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We are confronted with ever more and ever larger data sets from
many domains, and we want to analyze, interpret and understand
them.
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These data are often created by elaborate technical devices, like
astronomical observations within a wide range frequencies beyond
visible light, the traces of collisions of subatomic particles, or by
imaging techniques at the molecular level in biology. They are just
outside our usual range of sensory experiences and difficult to
analyze, interpret and understand.

Thus, human psychology may not directly help us and we need
mathematics!
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But mathematics needs structure, and the data are not
random.
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While the data usually come in some high dimensional spaces,
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But mathematics needs structure, and the data are not
random.They should therefore carry some structure. How to detect
or guess such structure?

While the data usually come in some high dimensional spaces,
intrinsically, they may be of much lower dimension because of
correlations between data points, regularities, invariances,
symmetries, ...

Mathematical methods should therefore exploit this and find good
low dimensional representations that bring out the essential
features particular to the data set at hand.

For purposes of visualization, it would even be best if those
representations are 2D or 3D.
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Methods of Machine Learning 2

We assume that the data come with some metric structure, that is,
distances between data points. These could be Euclidean distances
(when the data are presented in some Euclidean space, where the
axes record the values of particular quantitative features) or
abstract inner distances (dissimilarities). Machine learning then
extracts features of the data from these metric relations.

| | 4/46



Some methods of Machine Learning

@ Manifold learning
Data given in some high-dimensional (Euclidean) space, but
are assumed to lie on or be concentrated near some

low-dimensional smooth submanifold, which may stretch into

many ambient directions. This manifold should be recovered
by sampling the data.

Graphics courtesy of G. Glaser and K. Polthier
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Some methods of Machine Learning 2

@ Manifold learning

® Network analysis
Represent data as graphs, by connecting data points that are
sufficiently close or similar or have a particular relation. Use
concepts from graph theory to identify particular features.?

1E.g. M.Eidi, A.Farzam, W.Leal, A.Samal, JJ, Theory Biosc., 2020
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More generally, use hypergraphs where more than two
elements can entertain a relation, as e.g. in chemical reaction
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@ Manifold learning

® Network analysis
Represent data as graphs, by connecting data points that are
sufficiently close or similar or have a particular relation. Use
concepts from graph theory to identify particular features.
More generally, use hypergraphs where more than two
elements can entertain a relation, as e.g. in chemical reaction
networks.

© Topological data analysis (persistent homology)
For each radius 7 > 0, turn the intersection pattern of the
balls B(x,r) around the data points into a simplicial complex
and compute its topological invariants (homology classes).
Identify those homology classes that persist for a large range
of radii, as encoding important morphological features of the
data at their persistence scale.
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Machine Learning and Mathematics 2

@ In manifold learning, a graph is constructed by joining
sufficiently close sample points. With more and more samples,
eigenvalues/eigenfunctions of graph Laplacian approximate
those of Laplace-Beltramie operator of manifold, to recover it.

2]J, R.Mulas, D.Zhang, Spectra of discrete structures, Cambridge Texts in

Advanced Math., to appear
3E.g. M.Eidi, JJ, Sci.Rep., 2020; JJ, F.Miinch, A.Samal, E.Saucan, Discrete

curvatures and their applications, monograph, in preparation
*P.Joharinad, JJ, Geometric methods of data analysis, Mathematics of

Data, Springer
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Machine Learning and Mathematics 2

@ In manifold learning, a graph is constructed by joining
sufficiently close sample points. With more and more samples,
eigenvalues/eigenfunctions of graph Laplacian approximate
those of Laplace-Beltramie operator of manifold, to recover it.

® Network analysis can use eigenvalues and eigenfunctions of

graphs and hypergraphs? and of curvature statistics,3 as some
foundations of machine learning and data analysis.

© Intersection patterns of balls in TDA can be related to
curvature notions for metric spaces.*

2]J, R.Mulas, D.Zhang, Spectra of discrete structures, Cambridge Texts in
Advanced Math., to appear

3E.g. M.Eidi, JJ, Sci.Rep., 2020; JJ, F.Miinch, A.Samal, E.Saucan, Discrete
curvatures and their applications, monograph, in preparation

*P.Joharinad, JJ, Geometric methods of data analysis, Mathematics of
Data, Springer



| shall present a method, IsUMap, developed in

L.Barth, H.Fahimi, P.Joharinad, J.J., J.Keck, Data visualization
with category theory and geometry, Math of Data, Springer, to
appear

that builds upon and improves the popular UMAP.>

®Mclnnes, Healy and Melville, UMAP: Uniform Manifold Approximation and
Projection for Dimension Reduction, arxiv, 2018
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General aspects 2

Data are often

e given in some high-dimensional (Euclidean) space
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General aspects 2

Data are often
e given in some high-dimensional (Euclidean) space
e carry distances (metric relations)

® possess intrinsic regularities and correlations, that is, are
intrinsically lower-dimensional

