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What I'm Doing Here

I'm here representing a small but enthusiastic “theory of code”
group at Google DeepMind.

We believe that abstract mathematics can inform the design of
new neural network architectures.

...even though history suggests otherwise.
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Some Problems With Theory

@ Theory, in general, often aims at the wrong target.

@ Classical programs and neural programs differ substantially,
so classical theory can be misleading.

@ Neural networks are not sufficiently advanced to take
“internal” advantage of high-level languages. Architectures
are close to being machine code.

@ Highly distributed computing is rarely hardware-agnostic.
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Categorical Deep Learning

Last year, we wrote a paper with Bruno and Paul—a category
theory paper disguised as a machine learning position paper.

The main thrust was to show that “monadic programming”
could be lifted to “2-monadic programming” and applied to the
setting where the computation has learnable parameters.

In this way, we can augment standard constructions in functional
programming so they're compatible with various notions of
reparameterization and weight sharing.

It's a clean picture... or is it?
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Position: Categorical Deep Learning is an Algebraic Theory of All Architectures

Bruno Gavranovi¢"'?> Paul Lessard "' Andrew Dudzik "3
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Abstract

We present our position on the elusive quest for
a general-purpose framework for specifying and
studying deep learning architectures. Our opinion
is that the key attempts made so far lack a coherent
bridge between specifying constraints which mod-
els must satisfy and specifying their implementa-
tions. Focusing on building a such a bridge, we pro-
pose to apply category theory—precisely, the uni-
versal algebra of monads valued in a 2-category of
parametric maps—as a single theory elegantly sub-
suming both of these flavours of neural network de-

networks can be specified in a top-down manner, wherein
models are described by the constraints they should satisfy
(e.g. in order to respect the structure of the data they pro-
cess). Alternatively, a bottom-up approach describes models
by their implementation, i.e. the sequence of tensor opera-
tions required to perform their forward/backward pass.

1.1. Our Opinion

It is our opinion that ample effort has already been given
to both the top-down and bottom-up approaches in isolation,
and that there hasn’t been sufficiently expressive theory to ad-
drece them hath cimultaneously Ifwe want a oeneral ouidine



Categorical Deep Learning
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Figure 1. Parametric (co)algebras provide a high-level framework for describing structured computation in neural networks.

the lax algebras are sufficient to derive recursive, recurrent,
and similar neural networks from first principles. Notably,
morphisms of lax algebras are also expressive enough to cap-
ture /-cocycles, used to formalise asynchronous neural net-
works in (Dudzik et al., 2024)—see Appendix H.1.




Why This Is Problematic

Suppose | have a datatype Y that is stored in memory using b
bits. Then Y?2 needs 2b bits, Y3 needs 3b bits, etc. So if Y is
affordable, in all likelihood most powers of Y are affordable.

But in neural networks, everything is vectorized, and the
situation is quite different. Let ¢ be the number of bits used in
our implementation of the reals.

If a vector datatype V requires c - b bits, then V&? needs c - b?
bits, V&3 needs ¢ - b3 bits, etc. Higher powers are no longer
affordable!

So classical computing can be dangerous in neural networks.
Simply porting existing ideas won't do.
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The Big Problem: Attention

The attention mechanism fundamentally changed how we design
neural networks. It was popularized in Attention Is All You Need
(Vaswani et al., 2017) but appeared earlier in Neural Turing
Machines (Graves, Wayne, Danihelka, 2014).
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MatMul

Mask (opt.)

Scaled Dot-Product
Attention

P || 1l 1l
’4 L 1 L 1 L 1
//' [ Linear],][ Linear],][ Linear])

) K Q

Andrew Dudzik Tensor Species



The Big Problem: Attention

Prior to ChatGPT, attention was severely under-appreciated,
particularly outside of the professional ML community. Academic
work focused on RNNs, ConvNets, and other textbook examples.

Scaled Dot-Product Attention Multi-Head Attention
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The Big Problem: Attention

Strangely, nobody seems to know a good “purely algebraic”
theory of attention... even though superficially, the math isn't
complicated.

