet has a left adjoint 7 : sSet — Cat
called the fundamental category functor. By construction,

[nleA
n(A) = / A x i([n])

The fundamental groupoid of A is the groupoid reflection of 71(A).



On quasi-categories [BV]

We say that a horn AX[n] C Al[n] is innerif 0 < k < n.

The following notion was introduced by Boardman and Vogt
without a name (it is often called a weak Kan complex).

Definition
[BV] A simplicial set X is called a quasi-category if every inner
horn h: AK[n] — X has a filler ' : A[n] — X.

A<[n] £~ X
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Every Kan complex is a quasi-category.

The nerve N(C) of a small category C is a quasi-category.



On quasi-categories

Boardman and Vogt introduces the homotopy category ho(X) of a
quasi-category X. It happens that ho(X) = 11 X.

Lemma
[J] A quasi-category X is a Kan complex if and only if its
homotopy category ho(X) is a groupoid.



On quasi-categories

Theorem

[J] The category of simplicial set sSet admits a cartesian closed
Quillen model structure in which the cofibrations are the
monomorphisms and the fibrant objects are the quasi-categories.

If X is a quasi-category, then so is the simplicial set X* for any
simplicial set A.

If X is a quasi-category, then a vertex a € Xj is said to be an
object of X and an arrow f € X is said to be a morphism
f . di(f) — d°(f).



The hom spaces of a quasi-category

If X is a quasi-category, then so is the simplicial set X1 := XA,

The hom space X(a, b) between two objects a, b € Xp is defined
by the following pullback square (of simplicial sets)

X(a, b) — x1

e
(a,b)

1 X x X

The simplicial set X(a, b) is a Kan complex (it is a "space”)



Composition in a quasi-category
If X is a quasi-category, then so is the simplicial set X[? := X2[2

The generalised hom space X(a, b, c) for three objects a, b, c € Xp
is defined by the following pullback square (of simplicial sets)

X(a, b, c) X
J{ i(d{dl,do)
1 POy X x X

The projection (d?,d®) : X(a, b, c) — X(a, b) x X(b, c) has a
section s : X(a, b) x X(b,c) — X(a, b, c).

The composition operation
= d%s: X(a, b) x X(b,c) = X(a,c)

is well defined up to homotopy.



Truncated quasi-categories

A quasi-category X is said to be 1-truncated if the hom space
X(a, b) is O-truncated for every a, b € Xo.

A quasi-category X is equivalent to a category if and only if it is
1-truncated if and only if the canonical map X — ho(X) is an
equivalence of quasi-categories.

Ordinary category theory is the theory of I-truncated
quasi-categories.



Brave new category theory

The initial theory [J]:
Functors and natural transformations;

The opposite quasi-category;
Left and right fibrations;

vvvyyypy

The slice X/a and the coslice a\ X of a quasi-category X by
an object a € X.

Initial and terminal objects;
Diagrams, limits and colimits;
Localizations;

Yoneda lemma (first version);

vVvyyYyyvyy

Adjoint functors (first version).



The quasi-category of spaces &
A quasi-category X is a Kan complex, if every arrow in X is
invertible, in which case we shall say that X is a homotopy type, or
a space.

The quasi-category of spaces S was constructed by Lurie in [HTT].
The quasi-category S is large but locally small. It is cocomplete
and freely generated by its terminal object 1 € S.

The coslice 1\S is the quasi-category of pointed spaces S,.

It was proved later by Cisinski [C] that the projection p: Se — S is
a universal left fibration: for any left fibration f : X — A there
exists a (homotopy) pullback square

X =58,

T

A—->S8

and the pair of maps (c, ¢,) is homotopy unique.



The twisted category of arrows

The twisted category of arrows T(C) of a category C is the
category of elements of the functor Hom : C°P x C — Set.

A chain [n] — T(C) is a functor [n]°? x [n] — C.

4 3 2 1 0
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T(X) can be defined for any simplicial set X.

By definition T(X), = X([n]°? x [n]) = Xan+1-

The simplicial set T(X) is a quasi-category when X is a
quasi-category.



The Yoneda map

If X is a quasi-category, then the canonical map
(s,t): T(X) > XPx X

is a left fibration.

It has a classifying map hom : XP x X — S

home

T(X) Se
(s,t)l ip
Xop x X —_hom S

From the map hom : X°P x X — S we obtain the Yoneda map

y X —8X*



Remark on pushouts and pullbacks

In category theory, the notions of pushout and of pullback squares
depend on the ambiant category. This is also true in the theory of
quasi-categories.

Pushouts and pullbacks in § are homotopy pushouts and pullbacks.

For example, the square on the left is a pushout in the category of
sets Set

10l ——1 101 ——1
1——1 1]— 6!

while the square on the right is a pushout in the quasi-category of
spaces S (where St is the homotopy type of the circle). The
square on the left is obtained by applying the functor mg to the
square in the right.



Lurie's contributions [HTT] and [HA]

Lurie's terminology: quasi-category — oo-category.

v

Cartesian fibrations;

The co-category of spaces S;

Yoneda lemma (second version);

The (00, 2)-category of small co-categories;
Left and right Kan extensions;

Presentable oco-categories;

oo-topoi;

Stable oco-categories;

oo-operads;

Monads, monadic functors:

vVVvVvvVvyVvVvVvVvyVvyVvVYyYy

Monoidal co-categories, E,-categories.



On large and small co-categories
The oco-category of spaces S is large and locally small.

The oco-category of small co-categories Caty, is large and locally
small.