® may therefore possibly sit on a smooth lower-dimensional
manifold (this assumption allows for interpolations between
data points)

® but this manifold need not be linear and may be highly curved
and stretch into many ambient directions

® and the data need not be uniformly distributed on that
manifold

® and the data should ultimately be visualized in 2 or 3D,
preserving the qualitative aspects, like clusters, as well as
possible
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Existing methods 2

@ lIsomap: Tenenbaum, Silve and Langford, A global geometric
framework for nonlinear dimensionality reduction, Science,
2000

® t-SNE: Hinton and Roweis, Stochastic neighbor embedding,
Adv. Neur. Inf. Proc. Sys, 2002

©® UMAP: Mclnnes, Healy and Melville, UMAP: Uniform
Manifold Approximation and Projection for Dimension
Reduction, arxiv, 2018
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General idea: /22

Connect data points that are sufficiently close to get a graph.
When more and more data points are sampled, the graph gets
denser and denser and should ultimately approximate a manifold.
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General idea: /22

Connect data points that are sufficiently close to get a graph.
When more and more data points are sampled, the graph gets
denser and denser and should ultimately approximate a manifold.
When we somehow represent, project or approximate those graphs
by planar ones, that is, in 2D, we should be able to see the
essential features of the data manifold.

Problem: Properties of the data set may only be apparent in high
dimension and may get lost by a projection into 2D.

Approach: Preprocess and modify the graphs to amplify local
features, like clusters, before projecting.

| | 11/46



The mathematics of UMAP and IsUMap 2

@ Connect each data point with its k nearest neighbors, to get a
collection of star graphs
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The mathematics of UMAP and IsUMap 2

@ Connect each data point with its k nearest neighbors, to get a
collection of star graphs

® Develop a canonical scheme for merging these star graphs,
with tools from category theory

© Project the resulting space onto 2D with minimal distortion
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Riemannian geometry >

Bernhard Riemann (1826-1866)
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Riemannian geometry >

Bernhard Riemann (1826-1866) in 1854 introduced the abstract
concept of a manifold of arbitrary dimension n equipped with a

metric tensor (gi;)i, j—1,...n With which one can compute a scalar
product between tangent vectors at a point.

(VW) = Z gij(x)viwj
t,j=1,...n
forV:Zivax“W Zwﬂ = at a point z.

©J.J., Bernhard Riemann, On the hypotheses..., 2nd ed. Birkhauser, 2025;
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Riemannian geometry >

Bernhard Riemann (1826-1866) in 1854 introduced the abstract
concept of a manifold of arbitrary dimension n equipped with a
metric tensor (gi;)i, j—1,...n With which one can compute a scalar
product between tangent vectors at a point.  Such a Riemannian
manifold need not be realized in any ambient Euclidean space, but
is intrinsically determined by its metric tensor.

V= Y gyl (1)
4,j=1,..,n

for V=3, aI,,VV Do w]a 5 at a point x.
But this is represented in local coordinates. In other coordinates,
the tangent vectors V, W and the metric tensor (g;;) look
different, but they transform in such a way that the scalar quantity
(1) remains invariant.
This is the principle of covariance that is fundamental for Einstein's
theory of general relativity. It tells us that we should look for

intrinsic Erogerties that do not deﬁend on the reﬁresentation.




Riemannian geometry >

Bernhard Riemann (1826-1866) in 1854 introduced the abstract
concept of a manifold of arbitrary dimension n equipped with a
metric tensor (gi;)i, j—1,...n With which one can compute a scalar
product between tangent vectors at a point.

Riemann® solved the problem of determining a complete set of
local invariants for such a metric tensor. From the curvature tensor
with components

arjg 8Fi LTk

Ot Oxd im j@ F

k
Rﬁij jm zé (1)
with F]k = 2g (82kgjg + %gw - %gjk) (summation signs over
double indices omitted: gw is the inverse of the metric tensor), he
extracts the sectional curvatures.

6).J., Bernhard Riemann, On the hypotheses..., 2nd ed. Birkhauser, 2025;
J.J. Riem.Geom.& Geom.Anal., 7th ed. Springer, 2017



Somewhat surprisingly, for the moment, we do not need curvatures,
only the concept of a Riemannian metric.
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In fact, Riemann introduced another important device, that of
normal coordinates. Essentially, given a point p in a Riemannian
manifold M, for other points ¢ in the vicinity of p, you record the
distance d(p, q) and the angles that the shortest geodesic from p
to ¢ makes with some reference direction at p. Like euclidean polar
coordinates. These coordinates exhibit what the manifold locally
looks like from the perspective of p.
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manifold M, for other points ¢ in the vicinity of p, you record the
distance d(p, q) and the angles that the shortest geodesic from p
to ¢ makes with some reference direction at p. Like euclidean polar
coordinates.