Scaled Dot-Product Attention Multi-Head Attention

N 1
Scaled Dot-Product J& h
Attention ~
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[ Linear],][ Linear],][ Linear]]
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Abstract

We introduce "talking-heads attention” - a variation on multi-head attention which includes linear
projections across the attention-heads dimension, immediately before and after the softmax operation.
While inserting only a small number of additional parameters and a moderate amount of additional
computation, talking-heads attention leads to better perplexities on masked language modeling tasks, as
well as better quality when transfer-learning to language comprehension and question answering tasks

1 Introduction

Neural Attention was introduced by (Bahdanau et al., 2014] as a way of extracting information from variable-
length representations. The Transformer model [Vaswani et al., 2017] uses 'multi-head” attention, consisting
of multiple attention layers (*heads') in parallel, each with different projections on its inputs and outputs,
By using a dimensionality reduction in the input projections, the computational cost is kept similar to
that of basic attention. Quality is improved, presumably due to the ability to attend to multiple positions
simultaneously based on multiple different types of relationships.

s noted in [Vaswani et al., 2017]', taking this process to the extreme (more attention heads projected to
lower dimensionality) becomes counterproductive. We believe that this is due to the fact that the query-vectors
and key-vectors become so low-dimensional that their dot product can no longer constitute an informative
matching function.

In this paper, we introduce a new variant, *talking-heads attention, that addresses this problem by
ing a learned linear projection across the attention-heads dimension of the attention-logits tensor. This
allows each attention function to depend on all of the keys and queries. We also insert a second such projection
immediately following the softmax
We show experimentally that inserting these "talking-heads" projections leads to better perplesities on
‘masked language modeling tasks, as well as better quality when transfer-learning to language comprehension
and question answering tasks

2 Notation

In our pseudocode, we use capital letters to represent tensors and lower-case letters to represent their
dimensions. Each tensor is followed by a dimension list in brackets. For example, a 4-dimensional image-

“Noam Shazcer devised the talking heads architecture, ran the T5 experiments and wrote most of the paper. Zhenzhong Lan
bad the initial idea of talking-heads attention, designed and coordinated part of the experiments. Youlong Chen reprodaced
BERT in MeshTensorFlow and run all the talking heads experiments for MeshTensorFlowe BERT. Nan Ding ran the ALBERT
experiments. Le Hou visualized and analyzed the learned weights of talking-heads

Section (A) of table 3 in [Vaswani et al, 2017). Also the first sctions of tables 1 and 5 of this paper.




Simple Attention: The Code

3 Review of Attention Algorithms

3.1 Dot-Product Attention

Simple dot-product attention can be described by the pseudocode below. The logits L are computed as the
dot-products of the query-vectors and the memory-vectors. For each query, the logits are passed through a
softmax function to produce weights, and the different memory-vectors are averaged together, weighted by
those weights. In this code, we show the case where there are n different queries all attending to the same m
memory-vectors. If there is only one query, the code is identical except that the 'n" dimension is removed
from all tensors.
def DotProductAttention(
X[n, d], # n query-vectors with dimensionality d
MIm, d1): # m memory-vectors with dimensionality d
Lln, m] = einsum(X[n, 41, M[m, d1) # Attention logits
Wln, m] = softmax(L[n, ml], reduced_dim=m) # Attention weights
Y[n, d] = einsum(W([n, m], M[m, d])
return Y[n, dl

We can see that there are only two operations in play: einsum
and softmax. This is true even in more complicated variations of
attention:
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Multi-head Attention

def MultiHeadAttentionConcise(X, M, P_q, P_k, P_v, P_o):
L[n, m, h]l] = einsum(X[n, d_XJ],
M[m, d_M],
P_qld_X, d_k, hl,
P_k[d_M, d_k, hl)

Wln, m, h]l] = softmax(L[n, m, h], reduced_dim=m)
Y[n, d] = einsum(W[n, m, h],
M[m, d_M]1,

P_v[d_M, d_v, h],
P_old_Y, d_v, hl)
return Y[n, d_Y]
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Roadmap

o Algorithmic Alignment
@ Einsums as Polynomials
@ Symmetry and Species

@ Attention and Softmax
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NNs are bad computers

As a rule, neural networks are bad at everything computers have
traditionally been good at: consistency, mathematical
correctness, rule-based reasoning...