The oco-category of large co-categories CAT o is very large and not
locally small.

The oo-category of finite spaces Fin is small.

(Lurie) If A is a small co-category, then the co-category SA” is
cocomplete and freely generated by the Yoneda map y : A — SA%.
More precisely, for every cocomplete co-category C and every
functor f : A — C there exists a unique cocontinuous functor

L(f) : SA” — C such that the following triangle commutes:

A Y SA”

\ l“”

C



Rezk descent principle

The oco-category S has a very surprising property which was
discovered by Charles Rezk [Rez2].

Consider the contravariant functor Slice : S — CAT 5, which
takes an object A € S to the oo-category S/A and which takes a
map f : A — B to the base change functor f*: S/B — S/A.

Rezk descent principle: The slice functor
Slice : S°° — CAT

takes colimits to limits:

for every diagram A: [ — S.



The descent principle

By the descent principle, we have
S/(AUB)=S/AxS/B

and more generally,
S/ A =T]s/A
iel i€l

Every space A € § is a coproduct of singletons: A=A x 1= Ugxl.
By the descent principle, we have

S/A=S/ual=][s/1=]]s=5"
A A



oo-topoi

Recall that the category of sets Set is the basic example of a
Grothendieck topos. Another example is the category of presheaves
Set®™ on a small category C. Every Grothendieck topos £ is a left
exact localization of a presheaf category.

Note: a functor is said to be left exact if it preserves finite limits.

The quasi-category of spaces S is the basic example of an
oo-topos. Another example is the quasi-category of presheaves
S on a small quasi-category C. Every co-topos € is a left exact
localization of a presheaf quasi-category [HTT].

Definition
An algebraic morphism of co-topoi is a left exact cocontinuous
functor ¢ : &€ — F.



The descent principle

Lurie's theorem [HTT]:

Theorem
A presentable oco-category £ is an co-topos if and only if the
descent principle holds in £:

&/ Ii_rp)A(i) =lim&/A(/)

&
icl i€l

for any diagram A : | — £.



Sheaves

Let £ be an oco-topos.

We denote by A(u) : A— A xg A the diagonal of map u: A— B
in £ and by A"(u) the n-th iterated diagonal of u.

The diagonal closure of a set of maps ¥ C & is defined to be the
set A®(X) ={A"(v) | ue X,neN}.

Recall that an object X € & is said to be local with respect to a
map u: A — B if the map Map(u, X) : Map(B, X) — Map(A, X)
is invertible.

Definition

[ABFJ3] Let X be a set of maps in an co-topos £. We say that an
object X € £ is a L-sheaf if it is local with respect to every base
change of the maps in A*(X). We write Sh(€, X) for the
full-subcategory of ¥-sheaves.



Sheaves

Theorem

[ABFJ3] Let ¥ be a set of maps in an oo-topos . Then the
subcategory Sh(E,Y) of ¥-sheaves is reflective and the reflector
p:E — Sh(E,X) is left exact. The subcategory Sh(E,X) is an
oo-topos and the reflector p inverts the maps in X universally
among algebraic morphisms of co-topoi.

In other words, if ¢ : £ — F is an algebraic morphism of co-topoi
and the maps in ¢(X) C F are invertible, then there exists a
unique algebraic morphism of oco-topoi 9 : Sh(E,%) — F such
that ¥p = ¢.

E—=5h(&,Y)

Xlw

F



Topo-logy [AJ]

Topos =LogosP
Logos =Topos®P

By definition, an object of the category Log,, is an co-topos (now
called an oco-logos) and a morphism of co-logoi ¢ : € — F is a left
exact cocontinuous functor.

The category of co-topoi Top,, is defined to be the opposite of
the category Log,.
Remark: The category Log, is actually an (oo, 2)-category, in

which the 2-cells are natural transformations.

The category Log,, has many properties in common with the
category of commutative rings [HTT] [AJ].



Logos theory vs commutative algebra [HTT][ABFJ5]

commutative ring logos
ring of integers Z the logos of spaces S
sum: a4+ b colimit: AUc¢ B
product: a x b finite limit: A x¢ B

base change
u:E/B—=EJ/A
preserves colimits

distributive law:
ax(b+c)=axb+axc




Commutative algebra

Theory of logoi

morphism of rings
¢:A—> B

morphism of logoi

. E—=F

polynomial ring Z[x]

free logos S[X]

tensor product A® B

tensor product £ @ F

ideal JC R

congruence J C &

quotient ring
p:R—=R/J

left exact localization

p:E=ENT

product of ideals
h-bhLCR

product of congruences

Ji-J2CE




Congruences

If M is a class of maps in an co-category £ let us denote by M
the full subcategory of EIY! spanned by the maps in M.

Definition

[ABFJ3] If £ is an co-logos, we say that a class of maps J C £ is
a congruence if the following conditions hold:

1. every isomorphism belongs to J;
2. the class J is closed under composition;

3. the full-subcategory J C &M is a sub-logos (= it is closed
under colimits and finite limites)

For example, if ¢ : £ — F is a morphism of co-logoi, then the
class J = ¢~1(Iso) is a congruence.



Product of congruences

The category of arrows £ of an co-logos & has a natural
symmetric monoidal structure given by the pushout products of
maps in .

Recall that the pushout product flg of two maps f : A— B and
g: C— D is the map

(Ax D)Uaxc(BxC)—BxC

The product of two congruences J1, 7> C J is defined in [ABFJ5]
by letting

J-To={A0h | L €T, hel}

where (—)€ denotes the congruence closure of a class of maps.
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