This does not work globally, because in general the shortest
geodesic from p to a more distant point in M need not be unique.
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In fact, Riemann introduced another important device, that of
normal coordinates. Essentially, given a point p in a Riemannian
manifold M, for other points ¢ in the vicinity of p, you record the
distance d(p, q) and the angles that the shortest geodesic from p
to ¢ makes with some reference direction at p. Like euclidean polar
coordinates.

Thus, in a discrete metric space, for a point z, we take its k
nearest neighbors x1, ..., x, ranked according to the distance
from p and consider the star graph S(x) with z as its central
vertex and edges of length d(z, z;) to the z;.

However, for computational reasons, that metric needs to be
modified.
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Equip the star graphs with a (generalized) metric

de(z,25) = W forj=1,...k (2)
d(y,y) = 0 formall Yy

de(zj,20) = %(dx(:nj, x) + dy(z,2z¢)) for neighbors x;, x; of ©
d.(y,z) = oo in all other cases

where d(.,.) is the original distance function on the data set.
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Equip the star graphs with a (generalized) metric

de(z,25) = W forj=1,...k (2)
d(y,y) = 0 formall Yy

de(zj,20) = %(dx(xj, x) + dy(z,2z¢)) for neighbors x;, x; of ©
d.(y,z) = oo in all other cases

In UMAP, one puts the distance = co between different neighbors
of the center x, thereby violating the triangle inequality.
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Equip the star graphs with a (generalized) metric

de(z,25) = W forj=1,...k (2)
d(y,y) = 0 forxall Yy

de(zj,20) = %(dx(xj, x) + dy(z,2z¢)) for neighbors x;, x; of ©
d.(y,z) = oo in all other cases

The factor % mimicks the Euclidean distance of the ends of

orthogonal vectors. We could also omit it.
The choice of p, and o, will be explained in a moment.
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Definition (David Spivak)
An uber-metric space (X,d) is a set X equipped with a map
d: X x X — RsgU{oo} such that
® d(z,y) >0, and d(z,x) = 0;
® d(z,y) =d(y,x); and
O d(z,z) <d(z,y) + d(y, z).
The category of uber-metric spaces UM has as objects

uber-metric spaces and as morphisms again non-expansive maps.
The category of finite uber-metric spaces is denoted by FinUM.

The third property in the definition of uber-metric space implies
that if d(z, z) = oo in an uber-metric space, then for any y either
d(z,y) = oo or d(z,y) = oc.
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d(xalﬁ) — Pz

dy(z,25) = I forj=1,...k (3)
dy(y,y) = 0 forally
do(zj,20) = \}Q(dx(:cj, x) +di(z,z¢)) for neighbors z;, z of =
d.(y,z) = oo in all other cases.
pe = d(z,z1)
oy = d(z,xy)

The choice of p, eases the curse of dimension, because randomly
picked points in a high dimensional ball tend to concentrate near
the outer boundary. For many data sets, however, already p, =0
works well.
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_ d@mm) e (3)

Oz

)

dy(y,y) = 0 forally
)
)

1
do(zj,20) = E(dx(xj’ x) +di(z,z¢)) for neighbors z;, z of =
d.(y,z) = oo in all other cases.
Pz = d(l‘,:ﬂl)
oy = d(z,xy)

The choice of p, eases the curse of dimension, because randomly
picked points in a high dimensional ball tend to concentrate near
the outer boundary. For many data sets, however, already p, =0
works well.

0 achieves some normalization. This is important if the data
points are non-uniformly distributed on the manifold.
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d(z,z;) — d(z, 1)

dy(z,2;) = forj=1,...k 4

(+,2;) ey or j (4)
1

de(zj,20) = ﬁ(dx(xj,x) + d;(x,xy)) for neighbors of z(5)

d.(y,z) = oo in all other cases. (6)

Thus, by (4), the closest neighbor z; of x has distance 0, and the
largest neighbor zj has distance < 1. By (5), the vertices of the
star graph satisfy a triangle inequality, as if sitting in independent
directions. By (6), vertices not in the star have infinite distances
and therefore are not seen from the center.
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Now, what to do with those local star graphs? How to recombine
them into a global structure?
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® Convert them into fuzzy graphs that can be merged in a
canonical way with the help of a t-conorm, utilizing
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Now, what to do with those local star graphs? How to recombine
them into a global structure?

Options:
@ Develop a canonical scheme for merging metric spaces

® Convert them into fuzzy graphs that can be merged in a
canonical way with the help of a t-conorm, utilizing
constructions from category theory. (Fuzzy graphs are a
special case of Spivak's fuzzy simplicial sets. See below)

| shall develop here the first alternative, but the cognoscenti will
see the analogy with Spivak’s fuzzy simplicial sets. An essential
idea, however, already goes back to Karl Menger.’