In particular, attention-based networks rarely exhibit good
“length generalization”. No matter how good your dataset of
problems is, it will always have bounded length.

| can train a transformer—or almost any network
architecture—to correctly add, say, 6-digit numbers. But will it
be able to add 7-digit numbers? In most cases, no.

In fact, LLMs can’t even count.
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Information over-squashing in language tasks

Federico Barbero* Andrea Banino
University of Oxford Google DeepMind
federico. barbero@cs . ox.ac.uk abanino@google. con
Steven Kapturowski Dharshan Kumaran  Jodo G.M. Aratjo
Google DeepMind Joogle DeepMind Google DeepMind
Alex Vitvitskyi Razvan Pascanu Petar Velitkovic
Google DeepMind Google Decpind Google DecpMind
v1ifeQgoogl on p . cor
Abstract

We study how information propagates in decoder-only Transformers, which
are the architectural backbone of most existing frontier large language models
(LLMs). We rely on a theoretical signal propagation analy: ally,
we analyse the representations of the last token in the final layer of the
Transformer, as this is the representation used for next-token prediction.
Onr analysis reveals a representational collapse phenomenon: we prove that
certan distinct scquences of nputs o the Transformer can yield abitrsily

clos entations in the final token. Thi 'ct is exacerbated by the
low-precision floating-point formats frequently used in modern LLMs. As a
sesul,the mode i provably unabl o spon 1o these sqences i diferent
to errors in, e.g., tasks involving rountmg or copying. Further,
we show th decoder-only Transformer language models can lose sensitivity
o specifc tokens n the input, which rlates ( the well Known phenomenon
of o shing in graph nenral networks. We provide empirical evidence
supporting our claims on contemporary LLMs. Our theory also points to
simple solutions towards ameliorating these issues.

way

1 Introduction

I ocent ears the field of Natural Langunge Procesing (NLP) hus been sevolutionied
through the introduction of T arge
on some version of next-token pmmmm known as Large Lang\mgc Models (LL\L) “have
demonstrated impressive performance across different tasks, including conversational agents
[m 19], understanding o s u] and code completion (16]. Most contemporary
LLMs specifically focus on the decoder part of the original Transformer architecture, and
s s P only Teansfort
on such models in this paper.

me,m-ml), we focus primarily

However, despite the impressive performance of Transformers, recent works have uncovered
surprising failures that may point to fundamental issues in their architecture. For instance,

*Work performed while at. Google DeepMind

38th Conference on Neural Information Processing Systems (NeurTPS 2024).
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Figure 3: Gemini 1.5 being prompted to sum 1+ --- + 1 (Column 1), Count the number of
ones in a sequence of 1s (Column 2), Count the number of ones in a sequence of ones and
zeroes (the sequence is a Bernoulli sequence with probability of sampling a one being 0.7)
(Column 3), and to counter the number of times a word appears in a sentence (Column 4).
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Language Models Use Trigonometry to Do Addition

Subhash Kantamneni

Abstract

Mathematical reasoning is an increasingly impor-
tant indicator of large language model (LLM)
capabilities, yet we lack understanding of how
LLMs process even simple mathematical tasks.
To address this, we reverse engineer how three
mid-sized LLMs compute addition. We first dis-
cover that numbers are represented in these LLMs
as a generalized helix, which is strongly causally
implicated for the tasks of addition and subtrac-
tion, and is also causally relevant for integer divi-
sion, multiplication, and modular arithmetic. We
then propose that LLMs compute addition by ma-
nipulating this generalized helix using the “Clock”
algorithm: to solve a + b, the helices for a and
b are manipulated to produce the a + b answer
helix which is then read out to model logits. We
model influential MLP outputs, attention head out-
puts, and even individual neuron preactivations
with these helices and verify our understanding
with causal interventions. By demonstrating that
LLMs represent numbers on a helix and manipu-
late this helix to perform addition, we present the
first representation-level explanation of an LLM’s
mathematical capability.