"K.Menger, PNAS, 1942
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Hazy sets =

Definition
Topology on [0, 00]: open sets = intervals (s, o], indicated simply
by s. its : t — s is inclusion (¢, 00] C (s, 00] for s < t. Category H.
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Topology on [0, 00]: open sets = intervals (s, o], indicated simply
by s. its : t — s is inclusion (¢, 00] C (s, 00] for s < t. Category H.
A hazy set S is a sheaf on H for which all restriction maps

S(its 1t — s) : S(s) — S(t) are injections. Their category is
denoted by Haz.

We call s the haziness of S(s) and consider S(s) as the set of

haziness at most s.
All S(s) are subsets of X := S(00). Set of haziness precisely ¢

S(=1) == S\ | 5(s). (7)

s>t
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Hazy sets =

Definition

Topology on [0, 00]: open sets = intervals (s, o], indicated simply
by s. its : t — s is inclusion (¢, 00] C (s, 00] for s < t. Category H.
A hazy set S is a sheaf on H for which all restriction maps

S(its 1t — s) : S(s) — S(t) are injections. Their category is
denoted by Haz.

We call s the haziness of S(s) and consider S(s) as the set of
haziness at most s.

All S(s) are subsets of X := S(00). Set of haziness precisely ¢

S(=1) == S\ | 5(s). (7)

s>t

A hazy simplicial set is a functor A°P — Haz where A is the
simplicial indexing category. Functor category sHaz of hazy
simplicial sets.
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A hazy simplicial set is a functor S : (A x H)°? — Set.

ST = S([n], (s,00]) are the n-simplices in the image of S of
haziness at most s.

Lemma

A simplex is at least as hazy as its faces.
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Hazyness becomes metric 2

Yoneda embedding (A x H) — Set®*H" yields functors A” with

A?(ma t) = HomAXH((mv t)a (’Tl, 8)) (8)
Such morphisms exist only for s < t. And so, morphisms A? — A
(obtained by composing morphisms ((m,t) — (n,s) — (¢,7)) can

exist only for » < s. We consider A7 as the n-simplices of haziness
at most s.
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Yoneda embedding (A x H) — Set®*H” yields functors A” with
A?(ma t) = HomAXH((mv t)a (n7 8)) (8)

Such morphisms exist only for s < t. And so, morphisms A? — A
(obtained by composing morphisms ((m,t) — (n,s) — (¢,7)) can

exist only for » < s. We consider A7 as the n-simplices of haziness
at most s.

The smear functor Sm associates to Al' a geometric n-simplex of

diameter s,

n+1
Sma (AY) = {a: € R™"! 2" > 0 and Z T s} . (9

i=1
On morphisms, it operates by rescaling by  when s <.
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Hazyness becomes metric 2

Yoneda embedding (A x H) — Set®*H” yields functors A” with

Ag(m’ t) = HomAXH((ma t)a (’I’L, S)) (8)
Such morphisms exist only for s < ¢. And so, morphisms A" — A’
(obtained by composing morphisms ((m,t) — (n,s) — (¢,7)) can
exist only for < s. We consider A7 as the n-simplices of haziness
at most s.

The smear functor Sm associates to A7 a geometric n-simplex of
diameter s,

Sma (AY) = {x e R

n+1

' >0 and in:s}. (9)
i=1

On morphisms, it operates by rescaling by 7 when s <.

Using Kan extensions (while a functor need not admit adjoints, its

lift to the Yoneda categories of presheaves does), Sm becomes a

functor from sHaz to UM.
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Hazyness becomes metric 2

Yoneda embedding (A x H) — Set®*H” yields functors A” with
A?(ma t) = HomAXH((mv t)a (n7 8)) (8)

Such morphisms exist only for s < t. And so, morphisms A? — A
(obtained by composing morphisms ((m,t) — (n,s) — (¢,7)) can

exist only for » < s. We consider A7 as the n-simplices of haziness
at most s.

The smear functor Sm associates to Al' a geometric n-simplex of

diameter s,

Sma (AY) = {:z: c R

n+1
2 >0 and Zmi:s}. (9)
i=1

On morphisms, it operates by rescaling by  when s <.

Image of hazy simplicial set is uber-metric: Simplices have metric

(9), compatible with glueing along shared faces. Faces cannot be

more hazy than simplex itself, hence diameter not larger, shortest

path can't be shortened by going into a higher-dimensional simplex.



From an uber-metric space to a simplicial hazy set.

We also want to go in the opposite direction.
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From an uber-metric space to a simplicial hazy set.

Definition
The tightening functor is

Ti: UM — sHaz
Y s Ti(Y) : (A x H)°P — Set (10)
(n,s) — Homum(Sm(AY),Y) .

Morphisms in UM are distance non-increasing. Therefore, the
larger s, the more morphisms there are into a given uber-metric
space Y, because Sm(A?) is a simplex with diameter s.

Theorem
Ti is right adjoint to Sm, i.e.

Homym(Sm(S),Y) ~ Homgpaz (S, Ti(Y)) . (11)
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The merger tool 2=

Definition

An m-scheme is a function M : [0, oc0] x [0, 00] — [0, o0] with:
(1) Symmetry : M(s,t) = M(t,s),

(2) Monotonicity : M (s,t) < M(v,w) if s <wv and t < w,
(3) Associativity : M (r, M(s,t)) = M(M(r,s),t),

(4)

4) Boundary condition M (s, 00) = s.
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The merger tool 2=

Definition
An m-scheme is a function M : [0, c0] x [0, 00] — [0, co] with:
(1) Symmetry : M(s,t) = M(t,s),
(2) Monotonicity : M(s,t) < M(v,w) if s <wv and t < w,
(3) Associativity : M(r, M (s,t)) = M(M(r,s),t),
(4) Boundary condition M(s,o0) = s.
Any m-scheme satisfies
M(s,0)=M(0,s) =0 forall s. (12)

This follows from M (0, 00) = 0, monotonicity and symmetry.
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L’X}

The merger tool

Definition
An m-scheme is a function M : [0, c0] x [0, 00] — [0, co] with:
(1) Symmetry : M(s,t) = M(t,s),
(2) Monotonicity : M(s,t) < M(v,w) if s <wv and t < w,
(3) Associativity : M(r, M (s,t)) = M(M(r,s),t),
(4) Boundary condition M(s,o0) = s.
Extremal examples:
® Mmin(s,t) = min(s,t)
t ifs=o00
® Mei(s,t) =4¢s ift=o00
0 else.
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The merger tool 2=

Definition
An m-scheme is a function M : [0, oc0] x [0, 00] — [0, o0] with:
(1) Symmetry : M(s,t) = M(t,s),
(2) Monotonicity : M (s,t) < M(v,w) if s <wv and t < w,
(3) Associativity : M (r, M(s,t)) = M(M(r,s),t),

)

(4) Boundary condition M(s,o0) = s.

Miin(s,t) = min(s,t), Mext(s,t) =0 if s,t # oo and (4).
Let 0 € V C R20,

t ifs=o00
My (s,t):==qs ift=o0, (12)
sup,ey{ v|v<sandv <t} else
For V =R2% we get My, while for V = {0}, Mey. If U C V,

then My < My. Take V = [0, a] to get a natural family.



Merging >

A hazy simplicial set derived from an uber-metric space is a
diagram (inverse system) of simplicial sets. From this, we
construct a classical hazy simplicial set, which consists of a
simplicial set (where n—dimensional simplices are identified) along
with a haziness function. This hazy simplicial set is then realized
as a metric space through a smearing process.
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Merging >

Consider a finite vertex set V, our data sample, on which a hazy
simplicial set is built.
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Merging >

Properties of a hazy simplicial set enabling metric realization
1- Haziness of simplex > max haziness of faces.
2- Vertices have haziness = 0.
3- As scale > diameter, entire space is represented as a full
simplex equipped with a haziness function.
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3- As scale > diameter, entire space is represented as a full
simplex equipped with a haziness function.
In forward direction (uber-metric — hazy simplicial set), triangle
inequality implicitly reflected in haziness of edges.
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1- Haziness of simplex > max haziness of faces.

2- Vertices have haziness = 0.

3- As scale > diameter, entire space is represented as a full

simplex equipped with a haziness function.

In forward direction (uber-metric — hazy simplicial set), triangle
inequality implicitly reflected in haziness of edges.
However, in general, edges of a hazy simplicial set need not satisfy
triangle inequality. Still, in backward direction (hazy simplicial set
— uber-metric), process ensures all uber-metric properties.

| | 25/46



Merging >

Properties of a hazy simplicial set enabling metric realization

1- Haziness of simplex > max haziness of faces.

2- Vertices have haziness = 0.

3- As scale > diameter, entire space is represented as a full

simplex equipped with a haziness function.

In forward direction (uber-metric — hazy simplicial set), triangle
inequality implicitly reflected in haziness of edges.
However, in general, edges of a hazy simplicial set need not satisfy
triangle inequality. Still, in backward direction (hazy simplicial set
— uber-metric), process ensures all uber-metric properties.
Example: 01(z,y) = 1,01(x,2) = d1(y,2) = 3 and
do(z,z) = 1,02(z,y) = 92y, 2) = 3. With M = Mpin,
vz, y) = 1,00 (2, 2) = 1,00 (y, 2) = 3, violating triangle.
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Merging >

Properties of a hazy simplicial set enabling metric realization

1- Haziness of simplex > max haziness of faces.

2- Vertices have haziness = 0.