! Max Tegmark '

a+b=
Step 1: Embed a and b as a helix using modular circles
(T =12,5,10,100]) and a line
Step 2: Create helix(a + b)
Step 3: Translate answer helix to logits

T=2 3,63 T=5 T 210 Relix

Figure 1. Ilustrating the Clock algorithm. We find that LLMs
represent numbers on a helix. When computing the addition prob-
lem a + b, LLMs rotate the a and b helices, as if on a clock, to

create the a + b helix and read out the final answer.



The CLRS Benchmark

How | got involved: Learning dynamic programming algorithms.

(Velitkovi¢ et al. 2022) introduced an open-source benchmark
for algorithmic tasks, e.g. sorting, pathfinding, knapsack.

They used graphs as a common language to phrase these
algorithms in terms of datatypes that could be encoded into, or
decoded out of, neural networks.

Remember, the goal isn't just to model a dataset, but to
extrapolate correctly.
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Figure 1. Example of four algorithms within CLRS-30. A) in-
sertion sort; B) string matching; C) greedy task scheduling; D)
shortest paths.
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Algorithmic Alignment

Which networks generalize properly?

Previously, (Xu et al. 2019) introduced the idea of “alignment”,
the obvious-but-not-obvious fact that networks do better at
length generalization if they resemble the code they're trying to
learn.

This paper was the first clue that there was mathematical
structure in algorithms that could inform neural network design.
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Algorithmic Alignment

Graph Neural Network Bellman-Ford algorithm

BEEIISE  onoed o leam foriocps [T

hu® = 5, MLP(h,(<D, hylD) d[k][u] = miny d[k-1][v] + cost (v, u)

Learns a simple reasoning step

Andrew Dudzik Tensor Species



4v3 [csLG] 10 Oct 2022

Graph Neural Networks are Dynamic Programmers

Andrew Dudzik* Petar Velickovi¢*
DeepMind DeepMind
adudzik@deepmind.com petarv@deepmind.com
Abstract

Recent advances in neural algorithmic reasoning with graph neural networks
(GNNs) are propped up by the notion of algorithmic alignment. Broadly, a neural
network will be better at learning to execute a reasoning task (in terms of sam-
ple complexity) if its individual components align well with the target algorithm.
Specifically, GNNs are claimed to align with dynamic programming (DP), a gen-
eral problem-solving strategy which expresses many polynomial-time algorithms.
However, has this alignment truly been demonstrated and theoretically quantified?
Here we show, using methods from category theory and abstract algebra, that
there exists an intricate connection between GNNs and DP, going well beyond the
initial observations over individual algorithms such as Bellman-Ford. Exposing
this connection, we easily verify several prior findings in the literature, produce
better-grounded GNN architectures for edge-centric tasks, and demonstrate empiri-
cal results on the CLRS algorithmic reasoning benchmark. We hope our exposition
will serve as a foundation for building stronger algorithmically aligned GNNs.



Polynomial Execution Structure

General Execution:

X

r—— Y
| |
l l
w Z

Bellman-Ford:

r—s V+ F

i
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The Integral Transform

If R is a commutative semiring:
X,R] — re — [V, R

I |

i* og

l

(W, R] Z, R
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Commutative Semirings

Proposition

The category of finite polynomials is the Lawvere theory for
commutative semirings. i.e. every commutative semiring in a
monoidal category (C,®) is uniquely described by a monoidal
functor (FinPoly, +) — (C, ®).

This is the fancy way to say: | can plug numbers into
polynomials.
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Algebraic Alignment is Algorithmic Alignment

We showed that picking the correct semiring was important for
generalization.

Classical algorithms typically use some variant of the tropical
semiring (R U {—o0}, +, max), while neural networks, by
convention, operate in (R, x, +).

Our best algorithmic networks still rely on tropical operations, or
smooth approximations of them.
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Learning Algebraic Structure

8541v1l [cs.LG] 16 Dec 2022

Learnable Commutative Monoids for

Graph Neural Networks
Euan Ong Petar Veli¢kovié
University of Cambridge DeepMind / University of Cambridge
elyro2@cam.ac.uk petarv@deepmind.com
Abstract