3- As scale > diameter, entire space is represented as a full

simplex equipped with a haziness function.
In forward direction (uber-metric — hazy simplicial set), triangle
inequality implicitly reflected in haziness of edges.
However, in general, edges of a hazy simplicial set need not satisfy
triangle inequality. Still, in backward direction (hazy simplicial set
— uber-metric), process ensures all uber-metric properties.
Example: 01(z,y) = 1,01(x,2) = d1(y,2) = 3 and
do(z,z) = 1,02(z,y) = 92y, 2) = 3. With M = Mpin,
vz, y) = 1,00 (2, 2) = 1,00 (y, 2) = 3, violating triangle.
We therefore need
¢

d(z,y) = inf Z(S(ﬂ;i_l,xi) . (13)

LTo=T,T1;---,Lp=Y %
=1
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Star graphs 2

We had constructed star graphs centered at the sample points x,
connecting them with their k£ nearest neighbors. But when x and y
are both among the k nearest neighbors of each other, the weights
of the edges in the corresponding star graphs may be different.
And other weights are even infinite. So, we use the above scheme
to merge these star graphs to reconstruct some graph that
represents the entire sample.
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are both among the k nearest neighbors of each other, the weights
of the edges in the corresponding star graphs may be different.
And other weights are even infinite. So, we use the above scheme
to merge these star graphs to reconstruct some graph that
represents the entire sample.

You may ask: Why don't we simply construct a graph from the
sample by connecting sufficiently close points and use the original
distances? Or connect two points when at least one of them is
among the k nearest neighbors of the other?
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Star graphs 2

We had constructed star graphs centered at the sample points x,
connecting them with their k£ nearest neighbors. But when x and y
are both among the k nearest neighbors of each other, the weights
of the edges in the corresponding star graphs may be different.
And other weights are even infinite. So, we use the above scheme
to merge these star graphs to reconstruct some graph that
represents the entire sample.

You may ask: Why don't we simply construct a graph from the
sample by connecting sufficiently close points and use the original
distances? Or connect two points when at least one of them is
among the k nearest neighbors of the other?

One of the earlier schemes, Isomap, essentially does that, but the
results become better when we use the apparently more
complicated procedure suggested by UMAP and refined by us in
IsUMap. This captures the local structure and the possibly
varying density better. The local structure may look different from




Merging star graphs 2

All star graphs are defined on the same underlying set of sample
points, and so we can identify points in different star graphs as [z].
When we use the minimum m-scheme, we get

d-([2], [2']) = inf(dx (p1, @1) + -+ dx (P, qm)),  (14)

where the infimum is taken over all pairs of sequences
(p1,-+* ,pn), (q1,-+-,qn) of elements of X, such that

pr~x, qu~x', and pi1~q forall 1<i<n-—1,
(15)
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Merging star graphs 2

All star graphs are defined on the same underlying set of sample
points, and so we can identify points in different star graphs as [z].
When we use the minimum m-scheme, we get

d-([2], [2']) = inf(dx (p1, @1) + -+ dx (P, qm)),  (14)

where the infimum is taken over all pairs of sequences
(p1,-+* ,pn), (q1,-+-,qn) of elements of X, such that

pr~x, qu~x', and pi1~q forall 1<i<n-—1,
(15)

Other m-schemes yield different results, and we can experiment
which one works best for a given data sample.
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IsUMap 2=

Given a sample x1,...,xn from a metric data set
@ Construct star graphs centered at the z; with uber-metrics
(UM) that assign distance = oo between different points
unless both are among x; and its the k£ nearest neighbors.
These metrics are normalized to adjust for non-uniform
distributions of the samples and the curse of dimensionality.
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(UM) that assign distance = oo between different points
unless both are among x; and its the k£ nearest neighbors.
These metrics are normalized to adjust for non-uniform
distributions of the samples and the curse of dimensionality.

® Merge these local star graphs (conceptually by converting
them into hazy graphs and use an m-scheme for combining
probabilities)

| | 28/46



IsUMap 2=

Given a sample x1,...,xn from a metric data set

@ Construct star graphs centered at the z; with uber-metrics
(UM) that assign distance = oo between different points
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® Use the Dijkstra algorithm to compute the distance function
on the resulting global graph (T, dr) .
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IsUMap 2=

Given a sample x1,...,xn from a metric data set

@ Construct star graphs centered at the z; with uber-metrics
(UM) that assign distance = oo between different points
unless both are among x; and its the k£ nearest neighbors.
These metrics are normalized to adjust for non-uniform
distributions of the samples and the curse of dimensionality.

® Merge these local star graphs (conceptually by converting
them into hazy graphs and use an m-scheme for combining
probabilities)

® Use the Dijkstra algorithm to compute the distance function
on the resulting global graph (T, dr) .

© Approximate it by a 2D graph (v, dy) using multidimensional
scaling, that is, minimizing a function like

> (dy(yiyyy) — dr(zi, ) (16)
ij=1,...,N

where y; € v corresponds to x; € T'.



Hazy simplicial sets and TDA 2

The preceding scheme constructs a hazy simplicial complex from a
metric data set.
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The preceding scheme constructs a hazy simplicial complex from a
metric data set.

A simplicial complex X on a vertex set V' consists of subsets of V/
such that whenever ¢ € %, then also all p C o, the faces of the
simplex o, are in X.
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A simplicial complex 3 on a vertex set V' consists of subsets of V'
such that whenever ¢ € %, then also all p C o, the faces of the
simplex o, are in X.

In a hazy simplicial complex, all simplices carry haziness values,
and all the faces of ¢ must have values not larger than o itself.
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Hazy simplicial sets and TDA 2

The preceding scheme constructs a hazy simplicial complex from a
metric data set.

A simplicial complex 3 on a vertex set V' consists of subsets of V'
such that whenever ¢ € %, then also all p C o, the faces of the
simplex o, are in X.

In a hazy simplicial complex, all simplices carry haziness values,
and all the faces of ¢ must have values not larger than o itself.

In short: The radius r of TDA that determines the intersections of
distance balls becomes a haziness value.
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Topology and curvature 2

Now, finally, the most important geometric concept, curvature, will
enter.
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Sectional curvature 2

The sectional curvatures, that is, the Riemannian curvatures
evaluated on 2-dimensional tangent planes determine the metric
locally completely. If they vanish, the manifold is flat, that is,
locally Euclidean. The spaces of constant sectional curvatures

(spheres for positive, hyperbolic spaces for negative curvature) are
the basic model spaces of geometry.
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Spaces of constant curvature serve as comparison spaces in
geometry. When the curvature of a space satisfies A < K < p, its
geometry is between those of the spaces of constant curvature A
and pu.
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Spaces of constant curvature serve as comparison spaces in
geometry. When the curvature of a space satisfies A < K < p, its
geometry is between those of the spaces of constant curvature A
and pu.

We can, for instance, compare the geometry of spaces of curvature
< 0 with that of Euclidean spaces.
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A triangle in a space of negative curvature is thinner than in
Euclidean space.
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A triangle in a space of negative curvature is thinner than in
Euclidean space. And it becomes the thinner, the more negative
the curvature, and ultimately, when curvature — —o0, converges
to a tripod.
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A triangle in a space of negative curvature is thinner than in
Euclidean space.

In fact, this is a local property that is characteristic for negative
curvature. But such a property can also be checked in metric
spaces more general than Riemannian manifolds. We only need
geodesic triangles, that is, triangles whose sides are shortest
geodesics.

| | 33/46



It was then an important idea of Karl Menger (1902-1985),
Abraham Wald (1902-1950), Alexandr Danilovic Alexandrov
(1912-1999) and Herbert Busemann (1905-1994) to define
curvature bounds for metric spaces more general than Riemannian
manifolds in terms of inequalities for geodesic triangles.

T T2

geodesic geodesic
from x3 from w3
to x1 = ¢(0) to x2 = ¢(1)

IN
gl
P

T3

Figure 1: Comparison between a triangle in a space of nonpositive curvature in
the sense of Alexandrov and the triangle with the same lengths of corresponding
sides (indicated by slashes) in the Euclidean plane.
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It was then an important idea of Karl Menger (1902-1985),
Abraham Wald (1902-1950), Alexandr Danilovic Alexandrov
(1912-1999) and Herbert Busemann (1905-1994) to define
curvature bounds for metric spaces more general than Riemannian
manifolds in terms of inequalities for geodesic triangles.

But our data spaces are discrete, and therefore do not contain
geodesic connections between data points. Therefore, we need a
still more general concept.
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Sectional curvature 2

With Parvaneh Joharinad, | have developed a notion of sectional

curvature that applies to general metric spaces and can be applied
in data analysis.

Here is the basic question:
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Sectional curvature 2

How to distinguish a tripod from a triangle?

x T
1 2 7 -

m

I3 T3
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Sectional curvature 2

How to distinguish a tripod from a triangle?

X X
1 2 x1 Z9

m

3 x3

d(z;,z;) = 2r for i # j. Then the balls
B(z;,r) = {z : d(z;,x) < r} intersect pairwise in each graph.

Let
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Sectional curvature 2

How to distinguish a tripod from a triangle?
T 45
I i)

m

T3 T3 Let
d(z;,z;) = 2r for i # j. Then the balls
B(z;,r) = {z : d(z;,x) < r} intersect pairwise in each graph.
But in the tripod, they also have a triple intersection
B(z1,7) N B(w2,7) N B(xs,r) = {m} # 0

whereas in the triangle, only

B(z1,2r) N B(x2,2r) N B(xs,2r) #0 .
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Sectional curvature 2

I Z2

T3

B(zi,r) N B(xj,r) # 0
In the tripod, they also have a triple intersection
B(x1,7) N B(x,r) N B(xzs,r) ={m} #10
whereas in the triangle, only
B(x1,2r) N B(x2,2r) N B(xs,2r) #0 .