Graph neural networks (GNNs) have been shown to be highly sensitive to the
choice of aggregation function. While summing over a node’s neighbours can
approximate any permutation-invariant function over discrete inputs, Cohen-Karlik
et al. [2020] proved there are set-aggregation problems for which summing cannot
generalise to unbounded inputs, proposing recurrent neural networks regularised
towards permutation-invariance as a more expressive aggregator. We show that
these results carry over to the graph domain: GNNs equipped with recurrent aggre-
gators are competitive with state-of-the-art permutation-invariant aggregators, on
both synthetic benchmarks and real-world problems. However, despite the benefits
of recurrent aggregators, their O(V') depth makes them both difficult to parallelise
and harder to train on large graphs. Inspired by the observation that a well-behaved
aggregator for a GNN is a commutative monoid over its latent space, we propose a
framework for constructing learnable, commutative, associative binary operators.
And with this, we construct an aggregator of O(log V') depth, yielding exponen-
tial improvements for both parallelism and dependency length while achieving
performance competitive with recurrent aggregators. Based on our empirical obser-
vations, our proposed learnable commutative monoid (LCM) aggregator represents
a favourable tradeoff between efficient and expressive aggregators.



Roadmap

@ Algorithmic Alignment
e Einsums as Polynomials
@ Symmetry and Species

@ Attention and Softmax

Andrew Dudzik Tensor Species



Example Einsums

Einsum String Operation Equation
"ii->! trace > aii
'ii->1 diagonal aj;

'i,j->ij" outer product ajb;
'ij—>j! sum over first axis > aij
'ij->ji' matrix transpose aji

'ij,jk->ik' matrix multiplication ZJ. ajjbjk

Andrew Dudzik
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Einsums

Einsums represent the bulk of shape-changing operations in
neural networks.
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Einsums as Polynomials

They can be described using polynomials:

I —— 1 IxJ+IxJ IxJ
IxI 1 I+J IxJ
trace outer product
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Einsums as Polynomials

They can also be described more concisely using “parametric
spans” (Bergomi, Vertechi, 2022)):

I IxJ IxJxK
IxI 1 I J IxJ IxJ Jx K IxK
trace outer product matmul
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Einsums: Closed Under Gradients

Exercise

The gradient flow through an einsum is an einsum. Hint:
Permute the feet!
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Roadmap

@ Algorithmic Alignment
@ Einsums as Polynomials
e Symmetry and Species

@ Attention and Softmax
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Tensor Sizes are Hyperparameters
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The Symmetric Group

The nature of distributing simple computations across hundreds
or thousands or cores means that we are always conscious of the
symmetric group.

Permutation equivariance is fundamental to performant

architectures. Transformers, in particular, rely on symmetry...
even when there is none.
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LLMs Are Very Symmetric

Only symmetry breaking is the causal mask:

0 0 0
—oco 0 0

+ ;
—00 —00 0

We have to inject positional encodings to reconstruct the

ordering, it's not respected in the computation! Yet this is state
of the art.

Even though tokens come in a list, it's better to treat them as a
bag.
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Some Other Work

Deep Sets (Zaheer et al., 2017) emphasized the importance, in
Graph Neural Networks, of invariance with respect to the
symmetric group.

Natural Graph Networks (de Haan, Cohen, Welling, 2020)
emphasized the importance of equivariance with respect to graph
isomorphisms, by looking at functors out of the groupoid of
graphs.
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Set Species

Definition
A (finite) set species is a functor A : core(FinSet) — FinSet.
Equivalently, it is a sequence of finite sets Ag, A1, ..., together

with, for each n, an action of the symmetric group S, on A,.

Example

Let A, be the set of cyclic orderings of {1,...,n}. We have an
action of S, on A, given by

m-(a1 az...an) = (m(a1) 7(a2)...m(an)), making Ao, A1, ...
into a set species.
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Vector Species

Definition
A (finite, real) vector species is a functor
V : core(FinSet) — FinVect.