These are extreme cases, and when B(z;,r) N B(z;,7) # 0, there
exists some 1 < A\ < 2 with

B(x1, \r) N B(x2, Ar) N B(xz, A\r) # 0



Sectional curvature 2

B(z;,r) N B(zj,r) #0, 1 <X <2 with
B(x1, Ar) N B(xg, \r) N B(xs, Ar) £ ()

quantifies the curvature. The smaller A, the more negative the
curvature is.
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Sectional curvature 2

B(z;,r) N B(zj,r) #0, 1 <X <2 with
B(x1, Ar) N B(xg, \r) N B(xs, Ar) £ ()

quantifies the curvature. The smaller A, the more negative the
curvature is.
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Topological Data Analysis (TDA): For metric family (z;)icr, d
and r > 0, the Cech complex contains a g-simplex whenever

ﬂ B(zi,r) # 0.

i=1,...,q+1

Its homology (unfilled simplices) varies as a function of r.
Thus, the vertices (0-simplices) of our simplicial complex
correspond to the balls. Two vertices are connected by an edge
(1-simplex) when the balls intersect, and we fill a triangle
(2-simplex) when the three balls have a common intersection.

Here, triangle is not filled, because no triple intersection.



Topological Data Analysis (TDA): The vertices (0-simplices) of
our simplicial complex correspond to the balls. Two vertices are
connected by an edge (1-simplex) when the balls intersect, and we
fill a triangle (2-simplex) when the three balls have a common
intersection.

Here, triangle is not filled, because no triple intersection. If the
balls were smaller, they would not intersect pairwise, and if they
were larger, we would also have a triple intersection. Thus, here we
have a scale with non-trivial homology.
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Topological Data Analysis (TDA): For metric family (z;)icr, d
and r > 0, the Cech complex contains a g-simplex whenever

n B(zi,r) #0.

i=1,...,q+1

Its homology (unfilled simplices) varies as a function of r.
In contrast, in the Vietoris-Rips complex, simplices are filled
whenever the balls around their vertices intersect pairwise.
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Our notion of sectional curvature quantifies the difference between
the Cech complex and the Vietoris-Rips complex.

How much does one have to enlarge balls that intersect pairwise to
get triple intersections?
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Our notion of sectional curvature quantifies the difference between
the Cech complex and the Vietoris-Rips complex.

How much does one have to enlarge balls that intersect pairwise to
get triple intersections?

The less one has to enlarge them, the more negative the curvature.
Thus, we can understand TDA from a geometric perspective.
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The indicated notion of sectional curvature for metric spaces® is
useful for the large scale analysis of metric spaces. When the space
is discrete, one may allow for some ¢ > 0, depending on the scale
of the metric and ask for intersections of radius r + 6.

8P Joharinad, J.J. Mathematical principles of topological and geometric
data analysis, Math of Data, Springer, 2023
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The indicated notion of sectional curvature for metric spaces® is
useful for the large scale analysis of metric spaces. When the space
is discrete, one may allow for some ¢ > 0, depending on the scale
of the metric and ask for intersections of radius r + §.

For instance, for a traffic network, it is useful to distinguish a large
scale tripod type pattern, with a center to which all lines go, like
the French railway system with Paris as the center, from a ring

type structure where locations typically lie on a cycle.

8P Joharinad, J.J. Mathematical principles of topological and geometric
data analysis, Math of Data, Springer, 2023
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Curvature and convexity 2

The more negative the curvature, the more convex the space
becomes.?

A region R is convex if whenever z and y are in R, then also any
point between x and y is in R as well.

°J.J., Nonpositive curvature, Birkhauser, 1997
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The geometry of conceptual spaces J=

® Adjectives are represented by convex regions in conceptual
spaces (P.Gardenfors, The Geometry of Meaning, MIT Press,
2014).
Clustering algorithms also typically, but not necessarily, yield
convex regions.
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The geometry of conceptual spaces J=

® Adjectives are represented by convex regions in conceptual
spaces (P.Gardenfors, The Geometry of Meaning, MIT Press,
2014).
In particular, the regions for the various colors (green, red,
blue, yellow,...) in color space are convex.
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The geometry of conceptual spaces J=

® Adjectives are represented by convex regions in conceptual
spaces (P.Gardenfors, The Geometry of Meaning, MIT Press,
2014).

® Verb meanings have also the properties of monotonicity
(larger efforts lead to larger results) and
continuity/discontinuity (small increases of effort can lead to
small/large results) (P.Gardenfors, M.Warglien, J.J., in:
Frontiers in Psychology, 2018)
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The geometry of conceptual spaces J=

® Adjectives are represented by convex regions in conceptual
spaces (P.Gardenfors, The Geometry of Meaning, MIT Press,
2014).

® Verb meanings have also the properties of monotonicity
(larger efforts lead to larger results) and
continuity/discontinuity (small increases of effort can lead to
small/large results) (P.Gardenfors, M.Warglien, J.J., in:
Frontiers in Psychology, 2018)

® Nouns have a more abstract geometric representation in terms
of local sections of presheaves (P.Gardenfors, M.Warglien,
J.J., under review)
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