Equivalently, it is a sequence of finite-dimensional real vector
spaces Vg, V4, ..., together with, for each n, a linear action of
the symmetric group S, on V,,.
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Multivariate species

We also want species in d variables, i.e.

core(FinSet)? — FinSet
core(FinSet)? — FinVect

We can use these to better formalize einsums. Consider the
3-variable species /(a, b, c) = a, J(a, b, c) = b, and
K(a, b, c) = c.
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Matmul: A Polynomial in 3-variable Species

einsum('ij, jk->ik")

IXJIJXK+IxJIJxK—IxJxK

| l

IxJ+Jx K I x K

(RI®RJ)@(RJ®RK)WRI®RK
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Matmul: A Trivalent Span in 3-variable Species

einsum('ij, jk—->ik")

I xJxK

AT

IxJ J X K I xK

R' @ RY) @ (R? @ RF) ~ R/ @ R
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Decategorifying Species

If Ag, A1, ... is a set species, and each A, is finite, we define the
generating function associated to A as follows:

(#AN) = 32 0

n>0

Generating functions are nice to have around as a “sanity
check”. Interesting properties of GFs usually mean interesting
properties of species.

The binomial theorem:

ety = X
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Species and polynomials

The generating function is related to the groupoid cardinality of
the analytic functor Set — Set:

~ A, x X"
n>0 n

N.B. this correspondence gives an identification of polynomial
functors with species where each group action is free.
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Some Basic Datatypes

Counting Problem Species Generating Function
No Data E ex
Is Empty 1 1
Is Nonempty E-1 e —1
Is Singleton X X
Pick One X-E xeX
Pick Two (1+X)-X-E (14 x)xe*
Pick Two (unique) X2.E x2eX
Pick a Total Order L ﬁ
Pick a Partition Eo(E-1) e 1
Pick a Graph G nonconvergent

Andrew Dudzik
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Some Basic Datatypes

Datatype Memory (Discrete) Memory (Vectorized)
Pick One log n c-n
Pick Two 2logn c-n?
Pick a Total Order nlogn c-nl
Pick a Graph log2- (5) c-202)
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The Cauchy Product

Cauchy product: f(x), g(x) — f(x)g(x)

This corresponds to dividing a set in two pieces, and giving the
first structure to the first piece, and the second structure to the
second piece.

Example

How many ways can | divide a set into two pieces, such that the
first piece is nonempty, and the second piece has exactly one
element?

Answer

“This set is nonempty” is described by €< — 1, “this set has one
element” is described by x, so the answer is (e* — 1) - x.
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The Cauchy Product

(F-G)[nl:= Y FIKl x G[I]
kllI=n

> (Z)F[k]x G[/]

k+I=n
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Cauchy Bimonoids

Notably, it is often the case that “traversable” datatypes are
Cauchy bimonoids. For example, the species of graphs can be
given a simple monoid structure sending two graphs to their
disjoint union:

G[S] x G[T] = G[S + T]

. and a simple comonoid structure sending a graph to its
restrictions along two complementary subsets:

G[S+ T] — G[S] x G[T]

Proposition

A Cauchy bimonoid in vector species with Vo = R is Hopf, i.e.
has an antipode.
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The Substitution Product

Substitution product: f(x), g(x) — f(g(x))

Example

How many ways can | form a nonempty partition of a set into
nonempty sets?

“This set is nonempty” is described by eX — 1, so we compose
this with itself to get e ~1 — 1.
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The Substitution Product

(FoG)lnl:=>_ FINI < J] 6lil

AFn iEX
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Operads

A monoid with respect to the substitution product is called a
(symmetric) operad.

Example

Let A(n) be the set of probability distributions on {1,...,n}. A
is an operad with respect to the composition law given by
forming joint distributions:

A(k) X A(nl) X - X A(nk) — A(nl—i—---—l—nk)

(P)i> (1) - - - (k) = (Pidis)is

A is called the simplicial operad, and it will come up a bit later.
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Much simpler example: monoids

If M is a monoid in sets, we can upgrade M to an operad by
identifying it with the species M[1] = M, M[k] = 0 for k # 1.

i.e. monoids (in particular, groups) are operads where every
operation has exactly one output.
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Roadmap

@ Algorithmic Alignment
@ Einsums as Polynomials
@ Symmetry and Species

@ Attention and Softmax
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Nancy Pays Attention to Martha
a story of neural cooperation
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Three forms of picking

Since we cannot eliminate the possibility of multiple matches, a
“picking” strategy is needed. There are three basic strategies:

@ Introduce a tie-breaking mechanism. This could be a
predetermined order on Martha's outputs, or somehow
inferred from the query and keys. Many dynamic
programming algorithms depend on handling tie-breaking
consistently.

@ Sample from a probability distribution. This is elegant but
introduces non-determinism.

@ Take the expected value over a probability distribution. This
is the preferred method in the vectorized setting, but is
usually nonsensical in classical programs.
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Attention in shapes

Values: m x [/
Keys: m x k

Queries: n x k

Matching: (n x k) x (k x m) - nx m
Selection: n X m — nxm

Sampling: (nx m) x (mx 1) —nx|

Note that we are conjugating the selection function by a shape
change.
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The Standard Selector: softmax

The textbook way to produce a probability distribution from a
vector:

e eL"

softmax(Ly, ..., L,) := (W’ T W
j ]

)

Andrew Dudzik Tensor Species



Hot and cold softmax

We generally scale the softmax inputs by a thermodynamic
parameter 8 > 0, the “inverse temperature”. This is exactly the
Boltzmann distribution, if you think of the L; as negative energy.

Note the behavior for special values of j3:

softmax(SL;)

B — oo argmax (almost)

8=0 uniform

B — —oo argmin (almost)
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Masked softmax

Probability distributions are often masked, by replacing logits
with —oo, guaranteeing that the associated probability is zero.

In this setting, we can extend softmax to a surjective function:

softmax : [—00,00)" \ {(—o0,...,—00)} = A(n)

We have softmax(L;) = softmax(L}) if and only if there exists
t € R with L' = L; + t for all i. This looks familiar...
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Curiosity 1: Softmax and tropical projective space
Softmax actually exhibits the standard cylinder over tropical
projective space:

T = ([0, ), +, max)
Py := (T"\ 0)/(T \ 0)

softmax : A1 \ 0 — Pr.

The tropicals have been spotted several times in LLMs, e.g.
(Gaubert, Vlassopoulos, 2024).
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Curiosity 2: Softmax maximizes entropy

Proposition
Fix some L € R.

Given a constraint y ;. L; = L, there exists f = (L) such that
softmax(fL;) maximizes the Shannon entropy S = — ), pi log p;.

—fB is the Lagrange multiplier 2 6 . See a thermodynamics text or
calculus student for details. O

So however much “total energy” is represented in the softmax
distribution, that distribution is maximally uncertain among
distributions with the same energy.
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Entropy is a 1-cocycle for A

Proposition
(Shannon) Every 1-cocycle A — R is a scalar multiple of the
Shannon entropy.

This comes from interpreting the chain rule for conditional
entropy as a cocycle condition:

H(X,Y) = H(X) + H(Y|X)
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Abstract

State-of-the-art neural algorithmic reasoners make use of message passing in
graph neural networks (GNNs). But typical GNNs blur the distinction between
the definition and invocation of the message function, forcing a node to send
messages to its neighbours at every layer, synchronously. When applying GNNs
to learn to execute dynamic programming algorithms, however, on most steps
only a handful of the nodes would have meaningful updates to send. One, hence,
runs the risk of inefficiencies by sending too much irrelevant data across the graph.
But more importantly, many intermediate GNN steps have to learn the identity
functions, which is a non-trivial learning problem. In this work, we explicitly
separate the concepts of node state update and message function invocation. With
this separation, we obtain a mathematical formulation that allows us to reason



Cocycles as “carry digits”

Inspired by (Isaksen, 2002), we previously wrote a paper about
asynchronous computation, where we identified the 1-cocycle
condition as the condition that it was equivalent to aggregate
before or after a carry:

Sen(s) = dg(hs) + On(s)

In curried form:

D(gh) = D(g)h + D(h)
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Curiosity 3: Entropy as Carrying?

When a monoid M acts on a state S with outputs A, a
“coherent carry” is just a (right) 1-cocycle M — [S, A], or
equivalently a (left) 1-cocycle M°P — [S, A].

So in principle, we can interpret entropy as a carry for an action
of the simplicial co-operad A°P, e.g.:

a— (p1a,...,pna)
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My Question to Mathematicians

We saw that our canonical selection function, softmax, is
maximizing a 1-cocycle for an operad.

Question

Why are we doing this?
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Thanks for listening!

Questions?
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